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Soil Moisture Retrieval From AMSR-E Data in
Xinjiang (China): Models and Validation

Xianfeng Zhang, Jiepeng Zhao, Quan Sun, Xuyang Wang, Yulong Guo, and Jonathan Li

Abstract—Accurate soil moisture information is required for
studying the global water and energy cycles as well as the carbon
cycle. The AMSR-E sensor onboard NASA’s Aqua satellite offers
a new means to accurately retrieve soil moisture information at
a regional and global scale. However, the characterization of the
factors such as precipitation, vegetation, cloud, ground roughness,
and ice-snow packs is sensitive to the retrieval of the soil moisture
content from the remotely sensed data.

This paper examines the models that are used to generate soil
moisture products from US National Snow and Ice Data Center
(NSIDC), and to adapt the models to improve the accuracy of soil
moisture retrieval in Xinjiang, northwest China. The ground truth
data collected by the WET and WatchDog instruments in Xinjiang
were used to derive the empirical parameters for the regressive
model that are suited to the conditions in Xinjiang. To improve
the accuracy of inversion, the impact of precipitation’s lag-effect
on the surface soil moisture has been addressed using the param-
eters monthly bases, daily variation and the lag-effect impact of
precipitation in the improved model. The improved model is then
used to retrieve the soil moisture information from the AMSR-E
data. A comparative study between the result from the proposed
model and the NSIDC products of May to September 2009 were
performed with the AMSR-E data. Validation with ground truth
and the comparison indicate that the improved model performs
better and produces more accurate soil moisture maps than the
NSIDC products in the study area.

Index Terms—AMSR-E, arid area, inversion, precipitation, soil
moisture.

I. INTRODUCTION

S OIL moisture is a critical environmental element for both
global water and energy budgets that have a great impact

on climate change over land [1]–[4]. It provides a fundamental
condition for vegetation growth and is an important indicator
for studying water content in vegetation, monitoring agricultural
drought, and predicting crop yield [2], [5]–[7]. Remote sensing
has lately been used to deal with large-scale spatial and temporal
characterizations of soil moisture fields. Presently three cate-
gories of remote sensing methods have been explored, including
thermal inertia, remotely sensed vegetation index, or microwave
derived coefficients [1], [8]–[11]. Among these methods, the
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passive microwave remote sensing of soil moisture offers sev-
eral advantages over the others: (a) ability to penetrate cloud,
(b) directly related to soil moisture through the soil dielectric
constant, and (c) less sensitive to land surface roughness or veg-
etation coverage [12], [13].

Within the microwave spectrum, lower frequencies respond
to a deeper soil layer and are less attenuated by vegetation.
Therefore, they are ideally suited for remote sensing of soil
moisture [12]–[15]. The Advanced Microwave Scanning
Radiometer – Earth Observing System (AMSR-E) currently
acquires passive microwave brightness temperatures at six dual
polarized frequencies, centered at 6.9, 10.7, 18.7, 23.8, 36.5,
and 89.0 GHz, respectively. The AMSR-E instrument has been
onboard NASA’s Aqua satellite orbiting the Earth since May
2002. With the exception of regions such as dense vegetation,
snow and ice, or frozen soils, AMSR-E provides a global soil
moisture coverage every two days, from both the ascending
(daytime) and descending (nighttime) overpasses [13]. Existing
studies that evaluate near-surface soil moisture fields retrieved
from AMSR-E have shown promising results [15], [16]. The
models and algorithms designed for soil moisture retrieved
from the AMSR-E data can be classified into three types:
single-channel-based, multiple-channel-based iterative, and
multiple-channel-based regressive algorithms [13], [17], [18].
However, due to the imperfection of the instrument calibra-
tion and inversion algorithms and the impacts of precipitation,
cloud, ground roughness, ice-snow and dense vegetation covers,
the soil moisture products created using a global regressive
model in the NSIDC products contain uncertainties in some
areas, especially outside the United States [15], [17]. There-
fore, much work needs to be done to improve the instrument
calibration and inversion algorithms and models, and to address
the influential factors more accurately.

