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Preface

Automated map generalization is a necessary technique for the construction of

multi-scale vector map databases that are crucial components in spatial data

infrastructure of cities, provinces, and countries. Nevertheless, this is still a dream

because many algorithms for map feature generalization are not truly automatic and

therefore need human’s interference. One of the major reasons is that map gener-

alization is a process of spatial similarity transformation in multi-scale map spaces;

however, existing theory is not capable to support such transformation.

This book focuses on the theory of spatial similarity relations in multi-scale map

spaces, proposing a series of approaches and models that can be used to automate

relevant algorithms in map generalization, and achieves the following innovative

contributions.

First, the fundamental issues of spatial similarity relations are explored, i.e. (1) a

classification system is proposed that classifies the objects processed by map

generalization algorithms into ten categories; (2) the Set Theory-based definitions

of similarity, spatial similarity, and spatial similarity relation in multi-scale map

spaces are given; (3) mathematical language-based descriptions of the features of

spatial similarity relations in multi-scale map spaces are addressed; (4) the factors

that affect human’s judgments of spatial similarity relations are proposed, and their

weights are also obtained by psychological experiments; and (5) a classification

system for spatial similarity relations in multi-scale map spaces is proposed.

Second, the models that can calculate spatial similarity degrees for the ten types

of objects in multi-scale map spaces are proposed, and their validity is tested by

psychological experiments. If a map (or an individual object, or an object group)

and its generalized counterpart are given, the models can be used to calculate the

spatial similarity degrees between them.

Third, the proposed models are used to solve problems in map generalization:

(1) ten formulae are constructed that can calculate spatial similarity degrees by map

scale changes in map generalization; (2) an approach based on spatial similarity

degree is proposed that can determine when to terminate a map generalization

system or an algorithm when it is used to generalize objects on maps; and (3) an
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approach is proposed to calculate the distance tolerance of the Douglas–Peucker

Algorithm so that the Douglas–Peucker Algorithm may become fully automatic.
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Chapter 1

Introduction

1.1 Background and Motivation

Multiscale vector map database is one of the most fundamental components in the

national spatial data infrastructure (NSDI), because vector map data provides

geographically spatial positioning bases for various location-based services in the

communities of politics, economy, military, environment, traffic, transportation,

and telecommunication, etc., and plays an important role in the construction of

digital cities (Yan 2010).

Traditionally, a multiscale map database of a region is built manually or semi-

automatically by means of so-called multiple-version method (Wang 1993), i.e., the

maps of the region at multiple scales are digitized, processed, and saved in different

databases that are characterized by their map scales to form a large database

(Fig. 1.1). For example, to build a digital map database containing maps at scales

1:10, 1:50, 1:250, and 1:1,000 K using the multiple-version method, the maps at the

four scales are firstly collected and compiled; and then they are digitized and edited;

and last, the map data at each scale is stored in a corresponding map database,

respectively. The combination of the databases at the four scales constitutes a

multiscale database of the region.

The multiple-version method has dominated multiscale map data generation for

decades. As a result, almost all of the existing multiscale vector map databases have

been established using this method and these databases have been used in many

countries for decades. Nevertheless, previous studies and practical applications

have discovered that such multiscale map databases have a number of shortcomings

that need to be overcome (Wang 1993; Ruas 2001):

1. Repeated storage of map data at different scales generate a lot of redundant data

in multiscale map databases and leads to the waste of computer memory spaces

2. Storing multiscale maps of a region greatly increases the quantity of the data and

therefore decreases the efficiency of the data transmission via the Internet
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3. Consistency of the map data at different scales cannot be ensured due to repeated

compilation and digitization of the maps at different scales of the same region

4. Renewal of multiscale map databases is time consuming and uneconomical

A most prospective method that can overcome the above disadvantages due to

the multiple-version method is automated map generalization (Ruas 1998; Weibel

and Jones 1998). Automated map generalization is a technique for solving spatial

conflicts and congestions that appear in the process of generating smaller scale

maps from larger scale ones using various appropriate algorithms and operators

(e.g., selection, displacement, simplification, etc.) under definite conditions (e.g.,

map scale, map purpose, etc.). If automated map generalization comes true in the

construction of multiscale map databases, cartographers do not need to do repeated

compilation and digitization for building multiple versions of map databases, but

build only one map database using the maps at the largest scale. When any of the

map databases at the other scales is needed, they can produce it using the one at the

largest scale by means of automated map generalization. This, undeniably, is an

ideal method for building multiscale map databases.

In essence, map generalization (it is also called cartographic generalization,

sometimes) is a kind of similarity transformation in graphics and semantics. Take

Fig. 1.2a as an example: the islands on the map at scale 1:250 K are generated from

the map at scale 1:100 K. Although the original map has been simplified in the

process of scale change, the two maps of the same area keep their similarity in

graphics. In Fig. 1.2b: combination of the polygons is a kind of similarity transfor-

mation in semantics.

It is evident that the similarity degree (or similarity value in some literature)

between a generalized map and the original map and the scale of the generalized

map are dependent on each other. The more the original map is generalized, the

larger the scale changes from the original map to the generalized map (Fig. 1.3).

Nevertheless, no achievement has been made on quantitatively describing the

relation which leads to the question “how to calculate the spatial similarity degree

… Digitization

A multi-scale
database with

vector map data at

scales S1, S2 ... Sn.
Processing
Saving

Maps at scale Sn

Maps at scale S2

Maps at scale S1 Digital maps at scale S1

Digital maps at scale Sn

Digital maps at scale S2

Fig. 1.1 Construction of a multiscale database using the multiple-version method
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between a map and its generalized counterpart” (Yan 2010) unsolved. This hampers

the automation of map generalization, because:

1. If similarity degrees are not known, a map generalization system/software does

not know to what extent an original map should be generalized to produce a

resulting map.

2. The system/software also does not know when to terminate a map generalization

procedure if its parameters depend on spatial similarity degrees.

The above discussion reveals that calculation of similarity degrees of maps at

different scales is of great importance in the automation of map generalization.

Automated map generalization cannot be realized by cartographers and geogra-

phers until this problem is solved.

Settlements Green land

1:100K

a

b

1:250K

Fig. 1.2 Similarity transformation in map generalization (a) Graphics transformation (http://

wenku.baidu.com/view/50c230250722192e4536f6dd.html) (b) Semantic transformation

Fig. 1.3 Generalization

of a settlement
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1.2 Significances of Spatial Similarity Relations

Similarity has aroused great interests of many researchers in the communities of

cartography (Yan 2010), geographic information science (Rodrı́guez and

Egenhofer 2003, 2004), mathematics, psychology (Tversky 1977), and computer

science (Budanitsky and Hirst 2001). As far as geography-related fields such as

cartography and geographic information science are concerned, the significances of

similarity relations at least can be seen in the theory of spatial relations, spatial

description, spatial reasoning and spatial query/retrieval, spatial recognition, and

automated map generalization.

1.2.1 Theory of Spatial Relations

Spatial relations, including distance, topological, direction, and similarity relations

are essential tools for describing and expressing the geographic space, and they play

important roles in the theories of geosciences. In the past decades, many achieve-

ments have been made on distance relations (Hong 1994), topological relations

(Egenhofer and Franzosa 1991; Du et al. 2008), and direction relations (Peuquet

1986; Goyal 2000, Yan et al. 2006a, b), but little work has been done on spatial

similarity relations (Yan 2010).

1.2.2 Spatial Description, Spatial Reasoning, and Spatial
Query/Retrieval

The function of similarity relations in spatial descriptions and reasoning is too

evident to require strict academic proofs (Guo 1997). Inductive reasoning and

memory retrieval (Goldstone 2004) depend on similarity to get cues from previous

events. Similarity is also the basic element for analogical inference (Markman

1997; Tversky et al. 2007).

A well-known example of similarity relations used in spatial description and

spatial reasoning is the setup of the theory of “plate tectonics” by German geologist

Alfred Wegener (Fig. 1.4). The theory is built on the old concepts of continental

drift and describes the large-scale motions of Earth’s lithosphere. Obviously, the

complementary similarity of the plate boundaries provides most strong and direct

proof for this theory: the researchers found the phenomena by drawing the maps of

continental boundaries (i.e., a kind of description of graphics similarity) and then

matching the boundaries that have complementary similarity relations (reasoning

using similarity).
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Spatial similarity plays the same role in the process of spatial information

retrieval, spatial information integration, and spatial data mining (Rodrı́guez and

Egenhofer 2003, 2004). Using spatial similarities among spatial scenes to retrieve

information, get interconnection among different databases, and find similar spatial

objects or spatial phenomena have become or are becoming very common in many

geographic information systems. For example, the similarity-based image query/

retrieval has been used to substitute the match-based image query/retrieval

(Petraglia et al. 2001) in recent decades. The main difference between the match-

based and the similarity-based searches is: the result of a match-based search is a

partition of the database in the set of images that match the query and the set of

images that do not; while the result of a similarity-based search is a permutation of

the whole database (Santini and Jain 1996), to be exact in many cases, a sorting with

respect to the similarity criterion.

1.2.3 Spatial Recognition

Similarity plays a fundamental role in human’s spatial cognition (Li and Fonseca

2006). It serves as a principle for categorization (Tversky 1977; Goldstone 2004).

Indeed, many theories assume that categorization depends on the similarity of the

samples (Medin et al. 1993). It is popular that people tend to put those with more

similarity into same groups. Such a typical example in geography is that geogra-

phers can easily classify relief into different categories (e.g., plateaus, hills, dunes,

cliffs, etc.) according to the similarity degrees of the curvature, shapes, and density

Fig. 1.4 The tectonic

plates of South America and

Africa
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of the contour lines on the maps. In addition, pattern recognition using images is a

kind of similarity-based work, because one of its basic principles is to search the

image to find the adjacent pixels having similar attributes (e.g., color) with a prior

known criterion (e.g., extracting a road from an image).

1.2.4 Automated Map Generalization

In automated map generalization, spatial similarity relation is of great significance

to solve at least the following three problems.

First, it can make some semiautomatic algorithms fully automatic.

An algorithm can generate maps at different levels of detail (LODs) using the

same map if different generalization criterions are adopted. Such criterions are

usually one or more thresholds in the algorithm. For example, in the Douglas–

Peucker algorithm (Douglas and Peucker 1973), distance tolerances are used as the

thresholds in curve simplification. Different distance tolerances can generate dif-

ferent results if the Douglas–Peucker algorithm is used to simplify a curve

(Fig. 1.5). Nevertheless, as far as a map generalization software is concerned,

such threshold values are not prior known but they usually need to be given by

users or cartographers according to their experiences and experiments before the

beginning of a map generalization project. The determination of the thresholds

takes into account the original map scale and the resulting map scales as well as the

purpose of the resulting maps. Input of the thresholds cannot avoid interrupting the

map generalization procedure and therefore unfavorable to the full automation of

map generalization.

Hence, it is necessary to find methods for automatically obtaining such threshold

values. One of the evidences that cartographers can easily notice is that the

threshold values and map scales are dependent on each other. For example, in the

Douglas–Peucker algorithm, the greater the distance value, the simpler the curve

Fig. 1.5 Line simplification and similarity change
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will be simplified, and the smaller the resulting map scale should be. On the other

hand, map scales are also closely related to similarity degrees between each

generalized map and the original map.

If the approaches to calculating the similarity degree between two maps are

known, it is possible to find out an approach for calculating the threshold value if

the scale of the resulting map is given. Based on the threshold value, the algorithms

can become parameter free and therefore fully automatic. In this sense, calculation

of similarity degrees between two maps is of great importance in automated map

generalization.

Second, it helps to determine when to terminate a map generalization algorithm/

procedure.

Map generalization in the digital era depends on map generalization systems. A

map generalization system is a combination of various algorithms. Generally, each

algorithm is developed for generalizing specific map features. Although the Radical

Law (Töpfer and Pillewizer 1966) can determine “how many features can be

retained on the resulting maps,” “which features should be retained,” and “to

what extent the feature can be simplified” are unsolved yet. The two questions

depend on calculation of spatial similarity relations between original map features

and generalized map features which is in suspense by far; therefore, when to stop

the relevant map generalization algorithms is unsolved yet.

It helps to select appropriate algorithms for map generalization systems (Yan

et al. 2006a, b).

Supposing that a map is given and it needs to be generalized to get another map

at a specific scale. In manual way, it is usually true that different cartographers

produce different maps (Fig. 1.6). Here a problem arises: “which map is the best

and should be the resulting map?” Cartographers solve this problem by comparing

each of the generalized maps with an “imaginary” map (this map usually does not

exist in the physical world but in the cartographers’ brains “generated” by the

cartographers’ experiences and knowledge) and choose the one that has the greatest

similarity degree with the “imaginary” map (Yan 2010).

Original 
map

Resul�ng
map

Five candidates

Fig. 1.6 Multiple

candidate maps in map

generalization
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The same situation appears in map generalization aided by software systems:

different algorithms usually generate many different maps using the same original

map data, and the systems need to judge which map should be selected as the result

map. Unfortunately, it is impossible to get those “imaginary” maps from experts’

(i.e., cartographers’) brains according to current research achievements in relevant

communities, such as Mathematics, Cognitive Psychology, Computer Science, and

Geomatics.