This paper demonstrates the utility of passive microwave re-
mote sensing for observing near-surface soil moisture over Xin-
jiang, a typical arid area in northwest China. The rest of the
paper is structured as follows. Section II describes a new em-
pirical inversion model. Section III presents a case study for the
AMSR-E derived soil moisture over Xinjiang. A comparative
study between the results obtained from the proposed model and
that of the NSIDC products from May to September 2009 is dis-
cussed in Section IV. Section V draws some conclusions.

II. RETRIEVAL METHODS

A. Retrieval Principles

With the increase of water content in soil, soil dielectric con-
stant also increases rapidly [19]. As a consequence, the emis-
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sivity of passive microwave signals in bands L, S, C, X and
Ku decreases considerably with the increase of land surface soil
water content [13], [15]. In principle, the microwave signals at
frequency of 1.4 GHz can penetrate vegetation cover to detect
soil moisture, while a microwave sensor with an operating fre-
quency of 37 GHz can only measure microwave radiation char-
acteristics of vegetation and is unable to detect the soil moisture
[20]. Specifically, the AMSR-E sensor has the bands of Ku, X,
and C in the low-frequency microwave region and does not have
the L band that can penetrate vegetation and surface soil layer.
The recently launched ESA’s Soil Moisture and Ocean Salinity
(SMOS) satellite and upcoming imaging satellites carrying the
L-band microwave sensors will allow better soil moisture mon-
itoring in the near future [21], [22].

The models for soil moisture retrieval from AMSR-E data
are often built based on the coefficients such as polarization ra-
tios ( ) calculated from AMSR-E brightness temperature data,
which is strongly correlated to vegetation optical depth, surface
roughness, and soil water content [17]. The polarization ratio
( ) is defined as

(1)

where and are the vertically and horizontally polarized
AMSR-E brightness temperatures, respectively.

At a certain incidence angle, decreases quickly with the
increase of optical depth [20], [23]. In fact, the related studies
indicate that AMSR-E’s is correlated with the normalized
difference vegetation index (NDVI) derived from the Moderate
Resolution Imaging Spectroradiometer (MODIS) data [24],
[25]. This indicates that dense vegetation covers have strong
impact on the retrieval of underlying soil moisture from the
AMSR-E data.

The impact of surface roughness on observed brightness tem-
perature is related to three factors: earth surface characteristics,
incidence angle, and frequency [26]. Thus, surface roughness is
another critical factor that has impact on AMSR-E , namely
that, decreases with greater surface roughness [17]. To re-
move or reduce the impact of surface roughness on calcula-
tion is also quite important for accurate soil moisture retrieval
from the AMSR-E data.

B. The Regressive Model for NSIDC Products

According to [17], can be estimated by

(2)

(3)

where is the soil moisture on a volume basis (%), is the
mixed parameter combining vegetation optical depth ( ) with
ground surface roughness, , in which denotes the
vegetation optical depth, is the proportional to the quantity

, where is the wavenumber ( ) and is the root
mean square (RMS) surface height; contains the information
on both and the horizontal roughness correlation length ,
and are the coefficients related to microwave frequency, ,

and are the vertical and horizontal emissivity of exposed
smooth bare land surface, respectively, is the function
of the product of soil moisture and frequency, and is
the function of two independent variables of and .

Due to the fact that mainly correlates with and , it can
be treated as a constant in a monthly scale in the same area. If
the surface roughness parameter is ignored, the parameter is
just related to the vegetation condition. If is replaced with the
monthly minimum value , becomes correspondingly
the monthly lowest value . Thus, by combing (2) and (3),
Njoku [17] developed the empirical regressive model shown in
(4). This model has been used to create the NSIDC soil moisture
products

(4)

where and are the regressive parameters, is the
monthly minimum base value of calculated from X-band
(10.7 GHz) AMSR-E data, is the soil moisture on a volume
basis. The global base value of is calculated from the
EASE-GRID of monthly minimum value of soil moisture of
the year 2003[17]. Once is calculated from X-band data,
the soil moisture can be retrieved using this regression model.

Equation (4) can be further divided into two parts: , re-
flecting monthly base level of soil moisture, and , repre-
senting daily or hourly variation of soil moisture. The first part
is related to , and can be empirically expressed as

(5)

where and are the empirical regression parameters, is
the monthly base value of soil moisture, which is impacted by

, and reflects the minimum surface soil moisture level for
maintaining the vegetation.