An alternatively applicable way may be to calculate the similarity degree

between the original map and each generalized map, and select the one with the

greatest similarity degree as the resulting map. The reason for this is that: the more

similar the two maps are, the more common information the two maps contain. This

is coincident with the principle of information transmission in map generalization,

i.e., map generalization should transmit information as more as possible.

In sum, approaches for calculating spatial similarity degrees take important roles

in full automation of map generalization. So how to calculate similarity degrees

between maps in multiscale map spaces is worthy of a thorough investigation.

1.3 Classification of Objects in Multiscale Map Spaces

It is necessary to give an introduction of the classification of the map objects prior to

the presentation of the objectives of this study.

Above all, this work emphasizes on topographic maps.

A topographic map is a detailed and accurate graphic representation of cultural

and natural features on the ground (Harvey 1980). For many nations, topographic

map series is an important resource in planning infrastructure and resource exploi-

tation (Kraak and Ormeling 1996). In the digital era, topographic maps are usually

divided into different feature layers, and then the feature layers are separately

digitized and stored to form databases (Harley and Woodward 2005).

A topographic map can be generalized to get another map at a smaller scale.

A map generalization process usually abides by so-called divide-and-conquer

police to make it simple and efficient. To be exact, map generalization operators/

algorithms generally operate on each of the feature layers, or on each group of

objects, or even on individual objects, or on the whole of the map. After general-

ization, the individual objects and the groups of objects are organized to form

feature layers, and the feature layers are organized and stored to form a new map.

The theory of spatial similarity relation in this study aims at providing a tool to

automate and control the process of map generalization; hence, the following four

hierarchical levels of spatial similarity relations in topographic map generalization

need to be calculated so that the four kinds of corresponding operators/algorithms

can be developed in automated map generalization (Fig. 1.7). They are
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1. Spatial similarity relations between a map and its generalized counterparts at

different map scales.

2. Spatial similarity relations between a map feature layer and its generalized

counterparts at different map scales.

3. Spatial similarity relations between an object group and its generalized coun-

terparts at different map scales.

4. Spatial similarity relations between an individual object and its generalized

counterparts at different map scales.

Individual objects on two-dimensional (2D) maps include individual point

objects, individual linear objects, and individual areal objects (Fig. 1.8). They

refer to discrete phenomena occurring at isolated locations and they are symbolized

using separated points, lines, or polygons.

• Individual point object: such as wells in a desert or a historic pavilion, usually

represented using a point symbol on the map. It is zero-dimensional, small in

size but important and need to be retained on the map.

• Individual linear object: such as a road, a river, or a ditch, symbolized using a

line or a curve on the map. It is one-dimensional (1D).

A map

Layer 2Layer 1 ... Layer k Layer n...

... ...
...

Group 2Group 1 ... Group l ...

... ...

Object 2Object 1 ... Object m

Fig. 1.7 Hierarchy of topographic maps

Individual objects

Individual point
objects

Individual linear
objects

Individual areal
objects

Fig. 1.8 Classification of individual objects on maps

1.3 Classification of Objects in Multiscale Map Spaces 9



• Individual areal object: such as a forest, a lake, or a parking lot. It is 2D and has

length and width and symbolized using a polygon.

Object groups can be classified into a number of categories according to the

geometric characteristics of map features (Fig. 1.9), i.e., point clouds, linear object

groups, and areal object groups. Further, linear object groups are classified into

parallel line clusters, intersected line networks, and tree-like networks; areal object

groups are classified into discrete polygon groups and connected polygon groups.

The following gives a detailed explanation of these categories.

• Point cloud: such as control points in a region, trees alongside of a river or a

road, etc.

• Parallel line cluster: a typical example of this is contour lines.

• Intersected line network: various roads in a city form an intersected line network.

• Tree-like network: a river basin consisting of a main stream and many branches

form a typical tree-like network.

• Discrete polygon group: such as settlements scattering in countryside.

• Connected polygon group: a typical example of this is the polygons on a land

use map.

In addition, a map can be viewed as a special type of object group. To sum up,

objects on maps can be classified into ten categories: individual point objects,

individual linear objects, individual areal objects, point clouds, parallel line clus-

ters, intersected line networks, tree-like networks, discrete polygon groups,

connected polygon groups, and maps.

1.4 Definitions of Map Scale Change

Map scale change is a most important concept that is used throughout the book and

plays crucial role in many models and formulae, so it is separated from other

concepts and defined here.

Object groups

Linear object groups Areal object groupsPoint clouds

Parallel line
clusters

Intersected 
line networks

Discrete 
polygon 
groups

Connected
polygon
groups

Tree-like 
networks

Fig. 1.9 Classification of object groups on maps
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There are two maps M0 and M1. Their scales are S0 and S1, respectively. M1 is a
generalized map of M0. The ratio S0/S1 is called the map scale change from map
M0 to map M1.

1.5 Research Objectives

In order to construct the theory of spatial similarity relations and put it into use to

improve the efficiency of many relevant algorithms in map generalization, the

following objectives should be reached in this study.

• Fundamental theories of spatial similarity relations, including:

1. A definition of spatial similarity relations in multiscale map spaces.

2. Features of spatial similarity relations in multiscale map spaces.

3. Factors that affect humans’ judgments of spatial similarity relations in

multiscale map spaces.

4. A classification system for spatial similarity relations in multiscale map

spaces.

These problems are the basis of the calculation models/measures for spatial

similarity relations. To prepare for constructing quantitative calculation

models/measures, the definitions, features, and factors of spatial similarity

relations should be given in mathematical languages in this research. Their

correctness and validity should be systematically tested so that they can be

acceptable by majority of people.

• Calculation approaches/models/measures of spatial similarity relations in

multiscale map spaces, including:

1. Approaches to calculating spatial similarity degrees between two individual

point/linear/polygonal objects on maps at different scales.

2. Approaches to calculating spatial similarity degrees between two object

groups (i.e., point clouds, parallel line clusters, intersected line networks,

tree-like networks, discrete polygon groups, and connected polygon groups)

on maps at different scales.

3. Approaches to calculating spatial similarity degrees between a map and a

generalized counterpart of the map at smaller scale.

• Application of the theories of similarity relations in automated map generaliza-

tion, including:

1. Approach to calculating spatial similarity degrees between a map and its

generalized counterpart at smaller scale taking map scale change as the

independent variable.

2. Approach to calculating the distance tolerance of the Douglas–Peucker

algorithm.

3. Approach to determining when a map generalization system or a map gener-

alization algorithm should be terminated in the process of map generalization.

1.5 Research Objectives 11



The three goals of the research are dependent on each other. The fundamental

theories of spatial similarity relations are the foundation of the research. The

calculation approaches to spatial similarity relations are based on the fundamental

theories and are the main body and also the most important and most difficult part of

the study. The applications of the theory verify the theories and models, and test

their validity in the meanwhile. Only after successful applications of the theory in

map generalization are the three objectives reached.

1.6 Scope of the Study

This study is limited in a scope that needs to be clarified before further discussion.

First, objects in this study generally refer to points, curves/lines, and polygons in

2D spaces (i.e., 2D map spaces). Elevations of the objects are not taken into account

unless otherwise stated or specified.

Second, source data used in this study are vector map data unless otherwise

stated or specified.

Third, correctness and validity of proposed models/approaches/measures should

not only be tested mathematical deduction, but also by human being’s spatial

cognition; because judgments of spatial similarity root in and serve for human

being’s spatial cognition.

Last, although map scales are often used in this study, the research achievements

should not be limited to a number of specified ones.

1.7 Book Outline

The book is divided into seven chapters to reach two goals: (1) establishment of the

theory of spatial similarity relations in multiscale map spaces, and (2) applications

of the theory for solving many related problems in automated map generalization.

Chapter 1: The background, significance, and objectives of the study are

addressed in the introduction, emphasizing on answering the questions “where

does this study from?,” “why is this topic worthy of serious studying?,” and

“what are researched in this book?”

Chapter 2: The achievements in the definitions, features, and classification of

similarity in various areas are reviewed, and existing models for calculating spatial

similarity relations are discussed and their advantages and disadvantages are

analyzed.

Chapter 3: The definitions, features, and classification system of spatial similar-

ity relations and the factors that affect human’s direction judgments are proposed

and discussed in detail.

Chapter 4: The ten models for calculating spatial similarity degrees in multiscale

map spaces between various object pairs are constructed.
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Chapter 5: The validity of the ten models is tested by psychological experiments.

Chapter 6: The theory of spatial similarity relations is used in automated map

generalization and three goals are achieved: (1) the formulae for calculating the

relations between map scale change and spatial similarity degree are constructed,

(2) an approach to automatically determine when to terminate a map generalization

algorithm/system is proposed, and (3) an approach for determining the distance

tolerance used in the Douglas–Peucker algorithm is presented.

Chapter 7: The overall summary, major innovations and contributions, limita-

tions, and further research are presented in this concluding chapter.

Appendix: basic logic symbols are listed in the appendix which helps to under-

stand the many formulae in the book.
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Chapter 2

Literature Review and Analysis

This chapter reviews the literature in spatial similarity relations.

This book emphasizes on three issues: the fundamental theory, the calculation

models, and the applications of spatial similarity relations; however, no applica-

tions of spatial similarity relations in automated map generalization can be found.

Hence, this chapter only reviews the fundamental theory (including the definitions,

features, and classifications of spatial similarity relations) and the models for

calculating similarity relations (including the models in various other disciplines

and a number of raster-based models in geography).

2.1 Definitions of Similarity

Seemingly, similarity is a very simple concept. People encounter and use similarity

almost every second in daily life. For example, people can recognize familiar

persons by their faces if they meet. When judging the similarity of faces, someone

may say that two human faces are similar if they have a common skin color, while

someone else would require the identity of the geometric structure of facial features

like the eyes, the nose, the mouth, etc.

Similarity also plays a crucial role in many fields in science (Gower 1971;

Bronstein et al. 2009). A typical example in geometry is “similar triangles”: two

triangles are similar if the three pairs of corresponding sides are proportional or two

pairs of corresponding angles are congruent. In computer science, the definition of

similarity, in many cases, is closely relative to character processing (e.g., compar-

ing similarity of character strings). In pattern recognition, with a slight exaggera-

tion, it may be true that all pattern recognition problems are based on finding

methods for giving a quantitative interpretation of similarity (or equivalently,

dissimilarity) between objects (Bronstein et al. 2008).
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2.1.1 Definitions of Similarity in Various Fields

We cannot find unique definition of similarity from existing literatures. Every field

has its criterion to define similarity for the purpose of solving a group of problems.

Hence, the following discusses the definitions of similarity in several different

fields, aiming at providing useful cues for our definition of spatial similarity

relations in multiscale map spaces.

2.1.1.1 Definition in Geometry

In geometry, two objects are called similar if both of them have the same shape. In

other words, one of the two objects is congruent to the result of a uniform scaling

(enlarging or shrinking), rotating, and repositioning of the other one. It is obvious

that all circles are similar to each other (so are all squares and all equilateral

triangles). On the other hand, two ellipses are not always similar to each other,

nor are two hyperbolas.

People can easily judge whether two triangles are similar or not by comparing

their corresponding angles or sides (Fig. 2.1). However, if the concept of similarity

extends to polygons with more than three sides, the criterion becomes different

because equality of all angles in sequence is not sufficient to guarantee similarity of

two polygons. For example, all rectangles are not always similar (Fig. 2.2).

Self-similarity is another notable concept related to similarity in geometry, and it

has also been a hot issue in geometry for decades. Self-similarity means an object is

exactly or approximately similar to a part of itself. In other words, the whole has the

same shape as one or more of the parts. Indeed, many geometric objects are

statistically self-similar. Taking a coastline as an example (Fig. 2.3a), parts of a

coastline show the similar statistical properties at many scales (Mandelbrot 1967).

A

a b
B

C

A B

C

Fig. 2.1 Similar triangles

A
a b

B

D C

A B

CD

Fig. 2.2 Dissimilar

rectangles
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Fractal tree (Fig. 2.3b) clearly shows the idea of self-similarity. Each of the

branches is a smaller version of the main trunk of the tree. The main idea in creating

fractal trees or plants is to have a base object and then to create smaller, similar

objects protruding from that initial object. The angle, length, and other features of

these “children” can be randomized for a more realistic look. This method is a

recursive method, meaning that it continues for each child down to a finite number

of steps. At the last iteration of the tree or plant you can draw a leaf of some type

depending on the nature of the plant or tree that you are trying to simulate.

2.1.1.2 Definition in Computer Science

In computer sciences, there are two important concepts that are closely related to

similarity: similarity metrics and semantic similarity (Zadeh 1971; Tennekes 1984;

Höhle 1988; Ovchinnikov 1991; El-Kwae and Kabuka 1999; Belohlavek 2000).

Similarity metrics (also called string metrics) are a class of metrics that are used

for measuring similarity (closeness) and dissimilarity (distance) between two

character strings for approximate matching or comparison in fuzzy string searching.

The most commonly used string metric is the Levenshtein Distance, which is also

named Edit Distance. The operation principle of the Levenshtein Distance is:

compare the two input strings and return a score equivalent to the number of

substitutions and deletions needed in order to transform one input string into

another. Current research has expanded the metrics such as the Levenshtein Dis-

tance to cover multiple media including phonetics, tokens, pictures, etc.

Semantic similarity (it is also known as semantic relatedness) is a concept used

for assessing the likeness of the meaning/semantic content of a set of documents or

terms within term lists by means of defining a metric (Budanitsky and Hirst 2001).

Fig. 2.3 Two examples of self-similarity (a) coastlines (b) trees
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To be more concrete, such a metric can be a kind of topological similarity measured

by a distance between words using ontology. Another term named “semantic

relatedness” are usually used interchangeably with “semantic similarity.” However,

semantic similarity is more specific than semantic relatedness, as the former

includes some concepts (e.g., antonymy and meronymy) that have no relations

with similarity, while semantic similarity does not. However, much of the literature

uses these terms interchangeably, along with terms like “semantic distance.” In

computer science, semantic similarity, semantic distance, and semantic relatedness

all mean “how much does term A have to do with term B?” To answer this question,
two types of approaches that calculate topological similarity between ontological

concepts have been developed, i.e., edge-based methods and node-based methods.

They define a number between �1 and 1, or between 0 and 1, where 1 signifies

extremely high similarity/relatedness, and 0 (or �1) signifies little-to-none simi-

larity/relatedness.

2.1.1.3 Definition in Engineering

In engineering, similitude is a concept used for testing the similarity between two

engineering models. An engineering model can be defined as “having similitude”

with a real application on condition that they both share geometric similarity,

kinematic similarity, and dynamic similarity (Hubert 2009). Similarity and simil-

itude are interchangeably used in this context. Similitude has been researched in

engineering community for decades. Some well-developed models have been used

for solving a large number of engineering problems, and they have also been the

basis of many textbook formulas. A typical application of similitude in engineering

is to predict the performance of a new design by comparing it with an existing,

similar design. In this case, the model is the existing design. Another use of

similitude and models is in validation of computer simulations with the ultimate

goal of eliminating the need for physical models altogether (Heller 2011).

Main applications of similitude are in hydraulic and aerospace engineering.

Here, similitude is used to test and evaluate fluid flow conditions with scaled

models. Engineering models are used to study complex fluid dynamics problems

where calculations and computer simulations are not reliable (Heller 2011). Models

are usually smaller than the final design, but not always. Scale models allow testing

of a design prior to building, and in many cases they are a critical step in the

development process.

2.1.1.4 Definition in Psychology

Similarity in psychology refers to the psychological nearness or proximity of two

mental representations. A number of models/approaches for assessing the proxim-

ity of two mental representations have been developed in past research. They can be

classified into four categories: mental distance approaches, featural approaches,
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structural approaches, and social psychological approaches. Each of them is based

on a particular set of assumptions.

Mental distance approaches lay their foundation on an assumption that mental

representations can be expressed as some concepts in a kind of mental space

(Shepard 1962). Usually, the concepts are represented using points in the space.

Then the similarity between two concepts is a function that can be used to calculate

the distance between two points (i.e., two concepts) in the space. If the distance

between a pair of points is shorter than that of another pair of points, the concepts

represented by the former two points are said to be nearer to each other than that of

the latter two points.

To overcome the shortcomings in the mental distance approaches, the featural

approaches (Tversky 1977) were proposed. A typical shortcoming in the mental

distance approaches is that they assume that spaces are symmetric (because the

distance between any two points is the same regardless of which point we start from

to calculate the distance). However, psychological similarity is not always sym-

metric. For example, in many cases, people can only state similarity in one

direction. For example, it feels more natural to say “John Smith looks very like

his father Alex Smith” than to say “Alex smith looks very like his son John Smith.”

The featural approaches assess similarity between two objects by comparing a list

of features that describe the properties of the object. The more commonalties they

share, the more similar they are.

The basic idea of the transformational approaches (Hahn et al. 2003) developed

to evaluate similarity independently of the type of mental representation is as

follows: it assumes that any mental representation can be transformed into another

one by a number of steps. So it is possible to define some necessary steps to

complete this transformation. The more the number of steps in the transformation,

the less similar the two representations are. However, Larkey and Markman (2005)

found some evidences that are against this idea. Their work has shown that the

number of steps to transform the colors and shapes of geometric objects does not

predict people’s similarity judgments for those objects.

In social psychology, researchers use similarity to describe the closeness or

nearness of attitudes, personality, values, interests, and culture match between

people. It is interesting that research has revealed that interpersonal attraction is

from similarity between people, and many forms of similarity have been shown to

increase liking. For example, similarities in opinions, interpersonal styles, and

amount of communication skill, demographics, and values have all been shown in

experiments to increase liking. Several explanations have been offered to explain

similarity increases interpersonal attraction. First, people with similar interests tend

to put themselves into similar types of settings. For example, two people interested

in literature are likely to run into each other in the library and form a relationship.

Another explanation is that we notice similar people, expect them to like us, and

initiate relationships. Also, having relationships with similar people helps to vali-

date the values held in common. Finally, people tend to make negative assumptions

about those who disagree with them on fundamental issues, and hence feel

repulsion.
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2.1.1.5 Definition in Music

Similarity does exist in music. For example, a man can easily recognize a familiar

song that is being chanted by someone who is singing a little bit out of tune. It is

musical similarity that has worked. In his judgment process, he compares the tune

of the song which he is familiar with the one that is being sung. There are a number

of types of musical similarity that has been researched (Toussaint 2006), such as

metrical structure similarity, rhythmic pattern similarity, section structure similar-

ity, modality structure similarity, etc.

2.1.1.6 Definition in Chemistry

Chemical similarity is an important concept in chemo-informatics. It plays a

significant role in predicting the structures and properties of chemical compounds,

designing chemicals that have required structures and properties. Especially, it has

been used in drug design studies by retrieving large databases that contain

chemicals with anticipated structures and/or structures (Johnson and Maggiora

1990; Nikolova and Jaworska 2003). These studies are based on a “similar property

principle”: similar compounds have similar properties (Nikolova and Jaworska

2003).

Chemical similarity is often described using a measure called “distance.” The

larger the distance is, the less similar the two chemicals should be. The distance can

be expressed using two kinds of measures: Euclidean and non-Euclidean measures

depending on whether the triangle inequality holds.

2.1.1.7 Definition in Geography

In geography, similarity is of great importance. It is known as spatial similarity

relation, a subset of spatial relations which include topological, distance, direction,

and similarity relations. Similarity is one of the basic research issues in geosciences

(Egenhofer and Mark 1995; Goodchild 2006).

Yan (2010) proposed a definition for spatial similarity relation in light of the Set

Theory, regarding it as a one-to-one correspondence of the properties of objects

(Zhou 1993; Liang 1999).

Suppose that A1 and A2 are two objects in the geographic space. Their property sets
are C1 and C2, and C1 6¼Ф and C2 6¼Ф. If C1\C2¼C\ 6¼Ф, C\ is called the
spatial similarity relations of object A1 and object A2.

The definition of spatial similarity degree was also discussed by Yan (2010).

Spatial similarity degree is a value between [0, 1]. It is used for evaluating the
similarity relations of spatial objects.
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Based on the two definitions, Yan (2010) presented three deductions:

1. The larger C\, the larger the similarity degree of the two objects.
2. If C\¼Ф, the two objects have no similarity property, therefore their spatial

similarity degree is 0.
3. If C1¼C2¼C\, the property sets of the two objects are wholly same, therefore

their spatial similarity degree is 1.

Further, a more general definition of spatial similarity relations for k(k> 2)

objects in the geographic space was given, and the definition of spatial similarity

relations in multiscale map spaces is proposed.

Suppose that A is an object in the geographic space. It is symbolized as A1, A2,. . .,Ak

separately on the maps at scales S1,S2,. . .,Sk. The property sets of Ai (i¼ 1, 2,. . .,
k) are C1,C2,. . .,Ck, and Ci 6¼Ф (i¼ 1, 2,. . .,k). If C1\C2,. . .,\Ck¼C\ 6¼Ф, C\ is
called the spatial similarity relations of the multiple representations of object A
in multiscale map spaces.

The above definitions for similarity in geographic space are based on the Set

Theory. It assumes that the similarity between objects can be assessed by a number

of properties of the objects. The sum of the similarity degrees of the properties is the

similarity degree between objects. The more common properties two objects

possess, the more similar they are.

These definitions are still at conceptual level. The methods for quantitatively

calculating similarity degrees are not mentioned yet.

2.1.2 Critical Analysis of the Definitions

An insight into the existing definitions of similarity in different fields may reveal

many problems, and therefore present some interesting research topics.

• Each of the existing definitions of similarity is closely tied to a class of particular

applications, or a form of knowledge representation, or assumes a particular

domain model. Hence, they cannot be used interchangeably.

• It is obvious that all of the existing definitions of similarity have their underlying

assumptions; however, they are not often given explicitly. Without knowing

those assumptions, it is impossible to make theoretical arguments for or against

any particular measures (Lin 1998).

• All of the definitions are based on experiences. The comparisons and evaluations

of the existing similarity measures are also based on empirical results.

To overcome the above shortcomings in the existing definitions, a number of

rules listed in the following should be obeyed in our future research on the

definitions of spatial similarity relations in multiscale map spaces.
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1. The definition should have theoretical justifications. Definition of similarity

should lay its foundation on mathematics and cognitive psychology. A

mathematics-based definition can facilitate the quantitative representations and

measurements of spatial similarity relations, while taking cognitive psychology

into consideration can ensure that the results from quantitative measures of

similarity are coincident with humans’ intuition. In short, the definition of spatial

similarity relations must be both mathematically correct and cognitively

reasonable.

2. The definition should be a universal and formal one in geographic space. Here,

“universal” means the definition of spatial similarity relations should be appli-

cable to different domains of geography where different similarity measures

have previously been proposed, and also be applicable to the domains where no

similarity measure has previously been proposed. To be concrete, the definition

for spatial similarity relations should be applicable to geometric attributes and

thematic attributes of spatial objects in two-dimensional and three-dimensional

spaces. The definition should also be applicable to all four types of spatial data

(i.e., nominal, ordinal, interval, and ratio data). “Formal” means the definition is

not from personal experiences but based on the survey and tests of a number of

people.

3. The underlying assumptions of the definition of spatial similarity relations

should be presented clearly. If possible, the assumptions should be mathemati-

cally expressed to facilitate the quantitative expressions of similarity measures.

Although a Set Theory-based definition of spatial similarity has been proposed

(Yan 2010), it is conceptual. Its cognitive justifications, mathematical correctness,

and universality in applications need to be verified.

2.2 Features of Similarity

2.2.1 Features of Similarity in Different Fields

Just like “different fields give different definitions of similarity,” different fields

give different features of similarity.

In computer sciences, Cilibrasi and Vitanyi (2006) presented the features of

similarity applicable for processing text strings. Let Ω be a nonempty set and R+ be

the set of nonnegative real numbers. A distance function for describing the dissim-

ilarity between two text strings is D :Ω�Ω!R+. Based on this function, three

features of similarity relations between text strings can be obtained.

1. Equality: D(x, y)¼ 0, iff x¼ y
2. Symmetry: D(x, y)¼D(y, x)
3. Triangle inequality: D(x, y)�D(x, z) +D(z, y)

The value D(x, y) is called the distance between x, y2Ω.
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In psychology, the following four features of similarity have been discussed.

1. Symmetry: It is based on two assumptions. The first one is that the similarity

from A to B equals to the similarity from B to A; the second one is that judgments

of similarity and difference are complementary (the more similarity, the less

difference, and vice versa). Mathematically, it is D(A,B)¼D(B,A).
2. Asymmetry and directionality: The contrast model proposed by Tversky (1977)

has proved that “feature commonalities tend to increase perceived similarity

more than feature differences can diminish it.” In addition, the structure align-

ment model has shown that similarity judgments focus on matching relations

between items, while difference judgments focus on the mismatching attributes

(Medin et al. 1993; Goldstone 1994; Markman 1997). Therefore, when A is more

similar to T than B is, it is still possible that A is also more different from T than

B is.

3. Minimality: D(A,B)�D(A,A) (Tversky 1977). This should be obvious, because

it is impossible that the dissimilarity between identical objects is greater than

that between different objects.

4. Triangle inequality: D(A,B) +D(B,C)�D(A,C) (Tversky 1977).

Where D(A,B) is the distance/dissimilarity function, similar to the one used in

above discussion for the features in computer science.

In geography, Yan (2010) discussed the features of similarity relations applica-

ble for objects in multiscale map spaces.

1. Reflexivity: any object has similarity relations with itself.

2. Symmetry: if object A has similarity relations with object B, object B has the

same similarity relations with object A.
3. Nontransitivity: We cannot conclude that object A has similarity relations with

object C, even if object A has similarity relations with object B, and object B has

similarity relations with object A.

For example, in Fig. 2.4, if we take {shape, land type} as the properties for

detecting similarity relations, the property set of (a), (b), and (c) are

Ca¼ {rectangle, settlement}, Cb¼ {rectangle, vegetable land}, and Cc¼ {irregular

polygon, vegetable land}. Ca\Cb¼ {rectangle} denotes that the objects in (a) and

(b) have similarity relations; Cb\Cc¼ {vegetable land} denotes that the objects in

(b) and (c) have similarity relations; but the conclusion that the objects in (a) and

(c) have similarity relations cannot be made, for Ca\Cc¼Ф.