The second part of (4) is related to the and
, which reflects the variation of surface soil moisture.

Thus, the empirical equation of can be derived as

(6)

where is the daily variation of soil moisture, which is de-
termined by and , and are best-fit
coefficients. The variable is caused by land surface evap-
oration and precipitation, and reflects hourly and daily change
of soil moisture and is important to be addressed in the model.

The model shown by (5) depicts the monthly base value
of the soil moisture, , which may be inaccurate especially
when rainfall occurs for several times and causes larger soil
moisture in 5 to 10 cm soil layers. This is commonly termed as
“lag-effect”. In this case, the monthly base soil moisture value
is larger than regular values when less precipitation occurs. The
inaccurate estimation of soil moisture also occurs in the case of
salty lands and water bodies because these areas are sparsely or
non-vegetated but the water content is relatively high. Finally,
Njoku’s regressive model that is shown in (4) and used in
NSIDC is built for a globe scale, and may not be suitable for
a specific region such as the arid area of Xinjiang. This is due
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Fig. 1. The location of the study area: Xinjiang, China.

to the limitations of the regressive models themselves. Con-
sequently, some parameters need to be refined or recomputed
using specific ground truth data at a regional scale.

C. Adjusted Inversion Model

Based upon the above discussions, improvements will be
made to the retrieval model by adjusting the parameters
and .

In order to remove or reduce the lag-effect impact of precip-
itation in the study area, a factor is introduced to reflect the
impact of precipitation on a monthly base of soil moisture. As
(2) indicates, rainfall may lead to the rise of soil moisture, and
consequently resulting in a larger value of . At a monthly
scale, more precipitation tends to lead to a longer period of high
soil moisture, and a higher average value of retrieved from
the AMSR-E data. Thus, a variable has been proposed to char-
acterize the lag-effect impact of precipitation in a month.

(7)

where and are the empirical parameters, is the
monthly average of , is the monthly minimum of .
A threshold value of is empirically estimated as using the
ground truth data of a specific region. If , the impact of
precipitation is strong and the lag-effect impact of precipitation
is characterized into the monthly precipitation base by

(8)

where and are the empirical parameters derived from
ground truth data. In the case of considering the lag-effect im-
pact of precipitation, the monthly base soil moisture is revised
as , and .

The variable is generally affected by weather condi-
tions, mainly including precipitation and evaporation, while the
impact of precipitation on soil moisture is different in vegetated

and non-vegetated areas. In the arid desert area such as Xin-
jiang, a rainfall process can lead to a larger rise of the surface
soil moisture. Empirically, when , we can assume
that a rainfall process is taking place or occurred in a few hours
ago. The regression model is suitable for soil moisture retrieval
in the case of . In contrast, precipita-
tion has a distinct impact on the inversion of the model when

is three times bigger than . In this case, let equals
, and the can be adjusted and better estimated by

acknowledging the assumptions above and using (6). The re-
vised regressive model was then used to retrieve soil moisture
from the AMSR-E data of Xinjiang, northwest China. Finally,
soil moisture can be obtained from the AMSR-E data by

(9)

III. IMPLEMENTATION: A CASE STUDY

A. The Study Area

The study area is located in the northwest of China, including
the entire Xinjiang Uygur Autonomous Region (Fig. 1). It is a
large, sparsely populated region that covers approximately one
sixth of the country’s territory. Xinjiang borders the Tibet to
the south and Qinghai and Gansu provinces to the southeast,
Mongolia to the east, Russia to the north, and Kazakhstan,
Kyrgyzstan, Tajikistan, Afghanistan, and the Pakistan- and
India-controlled parts of Kashmir to the west. The topography
of Xinjiang can be described as “three Mountains delineate
two basins”: the Mountains Altai, Tianshan, and Kunlun go on
the north border, through the center, and on the south border
of Xinjiang, respectively. The Zhungeer Basin is bordered by
the mountains of Tianshan and Altai, and the Tarim Basin is
between the Kunlun and Tianshan Mountains.

The study area is a typical Central Asian arid area with an av-
erage annual precipitation of 150 mm, and the spatial distribu-
tion of the precipitation is quite heterogeneous. A typical layout
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Fig. 2. The base value of soil moisture� of May 2009 in Xinjiang.

of landscapes in Xinjiang from the top of a mountain, through
the hills, to the central basin is: snow-glacier covers, high-moun-
tain meadows, forest, well-grown high grassland adjacent with
the forest, hilly grassland, natural-artificial oasis, and desert.
The water resources in Xinjiang are a critical factor for regional
eco-environmental and agricultural management and determine
the development of the landscapes. Thus, it is significant to mon-
itor soil moisture condition using satellite remotely sensed data.

B. Data Acquisition and Pre-Processing

AMSR-E provides a global soil moisture coverage every
two days, from both the ascending (pass through the Equator
at daytime 1:30 pm) and descending (at nighttime 1:30 am)
overpasses [13]. X-band (10.7 GHz) AMSR-E data are most
suitable for soil moisture retrieval due to the fact that the
AMSR-E data at frequencies of 36.5 GHz and 18.7 GHz
are heavily influenced by clouds while C-band (6.9 GHz)
AMSR-E data are subject to radio frequency interference (RFI)
[27]. The resampled brightness temperature ( ) datasets
(AMSR-E_L3_DailyLand_V06) of May to September 2009
were used to retrieve soil moisture over Xinjiang. The NSIDC’s
soil moisture products for the same period were also down-
loaded for the purpose of conducting a comparative study
presented in Section IV.

For the purposes of modeling and validating the proposed re-
gression model, ground truth data have been also collected on
the northern slopes of the Tianshan Mountain, a typical area rep-
resenting Xinjiang’s landscapes. Two types of soil moisture data
were collected: mobile measurements using the WET instru-
ment developed by the British Company Delta-T Devices, and
fixed observations using the WatchDog2400 Irrigation Station,
developed by the Spectrum Technologies, Inc., United States.
The WET instrument was used to measure the 5–10 cm sur-
face soil moisture of the study area in July, 2008, May and
August, 2009, and five WatchDog instruments were set up in
the five typical land covers in the study area: forest, meadow,
sparse grassland, cotton farmland, and desert, and had continu-
ously collected 5–10 cm hourly soil moisture data from May 7

to October 11, 2009. For calibration purpose, the conventional
Loss-on-Drying method was also employed to measure the soil
moisture of the known samples, to calibrate the two types of
instruments.

C. Implementation

The inversion model proposed in Section II has been im-
plemented using the IDL programming language. A module
was developed and integrated along with the pre-processing
functions into the ENVI system. The AMSR-E brightness
temperature datasets were imported into the ENVI system
and pre-processed. The module was used to retrieve the soil
moisture of the study area. The comparative study and the
validation were also performed in the ENVI system.

D. Retrieval of Soil Moisture in Xinjiang

The in situ surface soil moisture dataset and X-band AMSR-E
dataset acquired from May to September, 2009 were used

to derive the regressive parameters in (5) and the model of soil
moisture retrieval in Xinjiang is

(10)

The monthly base image of Xinjiang for May 2009 was
retrieved as shown in Fig. 2 using (10).

As shown in Fig. 2, most areas of Xinjiang are very dry and
sparsely vegetated, and some areas are desert (e.g., the Gurban-
tunggut Desert, and the Taklimakan Desert) with a very low sur-
face soil moisture. The in situ measured 5 – 10 cm surface soil
moisture on a volume base in the deserts is approximately 1%.
The vegetation mainly distributes in the northern and southern
slopes of the Tianshan and Kunlun Mountains, and the soil mois-
ture in these areas is much higher than that in the desert areas.

Equation (6) was further used to improve the daily variation
of soil moisture . The same ground truth and data de-
rived from the AMSR-E data were used to estimate the re-
gressive parameters using the methods described in Section II.
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Fig. 3. Comparison between the �� and rainfall data on May 25, 2009.

Fig. 4. Soil moisture retrieved from the AMSR-E data of September 1–6, 2009.