4. Self-similarity on maps at multiple scales: Geographic objects can be symbol-

ized using different patterns and symbols on maps at different scales. The objects

on maps at different scales have spatial similarity relations.

5. Scale dependence of self-similarity degree at multiscales: The spatial similarity

degrees of objects on maps at different scales depend on scale change. The

greater the scale span from the original map to a generalized map is, the less the

similarity degree between two maps should be (Fig. 2.5).
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2.2.2 Critical Analysis of the Features

The following points can be gained by a comparison and analysis of the existing

achievements in the features of similarity in the many fields.

First, the features of similarity in different fields are not always the same. Some

applicable in one field may become inapplicable in the other field.

Second, mathematical expressions of the features of similarity in psychology

and computer science have been developed, which is in favor of quantitative

measurements of similarity.

Third, features in geography are qualitatively described, lacking both mathe-

matical reasoning and psychological experiments to demonstrate their correctness

and reasonability.

Last, some features (e.g., asymmetry) appearing in other fields have not been

research in geography yet.

a b c

Fig. 2.4 An example of nontransitivity of spatial similarity relations: (a) settlement, (b) vegetable

land, (c) vegetable land

Fig. 2.5 Similarity of point clusters at different scales: (a) at scale 1:10 K, (b) at scale 1:20 K,

(c) at scale 1:50 K

24 2 Literature Review and Analysis



Hence, the following three issues are worthy of further investigation:

1. To “borrow” features from other fields and test their applicability in geographic

space

2. To give mathematic expressions of the features in geographic space

3. To find psychological proofs to support the features in geographic space

2.3 Classification for Spatial Similarity Relations

Generally, two rules must be obeyed in all classifications, i.e., completeness and

exclusiveness. Completeness means the union of all subsets of the subcategories

equals to the whole set, while exclusiveness means the intersection of every two

subsets is empty. To meet the demands of the two rules, appropriate criteria must be

specified for the purpose of classification. Different criteria generate different

categories from same things.

Based on the principles of “completeness” and “exclusiveness,” Yan (2010)

classified spatial similarity relations by the scales of objects (whether the objects

are at same scale or different scales) on maps. If objects are at same scale, their

similarity relations are called horizontal similarity relations, whereas if objects are

at different scales, their similarity relations are called perpendicular similarity

relations (Fig. 2.6). Further, Yan (2010) researched on the perpendicular similarity

relations, taking geometric attributes and thematic attributes of objects as the

classification criterion and proposed a detailed classification for it (Fig. 2.7). How-

ever, the classification of horizontal similarity relations has not been touched yet.

2.4 Calculation Models/Measures for Similarity Degree

Calculation models/measures for spatial similarity relations are a very new issue in

the community of geographic information science (Nedas and Egenhofer 2003),

and few models/measures can be found in literature, except some borrowed from

psychology and computer sciences. Indeed, quantitative description of spatial

similarity is difficult to achieve. Guo (1997) ascribed this to two reasons. First, it

is difficult to describe and express spatial similarity relations in mathematical

languages. In other words, spatial similarity relation is less calculable than other

spatial relations (e.g., distance, topological, and direction relations). Second, spatial

similarity relation is usually used to reveal complex and deeply covered relations

among spatial objects; therefore, it is not easy to find the principles and rules of

spatial similarity relations. Li and Fonseca (2006) addressed that “spatial similarity

is hard to address because of the numerous constraints of spatial properties and of

the complexity of spatial relations.” Since it is believed that spatial relations,

mainly topology, direction, and distance, capture the essence of a scene’s structure
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(Bruns and Egenhofer 1996), most researchers focus on the similarity assessment of

spatial relations.

The models/measures for similarity in psychology and computer science are also

presented and critically discussed in the following paragraphs along with that in

geography, because they are the bases of both existing models and our future

models for spatial similarity in geography. Then the potential work related to our

research objectives will be proposed.

1:5000

1:10000

1:25000A

B

C

a b

Fig. 2.6 A scale-based classification system for spatial similarity relations: (a) horizontal simi-

larity relations, (b) perpendicular similarity relations

Spatial similarity relations in multi-scale map spaces

Geometric similarity Attribute similarity

Semantics Time

Group objectsSingle object

Dimension

Topology

Distance

Direction

Correlation

Size

Shape

Area

Length

Fig. 2.7 A classification system for perpendicular similarity relations
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2.4.1 Models in Psychology

In the field of psychology, four similarity models are broadly accepted and used.

They are the geometric model, the feature-based contrast model, the structure

alignment model, and the transformation model. The four models are laid on the

foundation which deems that similarity and difference are tightly related concepts.

Definition of difference is usually coincident with distance between the

representing points of two entities in a conceptual space. So the distance can be

used as a measure of dissimilarity between the entities.

The geometric model is the dominant model in theoretical similarity analysis

(Torgerson 1965; Tversky 1977; Goldstone 2004; Li and Fonseca 2006). The

entities in this model are regarded as points in an arbitrarily dimensional space

and the dissimilarity/difference of the entities is represented by the distance

between the two corresponding points in that space (Tversky 1977; Nedas and

Egenhofer 2003; Goldstone 2004). Hence, it seems natural that the geometric

model should obey the features of similarity in psychology including minimality,

symmetry, and triangle inequality (Tversky 1977; Goldstone 2004). However,

Tversky’s (1977) work has revealed that it is not the case with psychological

notions of similarity because humans’ similarity judgments violate the above

three features. Minimality is not obeyed since not all identical objects are equally

similar. A simple example is that two complex objects that are identical (e.g., two

trees) have more similarity than simpler identical objects (e.g., two leaves from the

trees). Symmetry is violated because similarities in the metric space are the same no

matter what the order of the comparison is, whereas similarities are believed to be

asymmetric and directional. For example, a small model car is more similar to a car

than a car is to a small model car since many features of the small model car come

from cars. Triangle inequality is violated in some cases. For example, a lamp and a

moon share an identical feature as both provide light; a moon and a ball share an

identical feature as both are round; however, a lamp and a ball share no feature in

common.

The feature-based contrast model lays its foundation on Set Theory. It assumes

that objects are represented as collections of features, and similarities among

objects are expressed as a feature-matching process among common and distinctive

features (Tversky 1977; Goldstone 2004). Similarities of an object pair increase

with its commonalities and decreases with its differences. The similarity of object A

to object B is expressed as a linear function of the common and distinctive features.

Here, the common features of an object pair are those elements in the intersection of

the feature sets; the distinctive features of an object pair are those elements outside

of the intersection of the feature sets. In this model, the similarity of an object pair

increases with the size of the common features set and decreases with the size of the

distinctive features set (Markman 1993). Tversky (1977) claims that feature com-

monalities tend to increase perceived similarity more than feature differences can

diminish it. In other words, commonalities get higher weights than differences do in

the model.
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The structure alignment model indicates that similarities come not only from the

matching of common and different features, but also from the alignment of features

(Markman 1993). Medin et al. (1993) proposed that structure and global consistency

are more important in the process of similarity determination than simple local

matches. It has been widely recognized that similarity comparisons involve struc-

tural alignment instead of simple feature matches (Markman 1993; Medin

et al. 1993). Usually, in the comparison of an object pair, the parts of one object

must be aligned or placed in correspondence with the parts of the other object

(Goldstone 1994). In this model, outputs of a similarity comparison process include

commonalities, aligned differences, and nonaligned differences (Medin et al. 1993).

The transformation model is one of the geometric models that measures simi-

larity by means of transformational distance (Imai 1977; Goldstone 2004). The

concept of transformational distance is defined as a function of the complexity that

calculates the steps needed in the process of transforming the representation of one

entity into the representation of another. The more steps are taken, the more

dissimilar the two entities are. The transformation model is especially useful for

visual configurations (Nedas and Egenhofer 2003).

2.4.2 Models/Measures in Computer Science

Similarity-based models/measures are mainly used in three areas in computer

science, i.e., text processing, image recognition, and graphics measurements. For

text processing, various approaches and measures for similarity calculation among

characters for the purpose of character recognition (Amin and Wilson 1993; Natori

and Nishimura 1994) and words’ semantic comparison (Guan et al. 2002) in the

field of natural language processing have been researched for decades; for image

recognition, content-based query in image databases is another hot issue closely

related to similarity calculation. After a swift glance of them, more attention here

will be paid to the geometric similarity of graphics (e.g., shape, structure, distribu-

tion, configuration of graphics), because it is more closely related to geometric

similarity of spatial objects which is useful in our research.

Vector graphics in a two-dimensional space can be classified into three catego-

ries, i.e., points, lines/curves, and polygons. No method for similarity measure-

ments between two vector point clusters has been found in literatures, except those

Hausdorf distance-based ones for computing similarity between two point sets in

two images (Huttenlocher et al. 1993). So the following paragraphs will discuss the

measures/models for similarity measurements between curves/lines and between

polygons, but ignore that between points.

• Measures/models/approaches/algorithms for similarity between two polygons

1. Visibility-based approach (Avis and Elgindy 1983): A polygon is abstracted

by means of its visibility graph, and two polygons are deemed similar

whenever their graphs are cyclically isomorphic. This approach can deal
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with convex and concave polygons; however, it does not take complex

polygons (e.g., a polygon with holes) into consideration.

2. Polygon similarity estimation model (Cakmakov et al. 1992): The model

calculates the gravity centers of the two polygons; then it matches the vertices

of the two polygons by sequential rotation and scaling. The similarity of the

two polygons is computed using a deliberately defined function. This model

is oriented to concave and convex simple polygons, and considers basic

transformations such as translation, rotation, and scaling of polygons. It

also can be used for comparing two polygons with different vertices, though

the results are usually unsatisfactory. Nevertheless, complex polygons are out

the scope of this model.

3. Turning function-based metric: A simple polygon is usually represented by

describing its boundary using a circular list of vertices, expressing each

vertex as a coordinate pair. For example, the visibility-based approach

(Avis and Elgindy 1983) and the polygon similarity estimation model

(Cakmakov et al. 1992) use this kind of representation. An alternative

representation of the boundary of a simple polygon is to give its turning

function, i.e., expressing a polygon using its sides and turning angles. Arkin

et al. (1991) proposed a turning function-based metrics. The basic idea of the

metric is: the turning functions of the two polygons are constructed first; the

distance (i.e., dissimilarity) between the two turning functions is calculated

for substituting the dissimilarity between the shapes of the two polygons. This

metric is only applicable to simple polygons.

In sum, it is clear that existing models/measures only consider the geometric

aspects of simple polygons in similarity calculations. However, complex polygons,

discrete polygonal groups, and polygon coverages need to be considered; mean-

while, both geometric and attribute aspects of polygons should be taken into

account in spatial similarity in multiscale map spaces.

• Measures for similarity between curvers/lines: Similarity of curves plays impor-

tant roles in a variety of different domains, such as analysis of stock market

trends, protein shape matching, speech recognition, computer vision, etc. Here

the curves are usually assumed to be represented as polygonal chains in the

plane. The measures that have been used to assess their dissimilarity/similarity

include the Hausdorff distance (Alt et al. 1995), the turning curve distance

(Cohen and Guibas 1997), and the Frechet distance. Among them, the Frechet

distance has received much attention as a measure of curve similarity (Alt

et al. 2001). It belongs to a general class of distance measures that are sometimes

called “dog-man” distances (Buchin et al. 2006), an imitation of a man and a dog

walking along two curves from one endpoint to the other endpoint, on condition

that the man holds an elastic leash at hand and neither of them can teleport (i.e.,

jump from one point to the next). The distance between the two curves is defined

as a function of the leash length, typically minimized over all legal motions. The

Frechet distance is the minimum (overall trajectories) of the maximum leash

length needed for a fixed trajectory.
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2.4.3 Models/Measures in Music

On the one hand, qualitative similarity of melodies is popularly used. For example,

when someone says “the two melodies are absolutely similar,” he is using an

unconscious short-hand but neglects (or is unable) to identify the specific qualita-

tive dimensions according to which the melodies are “close.” Qualitatively speak-

ing, two melodies may have similar pitch contours, similar structural tones, similar

rhythms, similar harmony; they may evoke a similar mood and/or express similar

themes such as unrequited love, shame, or happiness; and/or be especially quiet;

and/or simply have a similar duration. Both melodies may be strophic in form or

both may address a similar audience (e.g., children).

On the other hand, people sometimes attempt to use the qualitative properties by

which two things may be deemed similar to characterize their quantitative similar-

ity or degree of closeness. In some cases, a quantitative scale already exists making

it possible to characterize directly the quantitative similarity for a given qualitative

property. However, in some other cases, no quantitative scale exists as yardsticks.

For quantitative data, a number of numerical and statistical methods have been

devised as measures of similarity. For example, Pearson’s coefficient of correlation

provides a useful way of measuring the similarity of the rise and fall of two sets of

numerical values. To determine whether the annual pattern of precipitation in

Montréal is more similar to that of Melbourne, or of Miami, the monthly precipi-

tation data are aligned and Pearson’s coefficient of correlation can be calculated,

and then we would find that Montréal correlates most strongly with Miami.