When , the regressive model was
expressed as

(11)

When , the regressive model was changed as

(12)

The daily variation of soil moisture reflects the impact of pre-
cipitation and evaporation. A precipitation process can usually
lead to a substantial rise of surface soil moisture very quickly.
The factor is used exactly for the purpose of characterizing
this kind of impact that is not well addressed in the previous em-
pirical models used by the NSIDC products. To elaborate on the
effectiveness of this factor, the has been further compared

with the precipitation data in the same day when AMSR-E data
were acquired on May 25, 2009. The precipitation data were ex-
tracted from the observation datasets that were collected from
the fixed stations (Fig. 1) operated by the China Meteorological
Administration (CMA) (Fig. 3).

A quick visual comparison in Fig. 3 indicates that the
derived from AMSR-E data reflects the impact of rainfall in the
northwest area and the southern borders of the study area very
well, and the impact on the vegetated areas is relatively weaker
than that on the sparsely-vegetated and desert areas. The derived
variation of the soil moisture in the center of the rainfall areas
is about 18%. Thus, the proposed factor is correlated with
the precipitation well in Xinjiang.

The parameters for (8) were also regressively derived. The
image of can be obtained and used to characterize the lag-ef-
fect impact of precipitation and to adjust . Finally, (9) can be
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Fig. 5. Comparison of in situ measured, NSIDC and the proposed model retrieved soil moisture in the forest cover in May to September, 2009.

used to retrieve the AMSR-E soil moisture over Xinjiang in the
period of May to September 2009. Fig. 4 presents the retrieved
soil moisture maps of the first six days of September 2009. The
result shows that the retrieved soil moisture of the Taklimakan
Desert is low in overall (less than 2%), while both sides of the
Tianshan and Kunlun Mountains have much higher soil mois-
ture ranging from 10% to 20%. It is interesting to note that
the soil moisture of September 2 in the Gurbantunggut Desert
is also high. This may indicate that the Desert received a pre-
cipitation process. The rainfall records show that a large-scale
rainfall occurred in almost the entire north Xinjiang, which well
supports our investigation. The same situation is also observed
in the Taklimakan Desert, and the precipitation explained the
abrupt rise of the soil moisture well in the desert areas. There-
fore, the results show that the proposed model performed well

in Xinjiang, especially in addressing the impact of rainfall on
soil moisture retrieval in the deserts.

IV. VALIDATION AND DISCUSSION

A. Assessment of Accuracy

The validation of the AMSR-E retrieved soil moisture in-
formation is a difficult task due to the coarse spatial resolution
of AMSR-E data with the low frequency channels and the
25 25 km grid resampled from overlapping 45 75 km
swath data. It is very difficult to accurately measure the in situ
surface soil moisture of a 25 25 km grid, where one point
measurement or the average of the values at several points is
used to represent the soil moisture of the grid. This automati-
cally poses a scale-dependent problem and the in situ data may
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Fig. 6. Comparison of in situ measured, NSIDC and the proposed model retrieved soil moisture in the sparse grassland in May to September, 2009.

not be representative of the “real” soil moisture of the grid in
the image. On the other hand, the X- and C-band AMSR-E data
either has a limited capacity of the surface soil penetration and
can only provide 1–2 cm land surface soil moisture estimation
[13], [15]. However, the 1–2 cm surface soil moisture changes
frequently with rainfall and temperature, and is difficult to
measure using in situ data. Therefore, in this study the in situ
data were used to measure the 5–10 cm soil moisture and to
represent the “real value” of the surface soil moisture.

As mentioned in Section III, two types of in situ soil moisture
datasets were collected using the WET and WatchDog2400
instruments, respectively. The WET-measured data have a
good spatial distribution and the WatchDog fixed measure-
ments have a good temporal distribution with an interval
of one hour. The WET dataset was first calibrated with the
WatchDog dataset using the dataset collected by the traditional
Loss-on-Drying method. After that, the WET dataset and half
of the WatchDog dataset were used to derive the parameters

used in the regressive model. The other half of the WatchDog
data were used to validate the model and to conduct the
comparative study. The comparison results are illustrated in
Figs. 5 and 6, representing land cover types of forest and
sparse grassland, respectively.