In measuring the similarity between two melodies, it is not easy to determine if

there is some other (qualitative) dimension by which the two melodies exhibit a

greater (quantitative) similarity. In some analytic tasks people may be most inter-

ested in determining which elements of a given set are most similar according to a

preestablished qualitative dimension. In other tasks people may be interested in

determining which qualitative dimension reveals the greatest similarity between

two melodies. Not all data is quantitative in nature, so it is not always possible to

apply parametric measures of similarity such as Pearson’s correlation. Although

many musical parameters may be represented quantitatively, it is not always

possible to cast musical elements according to some quantitative yardstick. Often

the information is in the form of discrete categories that cannot be ordered. In the

case of nonquantitative data, an alternative way of calculating the degree of

similarity between two melodies is to ask: how much “tinkering” is required in

order to reach identity?

One of the most prevalent and intuitively appealing approaches to measuring

quantitative similarity is to calculate the edit distance between two strings

(Damerau 1964; Levenshtein 1966). Briefly, the edit distance between two strings

can be defined as the minimum number of basic modifications (insertions, dele-

tions, and substitutions) that must be performed on one string (source string) in

order to make it identical to a second (target) string. Performing an insertion means

augmenting the source string by adding a symbol, whereas a deletion means
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removing a symbol from the source string. A substitution is the replacement of a

single symbol in the source string by another symbol, which could be the same, or

different. If a replacement symbol differs from the symbol it replaces, the substi-

tution is called a dissimilar substitution. For each type of edit operation we may

define a numerical penalty representing the magnitude of the modification. For

example, the operations of insertion and deletion might be defined as adding a

nominal value of +1 to the edit distance. A substitution might be defined as adding a

value of +1 if is dissimilar, and zero if it is not. A dissimilar substitution is logically

equivalent to a deletion followed by an insertion, so if we assigned an edit-distance

penalty of +2 rather than +1, then the substitution operation would be redundant.

2.4.4 Models/Measures in Geography

Spatial similarity measurement is different from document/texts similarity assess-

ment in which the focus is on matching keywords, because spatial similarity

relations involve various elements, such as spatial relationships, spatial distribution,

geometric attributes, thematic attributes, and semantic relationships. In addition,

different applications may have different requirements and priorities on similarity

elements, which make calculation/assessment of spatial similarity relations com-

plicated and difficult. In sum, it is difficult for researchers to quantify spatial

similarity relations due to at least the following two major reasons.

First, spatial similarity measurement is a cognitive process that is consistent with

human’s cognition; nevertheless, psychologists have not clearly known what has

happened while people are judging spatial similarity relations.

Second, spatial relations, i.e., topological, direction, and distance relations,

capture the essence of a scene’s structure (Bruns and Egenhofer 1996) and play

key roles in spatial similarity assessment; however, complexity of spatial relations

and numerous constraints of spatial properties make spatial similarity relations hard

to be addressed.

Although it is not easy to calculate spatial similarity relations, many researchers

have studied this issue and some achievements have been made. Many models/

approaches/measures for similarity calculation/assessment are discussed in detail in

the following sections, for the purpose of laying a good theoretical and methodo-

logical foundation for our new quantitative methods.

• Conceptual neighborhood approach: The conceptual neighborhood approach is

the same as the transformation model in basic ideas, i.e., similarity in this model

is measured according to the distance between two concepts in a network. It

computes the shortest path between two nodes in the network. The distance is

calculated as the number of edges between them (Rada et al. 1989; Budanitsky

1999). The fewer edges between them on the network, the more similarities they

share (Quillian 1968).
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A method based on the 9-intersection model (Egenhofer and Franzosa 1991) is

proposed by Egenhofer and Al-Taha (1992) to derive gradual changes of topolog-

ical relationships. The principle of creating a conceptual neighborhood of topolog-

ical relationships by this method is illustrated in Fig. 2.8a. If changes in topological

relations (e.g., scale, translation, and/or rotation) happen, the corresponding process

can be described as a sequence of movements over the neighborhood network. For

example, if the distance from disjoin (x, y) to meet (x, y) is set as 1, the distance

from disjoin (x, y) to covers (x, y) should be 3.

Figure 2.8b shows another method proposed by Freksa (1992), which creates

the conceptual neighborhood network based on Allen’s 1-D interval relations

(Allen 1983). Papadias and Dellis (1997) extended this model into a higher

dimensional space to address spatial relationship similarity on topology, direc-

tion, and metric distance. Chang and Lee (1991) derived the conceptual neigh-

borhood network of 169 possible spatial relations between rectangles also from

applying Allen’s 1-D interval relations to orthogonal projections. Bruns and

Egenhofer (1996) captured spatial relationship similarity over Chang and Lee’s

graph by combining the distance conceptual neighborhood model. They describe

the similarity measuring process as “one scene is transformed into another

through a sequence of gradual changes of spatial relations. The number of

changes required yields a measure that is compared against others, or against a

pre-existing scale. Two scenes that require a large number of changes are less

similar than scenes that require fewer changes.”
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Fig. 2.8 Conceptual neighborhood of topological relations: (a) Egenhofer’s method, and (b)

Freksa’s method (Revised from Li and Fonseca (2006))
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• Projection-based approach: The projection-based model divides the

two-dimensional space with a horizontal line and a vertical line, taking a point

as the reference (Frank 1996; Ligozat 1998). The four rays of the two lines

represent the four cardinal directions: north, west, south, and east (Fig. 2.9). The

regions between these two lines represent the secondary directions, i.e., north-

west, southwest, southeast, and northeast. It was argued that the projection

model has advantages over the cone model (Frank 1991) in implementation

due to the rectangular nature of the directional partition (Goyal 2000).

The projection-based approach projects spatial objects and their relations onto

another space, which can be a vector space or a matrix space. By this way, the

problem of similarity assessment is shifted from the comparison of objects in spatial

scenes to that of vector or matrix space. The famous 2D String symbolic represen-

tation is an example of projection-based approach (Chang et al. 1987), in which

spatial objects and their relationships are represented by 2D strings along x and

y axes. The similarity assessment between two scenes is then treated as it was a

string matching. Chang defines three types of similarity criteria, type-0, type-1, and

type-2. Type-0 is the most generous one. It is fulfilled when two objects have the

same relationship on either the x- or the y-axis. Type-1 requires that two objects

have the same relations on both the x- and y-axis. Type-2 requires not only two

objects to have the same relations but also that they have the same rank of the

relative positions.

• Combination of the conceptual neighborhood approach and the projection-
based approach: To measure distance similarity degrees, Goyal and Egenhofer

(2001) proposed a method that combines the conceptual neighborhood approach

and the projection-based approach. In this hybrid method the directional space is

projected into a 3� 3 matrix, which represents the nine directions (north,

northwest, west, southwest, south, southeast, east, northeast, and same).

Northwest

North

South

East West

SouthwestSoutheast

Northeast

Fig. 2.9 Directional space

partition in the project-

based approach
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Each sector of the matrix specifies how much of a target object falls into the

direction it represents. The similarity of a cardinal direction is determined by the

least cost of transforming one direction-relation matrix into another one.

• Spatial relations-oriented model (the TDD model): The TDD (Topology–

Direction–Distance) model (Li and Fonseca 2006) provides a similarity measure

that integrates four widely accepted conceptual similarity models (i.e., the

geometric model, the feature contrast model, the transformation model, and

the structure alignment model). The basic idea of the TDD model is: common-

alities (C) and differences (D) between spatial scenes are measured; the final

similarity measurement (S) is a combination of both, i.e., S¼C�D. The

structure alignment model considers that the parts of one object must be aligned

or placed in correspondence with the parts of the other in the comparison of a

stimulus pair. Therefore, the output of the similarity comparison process

includes commonalities, alignable differences, and nonalignable differences.

The TDD model treats alignable differences and nonalignable differences sep-

arately: D¼ (alignable difference + nonalignable difference).

The TDD model takes into account both relational similarity and attributes

similarity (Table 2.1), and different weights are applied on relational similarity

and attributes similarity, because they have different impacts on commonality

judgment and difference judgment (Tversky 1977) in similarity evaluation of a

certain task context. In addition, the TDD model applies the order of priority (i.e.,

topology! direction! distance) into spatial similarity assessment and the relaxa-

tion of the transformation cost. Both features are implemented through the weight

setting. The TDD model measures the similarity between spatial scenes (a spatial

scene is comprised of spatial objects). A spatial scene in TDD model may include

only one spatial object, or two spatial objects, or three or more spatial objects.

The TDD model is based on findings of psychological similarity research which

stated that (1) the commonalities between a stimulus pair increase the similarity

more than differences decrease it; (2) aligned differences affect the similarity more

than nonaligned differences do; (3) the order of priority topology–direction–dis-

tance reflects the priorities of different types of spatial relationship in spatial

similarity assessment; and (4) the difference between inter-group transformation

cost and intra-group transformation cost which is consistent with the theory of

Table 2.1 Basic elements in the spatial measurement process (Revised from Li and Fonseca

(2006))

Level of comparison Types of similarity measured

Scene Relationships Spatial Topological

Direction

Metric distance

Distribution

Nonspatial Attributes

Object Geometric Types of objects

Thematic Attribute comparison
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categorization. Instead of measuring the distance between objects in traditional

models, this model adopts Tversky’s feature contrast model, which considers both

commonality and difference in similarity assessment. It groups the topological

relationships and introduces the concepts of inter- and intra-group transformation

costs. The inter-group transformation cost has a higher value than the intra-group

transformation cost.

• Spatial semantic-oriented models/measures: Although the World Wide Web

(WWW) currently provides good access to data through a variety of search

engines as long as the user knows the keywords that the data providers used, it

falls short as a reliable access mechanism to information when purely syntactic

comparisons cannot resolve ambiguities or fail to build connections to related or

similar items that a data provider did not foresee. The Semantic Web (Berner-

Lee et al. 2001) aims to overcome the limitations of WWW by incorporating

explicitly modeled expressions of semantics into the search process. The provi-

sion of such explicit semantics may be seen as a much richer metadata model,

with the goal to offer machine-readable and machine-executable metadata. The

domain of geospatial information is particularly rich in this respect due to the

varieties in human spatial languages for expressing and communicating spatial

information. Naturally, a spatial similarity-based concept named “Semantic

Geospatial Web” (SGW) appeared in recent years (Egenhofer 2002; Fonseca

and Sheth 2003). SGW is envisioned as a new information retrieval environment

that will facilitate meaningful access to geospatial information (Nedas and

Egenhofer 2003; Rodrı́guez and Egenhofer 2004).

A set of methods developed by Nedas and Egenhofer (2003) for the retrieval of

similar spatial information in spatial databases use Boolean operators, such as

“not,” “and,” “or,” to combine and integrate several similarity constraints. The

methods take into account a 3-tuple {geometric attribute; thematic attribute, ID} in

spatial similarity. Geometric attributes are associated with an object’s topology and

metric details, while thematic attributes capture spatial but nongeometric informa-

tion. Because of this duality, their methods assess similarity among spatial objects

at two procedures: geometric attribute assessment and thematic attribute assess-

ment. The overall similarity value of two objects is a combination of their geomet-

ric and thematic similarity values. To combine the similarity values, the weighted

mean values are used instead of two popular approaches: the geometric approach

and the fuzzy-logic approach. This research in spatial similarity is from a concep-

tual rather than implementation point of view.

To determine semantic similarity among spatial entity classes, the Matching-

Distance Similarity Measure (MDSM) was proposed (Rodrı́guez and Egenhofer

2004), taking into account the distinguishing features of the classes (parts, functions,

and attributes) and their semantic interrelations (is–a and part–whole relations). A

matching process is combined with a semantic-distance calculation to obtain asym-

metric values of similarity that depend on the degree of generalization of entity

classes. MDSM’s matching process is also driven by contextual considerations,

where the context determines the relative importance of distinguishing features.
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2.4.5 Critical Analyses of Existing Models/Measures

A number of insights can be gained from the analysis of existing models/measures

for similarity assessments in psychology, computer science, and geography.

1. Similarity relation roots itself in humans’ cognition; hence, the four Models for

similarity calculations in psychology (the geometric model, the feature-based

contrast model, the structure alignment model, and the transformation model)

have been the bases of the existing models for similarity in geography and will

still be a most important source of the models for spatial similarity in multiscale

map spaces in this study.

2. Constructing a spatial similarity model needs to consider spatial aspects (includ-

ing spatial relations, spatial distribution, spatial structure etc.) and attribute

aspects (including geometric and thematic attributes, e.g., names, areas, length,

etc., of the objects) of spatial objects. Existing models put emphases on the

attribute aspects and give little attention on spatial aspects (the TDD model

considers topology, direction, and distance, but it is not for multiscale geo-

graphic spaces).

3. Shape similarity between polygons and between curves/lines has been a hot

issue in computer science for decades; however, few achievements have been

made in comparing two polygons/curves with different vertices at different

scales.

4. Existing models consider similarity between only two single objects, while the

spatial similarity relations between two groups of objects and between two maps

have not been explored.

5. “Scaling” has usually been taken as a parameter in existing models/measures

for similarity calculation, where “scaling” means simple enlargement and

shrinkage of objects. This is wholly different from the concepts of “scaling”

in map generalization that means simplification of objects due to map scale

change.