As shown in Figs. 5 and 6, the soil moisture products down-
loaded from the NSIDC website are relatively less sensitive to
the monthly variation of the soil moisture in the study area, and
has larger errors compared to the in situ measurements. In com-
parison to the NSIDC products, the results retrieved using the
proposed model have provided better estimation of the surface
soil moisture in both forest and sparsely vegetated grassland. In
addition, there are systematic differences between the remotely
sensed and in situ observations of soil moisture. The results ob-
tained by our improved model imply that the AMSR-E surface
soil moisture has much fluctuation and reaches back to the orig-
inal level before precipitation much quicker than the 5 cm in situ
observations of soil moisture.
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Fig. 7. Correlation of the in situ measured soil moisture with the retrievals using the proposed model (left) and with the NSIDC products (right).

TABLE I
STATISTICS OF THE SOIL MOISTURE DATA FROM IN SITU MEASURED AND

RETRIEVED FROM THE AMSR-E X-BAND AND THE NCSID PRODUCTS

The AMSR-E soil moisture data were directly compared to
the in situ data using the scatter plots as shown in Fig. 7. The
horizontal axis represents the point-based in situ observation of
soil moisture using the WatchDog instrument.

The scatter plots shown in Fig. 7 and the statistics in Table I
indicate that the AMSR-E soil moisture retrieved using our
improved model has a better correlation with the in situ soil
moisture obtained using the WatchDog2400 instrument. The
AMSR-E soil moisture data have a root mean square error
(RMSE) of 4.25%, while the NSIDC product has a RMSE
of 8.40%. The mean errors for the NSIDC products and the
modified model results are 6.2% and 3.3%, respectively. The
maximum errors for them are 21.5% and 12.6%, respectively
(Table I). These statistics indicate a considerable improvement
in terms of soil moisture retrieval using AMSR-E data over
Xinjiang.

B. Comparison of Channels 6.9 GHz and 10.7 GHz

Theoretically, C-band AMSR-E data have a stronger pene-
tration capacity than X-band and was proved the best frequency
available in AMSR-E data to estimate soil moisture. However,
as mentioned before, the RFI has a strong impact on this fre-
quency and consequently reduces the usability of it in highly
populated areas [17]. Can C-band AMSR-E data be more pow-
erful than X-band data for the retrieval of surface soil moisture
over Xinjiang? A comparative study was conducted using the
same empirical modelling approach in which the parameters

were rederived for C-band AMSR-E data from the in situ data
(Fig. 8).

As shown in Fig. 8, the soil moisture of September 2009
estimated from C-band (6.9 GHz) AMSR-E data are not sig-
nificantly better than that estimated from X-band (10.7 GHz)
AMSR-E data, and appears to be even worse because the RMSE
of the C-band AMSR-E soil moisture is 5.35%. This contradic-
tion to the theoretical analysis may be caused by two reasons.
First, Xinjiang has a population of more than 21 million and
many migrants work for the petroleum and mining industries.
The wide spread occurrence of radio frequency interference
(RFI) from surface communication networks due to these in-
dustries prevents the use of C-band (6.9 GHz) AMSR-E data for
soil moisture retrieval. Second, the values calculated from
C-band AMSR-E data are not stable and have some abnormal
extremum (Fig. 9), which may be caused by the RFI effect
[27]. These abnormal extreme values of calculated from
C-band AMSR-E data have a negative impact on the proposed
empirical model and consequently degrades the capacity of
C-band AMSR-E data for soil moisture retrieval. Thus, X-band
(10.7 GHz) AMSR-E data were selected in this study for the
retrieval of soil moisture over Xinjiang. This comparison shows
that the use of the AMSR-E C-band for soil moisture retrieval
should be cautious due to the RFI influence caused by strong
human activities even in some desert areas such as in Xinjiang.

C. Discussion

Vegetation is a critical factor that impacts the estimation of the
soil moisture using passive microwave AMSR-E data. As shown
in Fig. 5, the difference between in situ and remotely sensed ob-
servations of soil moisture in densely vegetated areas (forest) is
greater than in sparsely vegetated areas as shown in Fig. 6. This
is caused by the fact that X-band AMSR-E data can only pene-
trate 1–2 cm into the surface soil. Our proposed inversion model
is a semi-empirical model based on the 5 cm in situ surface
soil moisture data, which is more suitable than 1–2 cm data for
most applications such as environmental and agricultural man-
agement. L-band microwave SMOS satellite launched recently
by the European Space Agency (ESA) provides a new opportu-
nity to achieve a better estimation of soil moisture in densely
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Fig. 8. Comparison of in situ measured, 6.9 GHz and 10.7 GHz retrieved soil moisture in the sparse grassland in September 2009.