2.5 Raster-based Approaches for Map Similarity

Comparison

Besides vector-based models and measures for similarity calculation discussed in

the previous sections of this chapter, many raster-based approaches have been

proposed for map comparison (Berry 1993; Hagen-Zanker et al. 2005a; Hagen-

Zanker and Lajoie 2008; Hagen-Zanker 2009). In addition, a raster-based software

package has been developed to compute similarity degrees between raster maps or

images (Visser and de Nijs 2006). The following gives a brief summary of these

approaches.
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The raster-based approaches can be classified into two categories: one for

comparing categorical maps (from Sects. 2.5.1–2.5.7) and the other for comparing

numerical maps (in Sect. 2.5.8).

2.5.1 Per Category Comparison Method

The per category comparison method (Congalton et al. 1983; Maselli et al. 1996)

performs a cell-by-cell comparison with respect to one category on the maps. It

simultaneously gives the information about the occurrence of the selected category

in both maps (Fig. 2.10). This traditional technique is suspect because of possible

map registration and error propagation problems. These Boolean similarity opera-

tions often cannot adequately account for the uncertainty and complexity inherent

in spatial information.

2.5.2 Kappa Comparison Method

The Kappa comparison method (Hagen 2002) is based on a straightforward cell-by-

cell map comparison, which considers for each pair of cells on the two maps

whether they are equal or not. This results in a comparison map displaying the

spatial distribution of agreement. This comparison method does not require any

parameters.

Open

City

River

Park

Unequal

Equal

Fig. 2.10 Raster-based similarity computation
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Usually, over time only a small percentage of the land use area actually changes,

while most locations keep the same. For those simulations with little change, the

agreement will be high regardless of the quality of the model. In this case, Kappa

simulation (Van Vliet et al. 2011) corrects the agreement between two maps for the

sizes of class transitions. By taking class transitions as the reference, rather than

class sizes that Kappa comparison method uses, the absolute value of kappa can be

interpreted.

2.5.3 Fuzzy Kappa Approach

Fuzzy Kappa approach to assessing similarity of categorical maps (Hagen 2003;

Hagen-Zanker et al. 2005b) applies fuzzy set theory and involves both fuzziness of

location and fuzziness of category to compare raster maps of categorical data. It

obtains a spatial and gradual analysis of the similarity of two maps. The results from

the comparison are basically in accordance with those of a visual inspection,

because it distinguishes minor deviations and fluctuations within similar areas

from major deviations. The main purpose of the Fuzzy Kappa map comparison is

to take into account that there are grades of similarity between pairs of cells in two

maps. Like its crisp counterpart, the fuzzy kappa is based on a cell-by-cell map

comparison.

2.5.4 Fuzzy Inference System

The traditional cell-by-cell map comparison may register a disagreement between

cells even if this is due to a minor displacement between similar cells in the

respective maps and the overall spatial patterns are essentially the same. To solve

this problem, the fuzzy inference system comparison algorithm (Power et al. 2001)

compares the characteristics of polygons rather than cells found in both maps. The

calculation of the similarity is based upon a fuzzy inference system evaluation of

these characteristics. The characteristics that are taken into account in this evalu-

ation are area of intersection, area of disagreement, and size of polygon. It has been

shown that a fuzzy local polygon-by-polygon land use comparison is less affected

by possible map registration problems because the fuzzy inference system indi-

rectly fuzzifies the boundaries of the polygons. The local matching results from the

fuzzy inference system for the project datasets demonstrate the advantage of the

fuzzy approach over the Boolean comparison methods.

The fuzzy inference system approach is in essence asymmetrical, which means

that the comparison of two maps is different depending on which map is consid-

ered to be the reference (or real) map and which is the comparison

(or modeled) map.
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2.5.5 Fuzzy Comparison with Unequal Resolutions

The Map Comparison Kit 3 (RISK 2013) allows comparing maps of unequal

resolution that cover the same area. The comparison takes place at the coarsest

resolution of the two maps. Internally the comparison method transforms the crisp

fine scaled map to a soft classified coarse one on the basis of percentages. The

percentages are interpreted as degrees of similarity in a fuzzy set map comparison.

There are two options for evaluating similarity, either absolute or relative to the

maximum attainable similarity.

2.5.6 Aggregated Cells

It is well established that the outcome of spatial analysis generally depends on the

scale that it is conducted. The method of aggregated cells (Pontius Jr. 2000; Pontius

Jr. et al. 2004) aims to calculate scale-dependant similarities. Scale in this case is

operationalized as aggregation level; the only parameter to this method is the

aggregation factor, which must be a positive integer (natural) value. The method

aggregates the original pixels taken in by categories to coarser maps where every

cell is represented by a vector containing for each category the fraction of cover.

2.5.7 Moving Window-Based Structure

The moving window-based structure comparison method (Hagen-Zanker 2006)

compares maps on the basis of their local structure. Two types of structure are

considered in the comparison: patch-based structure and proportion-based struc-

ture. These are sometimes also discerned as configuration and composition-based

structure. In this case, that denomination would be incorrect since the moving

window in effect makes both approaches configuration based.

2.5.8 Numerical Comparison Methods

Six different cell-by-cell numerical comparison algorithms (McGarigal et al. 2002)

are listed in Table 2.2. Accordingly, fuzzy numerical methods have been studied

(McGarigal et al. 2002), considering fuzziness of location in the same manner that

the fuzzy Kappa comparison does. The difference is that it applies to numerical

maps, which means that the use of a categorical similarity matrix is not necessary

(or possible).
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2.6 Chapter Summary

In order to lay a good foundation for constructing new models for calculating

spatial similarity relations that can be used in automated map generalization, this

chapter reviews, summarizes, and analyzes the existing achievements in spatial

similarity relations, including the definitions, features, classification systems, and

calculation models/measures of similarity relations in various circles. Most impor-

tantly, this chapter summarizes the advantages and disadvantages of the existing

achievements, and clearly shows the gap between the research objectives of this

book and the existing achievements in this area.
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Chapter 3

Concepts of Spatial Similarity Relations

in Multiscale Map Spaces

This chapter explores the fundamental theories of spatial similarity relations in

multiscale map spaces and aims at the four subobjectives addressed in Chap. 1:

(1) definitions of spatial similarity relations, (2) features of spatial similarity

relations, (3) factors that affect humans’ judgments of spatial similarity relations,

and (4) a classification system for spatial similarity relations in multiscale map

spaces.

3.1 Definitions

Chapter 2 reviews the definitions of similarity in various fields, including geometry,

computer science, engineering, psychology, music, chemistry, and geography. An

insight into these definitions has gained that existing definitions are closely appli-

cation oriented, and based on corresponding assumptions, and lay their foundations

on experiences. In other words, the existing definitions have their limitations and

cannot be used interchangeably. Hence, it is necessary to define spatial similarity

relation in multiscale map spaces by its own way in order to investigate this issue

thoroughly.

Some rules need to be obeyed in defining spatial similarity relations in

multiscale map spaces in order to avoid the shortcomings existing in the definitions

of similarity in other fields and to make the new definitions work well in automated

map generalization. These rules require that the new definitions should be

(1) expressed in mathematical language, (2) aligned with human’s spatial cognition,

and (3) formal, but not only based on personal experiences. In addition, the

assumptions of the new definitions should be clearly presented in mathematical

languages.
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The following proposes the definition of spatial similarity relation in multiscale

map spaces. Before this, the definitions of similarity relation and spatial similarity

relation need to be presented.

3.1.1 Definitions of Similarity Relation

Similarity relation can be defined descriptively and quantitatively.

Similarity relation has been descriptively defined over and again by many

researchers in various research fields (Gower 1971; Ramer 1972; Lanczos 1988;

Hershberger and Snoeyink 1992; Zhou 1993), and its definitions also appear in huge

dictionaries. To sum up, similarity relation can be simply described as:

a quality that makes one person or thing like another

It covers two aspects:

1. Quality or state of being similar: resemblance
2. Comparable aspect: correspondence

This definition presents a universal, qualitative description of similarity rela-

tions. Although it is useful for people to understand “similarity relation” intuitively,

it cannot provide direct help to construct quantitative models for calculating

similarity relations, because it lacks of a mathematical foundation.

Similarity relation is calculable; therefore it has been defined in mathematical

language (Coxeter 1961; Cederberg 1989). In a general metric space (X, d ) simi-

larity relation can be expressed using a function f from the space X into itself that

multiplies all distances by the same positive scalar r. To be exact, for any two points
x and y, the following function can be true.

d f xð Þ, f yð Þð Þ ¼ r � d x; yð Þ ð3:1Þ

where, d(x, y) is the distance from x to y.
Weaker versions of similarity would for instance have f be a bi-Lipschitz

function and the scalar r a limit:

lim
d f xð Þ, f yð Þð Þ

d x; yð Þ ¼ r ð3:2Þ

This weaker version applies when the metric is an effective resistance on a

topologically self-similar set.

A self-similar subset of a metric space (X, d) is a set K for which there exists a

finite set of similitudes {fs}s2 S with contraction factors 0� rs< 1 such that K is the

unique compact subset of X (Martin 1982) for which
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U
s2S

f s Kð Þ ¼ K ð3:3Þ

These self-similar sets have a self-similar measure μD with dimension D given

by the formula

X

s2S
rsð ÞD ¼ 1 ð3:4Þ

which is often (but not always) equal to the set’s Hausdorff dimension and packing

dimension. If the overlaps between the fs(K ) are “small,” the following simple

formula can be used for the measure of similarity relations:

μD f s1∘f s2∘ � � � ∘f sn Kð Þð Þ ¼ rs1 � rs2 � � � rsnð ÞD ð3:5Þ

3.1.2 Definitions of Spatial Similarity Relation

Spatial similarity relation refers to the similarity relation in the geographic space

(including map spaces). It comprises the similarity relations between individual

objects and the similarity relations between object groups in the geographic space.

For example, in Fig. 3.1, people may be interested in either if Island A1 is similar to

Island A2 or how similar Archipelago 1 and Archipelago 2 are.

1

A1

a b

A2
2

Fig. 3.1 Spatial similarity relations on an island map. Similarity relations between individual

objects (Island A and Island B) or object groups (Archipelago 1 and Archipelago 2)

3.1 Definitions 47



Similarity refers to “comparable aspects.” To be exact, every object has a

number of aspects. When people discuss the similarity relations between objects

(or object groups), they usually compare the corresponding aspects of the two

objects (or object groups) subconsciously in the process of similarity relation

judgments.

In essence, similarity between two objects (or object groups) means one-to-one

corresponding comparison of the properties of objects (Zhou 1993; Liang 1999). In

light of the existing achievements (Li 2000; Yan 2010), the definition of spatial

similarity relations may be developed based on Yan’s work (2010) by means of the

Set Theory. Because properties of the objects (object groups) generally weigh

differently in human’s similarity judgments, which should be taken into account

in defining spatial similarity relations.

Definition Suppose that A1 and A2 are two objects in the geographic space. Their

property sets are P1 and P2, respectively, and each of which has n(n> 0) elements

P¼ {p1, p2, . . ., pn} in it. P1¼ {p11, p12, . . ., p1n}, and P2¼ {p21, p22, . . ., p2n}, and
their corresponding weights are W¼ {w1,w2, . . .,wn}.

Let

SimPi

A1,A2
¼ f i p1i; p2ið Þ: ð3:6Þ

SimPi

A1,A2
is called the spatial similarity relations of object A1 and object A2 at

property pi. i¼ 1, 2, . . ., n. It is also named the spatial similarity degree between A1

and A2 at property pi, and its value belongs to [0,1].
Let

Sim A1;A2ð Þ ¼
Xn

i¼1

wiSim
Pi

A1,A2
: ð3:7Þ

Sim(A1,A2) is named the spatial similarity relations of object A1 and object A2,

i¼ 1, 2, . . ., n. It is also named the spatial similarity degree between A1 and A2, and

its value is [0,1].

3.1.2.1 Demonstration of the Definition

In order to explain the above definitions, the similarity relations between island A1

and island A2 in Fig. 3.1 are taken as an example. The properties of island A1 and

island A2 are P¼ {Area, shape, arability}, and the corresponding weights of the

properties are w¼ {0.3, 0.6, 0.1} (these values are usually collected from experts

and/or specific group of people by means of questionnaire surveys).

Here, the “area” of an island may be “large,” “big,” and “small,” denoted by 3, 2,

and 1, respectively; the “shape” of the island can be described using the number of
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edges of the polygon; and the “arability” may be “yes” or “no,” denoted by 2 and 1.

The property set of the two islands are P1¼ {2, 6, 1}, and P2¼ {2, 9, 1}, respectively.

The similarity relations of the two islands at the three properties are calculated

and presented as follows. Here, f1, f2, and f3 are experience formulae by the authors

(they may be changed if necessary).

SimP1

A1,A2
¼ f 1 2; 2ð Þ ¼ 1

SimP2

A1,A2
¼ f 2 6; 9ð Þ ¼ _ p12; p22ð Þ

p12; p22ð Þ=2 ¼ _ 6; 9ð Þ
6þ 9ð Þ=2 ¼ 0:8

SimP3

A1,A2
¼ f 3 1; 1ð Þ ¼ 1

Then the spatial similarity relations between A1 and A2 can be obtained.

Sim A1;A2ð Þ ¼
X3

i¼1

wiSim
Pi

A1,A2
¼ 1� 0:3þ 0:8� 0:6þ 1� 0:1 ¼ 0:88

3.2 Discussion

A couple of remarks can be made after a detailed analysis to the definition of spatial

similarity relations.

First, this definition obviously lays its foundation on mathematics and gives a

quantitative expression of spatial similarity relations.

Second, objects in the geographic space have a number of different properties, but

people are usually uncertain or ambiguous when they talk about similarity

between two objects. In other words, people do not clearly know exactly what

properties of the objects should be compared in their similarity assessments.

Hence, work needs to be done to “extract” these properties from people’s brains.

Third, the weights of the properties in the definition are subjective values which

depend on human’s experiences and knowledge. The more people are surveyed,

the more accurate the weights are.

Last, the formulae for calculating spatial similarity relations should be formal so

that the results are acceptable and reliable. Hence, experiments should be

designed to test the reliability and the validity of the formulae.

3.2.1 Definitions of Spatial Similarity Relation
in Multiscale Map Spaces

Spatial similarity relations may exist either between objects on maps at same scale

(e.g., A1 and A2 in Fig. 3.1) or between objects at multiple different scales. As far as

the latter is concerned, automated map generalization is an ideal source for
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obtaining such examples (e.g., Figs. 3.2 and 3.3). The spatial similarity relations

between objects on maps at multiple different scales are named spatial similarity

relations in multiscale map spaces.

Although spatial similarity relation in multiscale map spaces belongs to spatial

similarity relations, it has a couple of characteristics that the other ones do not have.

Fig. 3.2 Similarity relations of settlements at four different scales. (a) Scale s1; (b) scale s2;
(c) scale s3; and (d) Scale s4

Fig. 3.3 Similarity relations of control points at three different scales. (a) Scale s1; (b) scale s2;
and (c) scale s3
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First, the objects compared in spatial similarity relations in multiscale map spaces

are the same object in the geographic space. What are compared are actually the

symbols of the objects on maps at different scales.

Second, although similarity relations in multiscale map spaces refer to the similar-

ity of the symbols of the same objects at different scales, it is different from the

so-called self-similarity (Mandelbrot 1967). Thus, the theory of self-similarity

cannot be directly used to solve the problems in spatial similarity relations in

multiscale map spaces.

Third, properties of objects in multiscale map spaces include attribute properties

and spatial properties but no temporal properties, because all objects are the

same one at different scales.

Definition Suppose that A is an object in the geographic space. It is symbolized as

A1,A2, . . .,An(n> 0) separately on the maps at scales S1, S2, . . ., Sn. The property

sets of A1,A2, . . .,An are P1,P2, . . .,Pn. If each property set has k(k> 0) elements,

and their corresponding weights are W¼ {w1,w2, . . .,wk}. The property sets are

expressed as follows:

P1 ¼ p11; p12; . . . ; p1kf g;
P2 ¼ p21; p22; . . . ; p2kf g;

. . . . . .

Pn ¼ pn1; pn2; . . . ; pnkf g: ð3:8Þ

Let

Sim
Pj

Al,Am
¼ f i plj; pmj

� �
: ð3:9Þ

Sim
Pj

Al,Am
is called the spatial similarity relations of object A at scale l and scale

m regarding the jth property. Here, i> 0; j> 0; l> 0; m> 0. Sim
Pj

Al,Am
is also named

the spatial similarity degree of object A at scale l and scale m regarding the jth
property, and its value belongs to [0,1].

Let

Sim Al;Amð Þ ¼
Xk

i¼1

wiSim
Pi

Al,Am
: ð3:10Þ

Sim(Al,Am) is named the spatial similarity relations of object A at scale l and
scale m. Here, l> 0; m> 0. It is also named the spatial similarity degree of object

A at scale l and scale m, and its value belongs to [0,1].

3.2 Discussion 51



3.2.1.1 Discussion

The above presents two definitions regarding spatial similarity relations in

multiscale map spaces. Spatial similarity relations defined by them are one-to-one

relations. To be exact, Sim
Pj

Al,Am
is the similarity relations of an object at two map

scales regarding one property, and Sim(Al,Am) is the similarity relations of an

object at scale l and scale m.
In addition, the following points need to be noticed regarding the two definitions.

First, the two definitions give quantitative expressions of spatial similarity relations.

Second, selection of the properties used in spatial similarity relations is a subjective

process. It is closely related to people’s nationalities, culture, age, gender, etc.

Third, the weight values of the properties should be obtained by psychological

experiments, taking sufficient number of people as subjects and selecting suffi-

cient number of appropriate objects as samples used in the experiments.

Last, validity of the definitions depends on users’ judgments.

3.2.2 Definition of Difference

Difference is interchangeably used with similarity. Hence, it is defined here to

facilitate our discussion. Suppose that A1 and A2 are two objects in the geographic

space, difference can be expressed as:

Dif A1;A2ð Þ ¼ 1� Sim A1;A2ð Þ ð3:11Þ

3.3 Features

Previous work has revealed that similarity has a number of features in various fields

(Table 3.1 lists the features that have been discussed in computer science, psychol-

ogy, and geography). The following will summarize and analyze these features and

prove whether they are applicable in the geographic space.

3.3.1 Equality

Equality of spatial similarity relations can be described as:

8 Að Þ, Sim A;Að Þ ¼ 1 ð3:12Þ

This seems self-evident that every object in the geographic space is totally similar

to itself.
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3.3.2 Finiteness

Finiteness of spatial similarity relations can be described as:

8 A;Bð Þ, Sim A;Bð Þ < 1 ð3:13Þ

The upper value is often set at 1 (creating a possibility for a probabilistic interpre-

tation of the similitude).

3.3.3 Minimality

Minimality of spatial similarity relations can be described as:

8 A;Bð Þ, Sim A;Að Þ � Sim A;Bð Þ ð3:14Þ

This feature should be obvious, because similarity between identical objects is

greater than that between different objects.

3.3.4 Auto-Similarity

Auto-similarity of spatial similarity relations can be described as:

8 A;Bð Þ, Sim A;Bð Þ ¼ Sim A;Að Þ , A ¼ B ð3:15Þ

This is obviously an inference from the previous feature “minimality.”

Table 3.1 Features of similarity in various fields

Fields

features Computer science Psychology Geography

Equality √

Symmetry √ √ √
Asymmetry √
Triangle inequality √ √
Minimality √
Reflexivity √

Nontransitivity √
Scale dependence √
Self-similarity √

Note: √means the feature is applicable in the corresponding field
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3.3.5 Symmetry (Reflectivity)

Symmetry (in other words, reflectivity) of spatial similarity relations can be

described as:

8 A;Bð Þ, Sim A;Bð Þ ¼ Sim B;Að Þ ð3:16Þ

This may be explained as: spatial similarity relations calculated from object A to

B should be the same as that from B to A. For example, there are two cities A and B.
It is obvious that spatial similarity compared from A to B is equal to that from B to

A, no matter what properties of the two cities are compared.

Symmetry in the geographic space is conditional true. This will be discussed in

the feature “weak symmetry.”

3.3.6 Nontransitivity

Nontransitivity of spatial similarity relations can be described as:

8 A;B;Cð Þ, Sim A;Bð Þ > 0 ^ Sim B;Cð Þ > 0ð Þ,∃Sim A;Cð Þ ¼ 0: ð3:17Þ

This feature means that object A is similar to object B and object B is similar to

object C does not guarantee that object A is similar to object C.
There are numerous examples regarding nontransitivity of spatial similarity

relations in the geographic space. The following presents two of them.

Example 1 In Fig. 3.4, A is a city, B is a village with buildings and green land, and

C is a small forest. Their properties “size” and “land cover” are selected to evaluate

their similarity relations.

W ¼ 0:5; 0:5f g
PA ¼ large, built-up areaf g
PB ¼ large, green landf g
PC ¼ small, green landf g:

∴Sim A;Bð Þ ¼ 0:5 > 0 ^ Sim B;Cð Þ ¼ 0:5 > 0

But

Sim A;Cð Þ ¼ 0:

Example 2 Figure 3.5 shows a map with three linear objects. A is a road, B is a

ditch, and C is an administrative boundary. Their properties “origination” and “line

type” are selected to evaluate their similarity relations.
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W ¼ 0:5; 0:5f g
PA ¼ man-made, straightf g
PB ¼ man-made, curvef g;
PC ¼ natural, curvef g:

∴Sim A;Bð Þ ¼ 0:5 > 0 ^ Sim B;Cð Þ ¼ 0:5 > 0

But

Sim A;Cð Þ ¼ 0:

3.3.7 Weak Symmetry

Weak symmetry of spatial similarity relation refers to such kind of cases: that A is

similar to B does not always mean B is similar to A. This may be expressed using a

formula:

∃ A;Bð Þ, Sim A;Bð Þ 6¼ Sim B;Að Þ ð3:18Þ

For example, in our daily life people are accustomed to say “John is like his father”

but seldom say “John’s father is like his son.”

CA

B

Fig. 3.4 Example 1 for nontransitivity in the geographic space

A (road)

B (ditch)

C (river)

Fig. 3.5 Example 2 for nontransitivity in the geographic space
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Such examples also exist in the geographic space. For example, in China people

usually say “North Korea is similar to China” but do not say “China is similar to

North Korea.” This comparison is related to historical and geographic reasons.

3.3.8 Asymmetry

If A is more similar to T than B is, it is still possible that A is also more different

from T than B is. This is called asymmetry of spatial similarity relations and may be

expressed as:

8 A;B; Tð Þ, if A, B, ∃Dif A; Tð Þ � Dif A;Bð Þ ð3:19Þ

An explanation of this feature is shown in Fig. 3.6. A is a house, B is a tree, and T is a

pavilion. There are totally five elements in the property set: history, origination,

owner, size, and environment. Possible values of the properties are:

History: ancient, modern, unknown

Origination: natural, man-made, unknown

Owner: public, private, unknown

Size: large, big, small

Environment: excellent, good, bad

a b c

d e

A

T

B

A A

A A

T
T

TT

B
B

B
B

Fig. 3.6 Explanation of asymmetry. (a) Three objects A,B and T; (b) Sim(A,T ); (c) Sim(A,B); (d)
Dif(A,T ); and (e) Dif(A,B). So Sim(A,T )� Sim(A,B), and Dif(A,T )�Dif(A,B)
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The property set of object A, including all of the five properties, is:

PA ¼ ancient, man-made, public, big, badf g:

The property set of object B, if including history, owner, and size, is

PB ¼ ancient; private; smallf g:

The property set of object B, if including origination, size, and environment, is

P
0
B ¼ man-made, small, badf g:

The property set of object T, if including history, origination, owner, and environ-

ment, is

PT ¼ ancient, man-made, public, goodf g

The property set of object T, if including owner, size, and environment, is

P
0
T ¼ public; small; goodf g

When the similarity between A and T is considered, PT is selected and the

weights are

WPT
¼ 0:25; 0:25; 0:25; 0:25f g:

When the difference between A and T is considered, P
0
T is selected and the weights

are

WP
0
T
¼ 0:3; 0:3; 0:4f g:

When the similarity between A and B is considered, PB is used and the weights are

WPB
¼ 0:3; 0:3; 0:4f g:

When the difference between A and B is considered, P
0
B is used and the weights are

WP
0
B
¼ 0:3; 0:3; 0:4f g:

By the above data, the similarity relations can be obtained:

Sim A; Tð Þ ¼ 0:25� 1þ 0:25� 1þ 0:25� 1 ¼ 0:75

Sim A;Bð Þ ¼ 0:3� 1 ¼ 0:3
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Dif A; Tð Þ ¼ 1� SimP
T
0 A; Tð Þ ¼ 1� 0:3� 1 ¼ 0:7

Dif A;Bð Þ ¼ 1� SimP
B
0 A;Bð Þ ¼ 1� 0:3� 1þ 0:4� 1 ¼ 0:3

In conclusion,

Sim A; Tð Þ � Sim A;Bð Þ, ∃ Dif A; Tð Þ � Dif A;Bð Þ

3.3.9 Triangle Inequality

Triangle inequality of spatial similarity relations can be described as:

8 A;B;Cð Þ, Sim A;Bð Þ þ Sim B;Cð Þ � Sim A;Cð Þ ð3:20Þ

Triangle inequality of similarity in the geographic space refers to such case: the

similarity degree between object A and object B plus that of B and C is greater than

that of A and C. The following gives an example to explain this feature.

Suppose that there are three objects alongside of a river bank, they are a village,

a patch of woods, and a desert (Fig. 3.7). Their property set contains three elements:

history, size, and owner. Possible values of these elements are as follows:

History: ancient, modern, current, unknown

Size: large, small

Owner: public, private, unknown

The property sets of the three objects are:

PA ¼ modern; small; publicf g
PB ¼ current; small; privatef g
PC ¼ ancient; small; publicf g:

Corresponding weights of the properties are:

W ¼ 0:3; 0:4; 0:3f g:

A (village)

B (woods)

C (desert)

Fig. 3.7 An example for triangle inequality in the geographic space
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Hence, we have

Sim A;Bð Þ ¼ 0:4� 1 ¼ 0:4

Sim B;Cð Þ ¼ 0:4� 1 ¼ 0:4

Sim A;Cð Þ ¼ 0:4� 1þ 0:3� 1 ¼ 0:7

∴ Sim A;Bð Þ þ Sim B;Cð Þð Þ ¼ 0:8 � Sim A;Cð Þ ¼ 0:7

3.3.10 Scale Dependence

Scale dependence in multiscale map spaces may be explained in this way: if object

A at scale S is gradually generalized to objects A1,A2, . . .,An, (n> 0) on maps at

scales S1, S2, . . ., Sn and S1> S2> . . .> Sn. If objects A1,A2, . . . and An are com-

pared with A, respectively, taking their spatial properties (shape, the number of

edges, etc.) and attributes as the properties, the following function should be

correct.