Fig. 9. The scattering plot of the �� values of September 2009 calculated from the 6.9 GHz, 10.7 GHz and 18.7 GHz channels.

vegetated areas. Nevertheless, a reliable result was achieved
from X-band AMSR-E brightness temperature data using our
model (Fig. 7) in the moderately and sparsely vegetated regions
in Xinjiang.

Although the impact of precipitation on AMSR-E soil mois-
ture was addressed in the proposed model, the feedbacks of the
surface soil moisture in the depths of 1–2 cm and 5–10 cm are
different to the precipitation. The 1 cm soil moisture changes
fast and responds quickly to a rainfall process. When the rain-
fall stops, the surface soil layer also dries fast, but the 5–10 cm
soil layers tend to keep a higher water content in a short period
of time. Thus, the vertical variation and different response to a
rainfall process also leads to the difficulty of soil moisture re-
trieval and validation when the in situ measurements are used as
“real values” to validate the model-based estimates. In this case,
the remote sensing based estimation values of soil moisture are
lower than those of the in situ measurement. Furthermore, the
ground measuring instrument (e.g., WET and WatchDog) used
in this study also has errors when used to measure the soil mois-
ture of a type of soil in field.

Although the empirical model is built based on AMSR-E data
and in situ observation of soil moisture, the relationship between
the surface soil moisture and the remotely sensed derivatives
should keep consistent to some extent if the landscape and cli-
mate are same or similar to the study area. Thus, this empirical
model can be used directly in the similar areas such as Africa or
Arizona deserts. The inaccuracy of the estimation of soil mois-
ture mainly lies in the different land use patterns and larger er-
rors may occur in the agricultural areas due to the diverse irri-
gation and cultivation patterns. It is recommended that further

verification of the parameters for the proposed model should
be performed when it is transplanted from one area to another
similar area and larger errors may be resulted when no in situ
measurement is available.

V. CONCLUSIONS

This study has demonstrated that useful soil moisture infor-
mation over Xinjiang can be retrieved from passive microwave
remotely sensed data from the AMSR-E instrument. The pro-
posed regressive model works well in addressing the impact of
precipitation on soil moisture by adding the lag-effect factor ,
and dividing the soil moisture into monthly base value and
daily variation , and localizing the regressive parameters
using the in situ measurement of the study area. The valida-
tion indicates that the proposed model is more effective in re-
trieval of soil moisture from AMSR-E data over Xinjiang. Fur-
thermore, the soil moisture products from NSIDC vary within
a relatively narrower range of values from approximately 10%
to 18%, while the soil moisture in arid and desert areas usu-
ally have a wide range of soil moisture variation. Specifically
in the study area, the soil moisture in the Tianshan Mountain
area is much higher than that in the desert areas. In this case, the
NSIDC products have a lower estimation of soil moisture for the
Tianshan Mountain area, and a higher estimation for the desert
areas. The results from the improved model in this study have
shown a better estimation in both the vegetated mountain areas
and sparsely or non-vegetated desert areas, with a value of up
to 40% and below 2%, respectively. Thus, the improved model
has a better performance in the inversion of soil moisture from
AMSR-E data with a RMSE of 4.24%, which is nearly half of
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the RMSE value associated with the NSIDC products. The com-
parison between X- and C-band AMSR-E data indicates that the
former performed better than the latter in terms of retrieval of
soil moisture over Xinjiang.

Due to the coarser spatial resolution and the lack of detailed
characterization of land covers, further improvement in soil
moisture retrieval from AMSR-E data needs to incorporate
radar, visible/near-infrared data, and the data assimilation
strategy to co-inverse the soil moisture [28]–[32]. In addition,
use of L-band microwave data available from the recently
launched SMOS satellite may improve performance of re-
motely sensed soil moisture. It is believed that soil moisture
can be better estimated from remotely sensed data in the near
future.
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