Sim A;A1ð Þ > Sim A;A2ð Þ > . . . > Sim A;Anð Þ ð3:21Þ

To express this feature in a simple way: the more an object is simplified (general-

ized), the less similar it is if compared with the original object.

By Formula (3.21), it is easy to deduce Formula (3.22):

8 Að Þ, s ¼ f A;Asð Þ is a monotonic decreasing function: ð3:22Þ

where A is an object on the map and As is the simplified A at scale s.
Figure 3.8 shows two examples to demonstrate this formula.

1:1K

a

b

1:2K 1:10K 1:50K 1:250K

1:1K 1:5K 1:25K 1:100K 1:500K

Fig. 3.8 Generalization and scale change
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3.4 Factors in Similarity Judgments

Factors that affect human’s similarity judgments play important roles in

constructing models for calculating similarity relations as well as designing

methods for evaluating the validity of the models. Although progress regarding

the factors in similarity judgments has been made in past work (Rodrı́guez and

Egenhofer 2004), the achievements are not systematic and incapable of supporting

our further research. Hence, this section will thoroughly explore the factors in

spatial similarity judgments, aiming at answering the following two questions

that take core roles in human’s similarity cognition.

Question 1: what factors take effect in similarity judgments?

Question 2: do these factors have different effects in the process of human’s spatial

recognition? And if so, how can the weights of the factors be obtained?

To answer question 1, the factors used in spatial similarity judgments are first

classified into two categories, i.e., factors for individual objects and factors for

object groups, because spatial similarity assessment is usually performed between

individual objects or object groups. Here, the meaning of object group is similar but

not equal to “scene” (Bruns and Egenhofer 1996).

To answer question 2, many psychological experiments need to be done using

a number pairs of individual objects and object groups; and then the statistical

data from the experiments should be analyzed to determine the weights of the

factors.

3.4.1 Factors for Individual Objects

Factors for individual objects in spatial similarity judgments refer to attributes of

the objects. These attributes are classified as geometric attributes and thematic

attributes. Geometric attributes are those attributes that relate to geometric features

of the spatial objects, e.g., location, length, area, slope, and shape. Thematic

attributes identify or describe the thematic features of spatial objects, such as

population, road types, or the time of an event.

Three types of individual objects are considered here. They are individual point

objects, individual linear objects, and individual areal objects.

3.4.1.1 Individual Point Objects

Individual point objects on maps refer to those small but important objects in the

geographic space needing to be represented on maps, such as pavilions, isolated

houses, pagodas, monuments, signposts alongside roads, oil wells, etc. Their

attributes that should be considered in spatial similarity judgments include:
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• Location

• Shape

• History

• Owner

• Area

3.4.1.2 Individual Linear Objects

Linear symbols are used to represent the geographic objects and the events that are

localized on lines (e.g., lines of watershed) and the demarcating lines (e.g., borders

of regions, states) and in order to mark objects that have linear character, that are

not manifested by its width in a scale (e.g., rivers or roads). Linear symbols may be

contours, roads, rivers boundaries, etc., on topographic maps (Table 3.2) as well as

power transmission lines, pipelines, land type demarcating lines, etc., on thematic

maps.

It is impossible and unnecessary to enumerate all kinds of individual linear

objects/phenomena. Here, three kinds of important individual linear features on

topographic maps are selected as representatives, i.e., rivers, roads, and contour

lines. The factors for each of them in spatial similarity judgments are addressed,

respectively.

• River

– Width

– Depth

– Length

– Curvature

– Elevation

– The number of branches

– Navigability

Table 3.2 Examples of individual linear objects on maps

Symbols Features Symbols Features

Index contour line High way

Intermediate contour line Secondary high way

Supplementary contour line Light duty road

Depression Unimproved road

Levee Trail

National boundary Stream

Provincial boundary Intermittent river
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– The number of harbors

– History

– Owner

– Sediment concentration, etc.

• Road

– Width

– Length

– Curvature

– The number of crosses

– Construction status: If the road is started, planned, closed for maintenance, or

completed

– Road access: If the road is open to the public or is part of a restricted, private

area

– Priority: The road’s priority indicates the type of traffic that the road handles,

its physical geometry, and its connectivity. Some roads are bigger, support

more traffic, and are more universally recognized than others

– Type of route: It can range from highways to trails

– The number of lanes

– Max speed

– Divider: It separates the flow of the traffic and prevents a turn

– Direction: It means one way or two way on the road

– Elevation

– Surface type

– Road condition

– Popularity: It tells how well known the road is, e.g., city-wide, country-wide,

or world-wide

– Grade levels: If the road segment is underpass, overpass, or on the ground

– Bicycle and pedestrian access

• Contour line

– Length

– Elevation

– Curvature

– Closed: Whether the contour is a closed curve or not?

– Type: What type is the contour, an index, an intermittent, or a supplementary

contour?

– Contour interval

– Location: What does the contour represent, a plateau, a depression, a saddle, a

hilltop, a ridge, or a valley?

– Accuracy: This refers to the elevation accuracy of the contour line.

– Scale of the map
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3.4.1.3 Individual Areal Objects

Individual areal objects refer to those topologically separated objects that are

represented on maps using polygonal symbols, such as settlements/buildings,

water bodies, forests, etc. Table 3.3 presents a number of areal symbols usually

used to represent individual areal objects on topographic maps.

The three kinds of individual areal objects, i.e., buildings, lakes, and forest, on

topographic maps are selected as representatives, and their factors that affect

human’s spatial similarity judgments are addressed, respectively.

• Building

– Area

– Height

– The number of stories

– Population

– Roof type: Whether the building is waterproof or sunscreen?

– Construction material: If the building is made from wood or concrete, etc.?

– Owner

– Price

– Status: Whether the building is in construction, in maintenance, or in use?

– Construction time

• Lake

– Location

– Area

– Depth

– Perimeter

– Status: Whether it is a seasonal or a perennial lake?

Table 3.3 Examples of individual areal objects on maps

Symbols Features Symbols Features

Woodland Gravel beach

Low brush Tailings ponds

Planted vegetation Perennial river

Cultivated vines Swamp

Dense, tropical trees Rice field

Sand Perennial lake

Intricate surface Dry lake
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– Navigability

– Origination: Whether the lake is formed by remnants of glaciers, blocked

rivers, or rivers that fill natural basins?

– Bottom status: Whether the lake is covered by mud?

• Forest

– Area

– Perimeter

– Species

– History

– Owner

– Price

– Mean height of the trees

– Precipitation

– Temperature

3.4.2 Factors for Object Groups

To judge similarity relations at the level of object groups (or scenes, though slightly

different), people usually pay more attention to the relations between the objects in

the groups but ignore the geometric attributes and thematic attributes of individual

objects (Li and Fonseca 2006). Generally, three types of spatial relations (i.e.,

topological relations, direction relations, and metric distance relations and one

type of nonspatial relations (i.e., attributes) are taken into account and regarded

as the crucial factors that affect human’s spatial similarity judgments if two object

groups are compared.

3.4.2.1 Topological Relations

Topological relations often capture the configuration of an object group—topology

matters, metric refines (Egenhofer and Mark 1995b). “Topological relations are

attractive in similarity cognition as they are largely immaterial to subtle geometric

variations and when they get changed usually significant alterations occur. If

several of such changes occur, a chain reaction gets triggered” (Bruns and

Egenhofer 1996). Initially two relations are slightly changed, or still just one. The

new scene is still similar. After more and more changes occur, the new scene

becomes less and less similar. In this sense, the change is gradual, from equivalent

to high similar, then to less and less similar.

The concept of “gradual change” has been used to quantify similarity of topo-

logical relations by many researchers in recent years (Egenhofer and Al-Taha 1992;

Egenhofer and Mark 1995a, b; Bruns and Egenhofer 1996; Li and Fonseca 2006).
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Figure 3.9 shows the gradual changes of topological relations, discriminating

among pairs of objects.

Nevertheless, Fig. 3.9 is not systematic enough to quantitatively express topo-

logical relations, and there are some errors in the costs. For example, in Fig. 3.9a,

there are three different answers in five cases for the cost direct and indirect from

“overlap” to “equal.”

1. Overlap!Equal, the cost is 3

2. Overlap! contain! equal, the cost is 5

3. Overlap! contain & Meet! equal, the cost is 5

4. Overlap! contain & Meet!Contain! equal, the cost is 6

5. Overlap!Contain! contain & Meet! equal, the cost is 6

The three answers are ambiguous. On contrary, they should be intuitively equal

in human’s cognition.

To correct this error, some improvements have been made, and a refined and

systematic version of the transformation costs is proposed here (Fig. 3.10). The

main idea of the improvements is as follows:

1. Transformations between “disjoint” and “meet” and between “intersect or over-

lap” and “equal” are viewed as major changes; thus, the cost on each of their

edges is 4. While the other changes are minor changes and each of their costs

should be less than 4.

2. The cost of a direct transformation between any two topological relations should

be equal to that of an indirect transformation. In other words, the sum of the costs

between specified two topological relations should be identical no matter which

route is selected.

To ensure the nationality of gradual changes of topological relations, the

improvements inherit the basic principles of gradual changes of topological rela-

tions proposed and tested by Bruns and Egenhofer (1996); however, the improve-

ments make the costs between any two relations are equal. This is obviously

coincident with human’s spatial cognition. For example, in Fig. 3.10, the transfor-

mation cost from “overlap” direct or indirect to “equal” is always equal to 4.

This improved theory of “gradual changes of topological relations” will be used

in defining topological similarity relations between object groups in Chap. 4.

The values are listed in Table 3.4. Using this table, the costs between any two

topological relations can be obtained.

3.4.2.2 Direction Relations

Two methods have been addressed in previous work, i.e., the 16-direction system

proposed by Bruns and Egenhofer (1996) and the 9-direction system proposed by Li

and Fonseca. Actually, it is not appropriate to specify a direction system before the

resolution/scale of the discussed spatial similarity relations are decided, because

spatial similarity relations may also be described at different levels of detail, which
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Fig. 3.9 Gradual changes of topological relations. The digit on the edge denotes the

transformation cost or the weight between the two adjacent topological relations. (a) Two poly-

gons; (b) a polygon and a line; (c) a polygon and a point; (d) two lines; (e) two points; and (f) a line

and a point



usually cannot be well expressed using a specified, unchangeable resolution/scale.

Indeed, at least three direction systems are usually used in our daily life, i.e.,

4-direction system, 8-direction system, and 16-direction system (Fig. 3.11).

Because there is an additional “same” direction (Yan et al. 2006) in each of the

direction systems, they are sometimes called 5/9/17-direction system, instead.

Disjoint

Meet

Intersect, or
Overlap 

Contain & Meet Contain

Equal

4

2

41 2

3 2

1

Substantial 
change

Fig. 3.10 Transformation costs (or weights) in topological relations

Table 3.4 Costs in topological relation transformations

Disjoint Meet

Overlap/

intersect Contain and meet Contain Equal

Disjoint 0 4 6 7 8 10

Meet 4 0 2 3 4 6

Overlap/intersect 6 2 0 1 2 4

Contain and meet 7 3 1 0 1 3

Contain 8 4 2 1 0 2

Equal 10 6 4 3 2 0

Notes: Bold italic underlined digits, such as “8”, are calculated using the other digits
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A number of rules are used to quantify the gradual change of direction relations

in each of the direction systems. The 8-direction system is taken as an example to

facilitate the following discussion (in Fig. 3.11b).

• The cost between any two neighboring directions is 1. For example, the cost

between N and NE is 1, because they are neighboring.

• The cost between any two directions is the sum of the cost in the gradual

transformation from the one direction to the other direction. But this value

should not be more than half of the total direction number of the direction

system. For example, the cost between W and E is 4 (Table 3.5), because it

covers the route W!NW!N!NE!E, which takes four steps; while the

cost between W and SE is 3 but not 5, because route W! SW! S! SE is

shorter than route W!NW!N!NE!E, and the later takes five steps which

is greater than half of the total direction numbers of the direction system (i.e., 4).

3.4.2.3 Metric Distance Relations

Qualitative distance relations are difficult to define for general spatial objects,

because the terms and concepts used for describing qualitative distance are quite

subjective and sensitive to the scale of the spatial data being considered. Bruns and

Egenhofer (1996) use four terms “zero,” “very close,” “close,” and “far” to express

the order of such relations, while Li and Fonseca (2006) use “equal,” “near,”

“medium,” and “far,” instead. This book adopts the later in qualitative distances

(Fig. 3.12) and defines that the transformation cost between any two neighboring

distances is 1 (i.e., between equal and near, between near and medium, and between

medium and far).

W

a

b

c
N

S
E

E

S

W

N
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NW NE

SE

N
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W E
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SW
SE
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SSE
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NEE

NNENNW

NWW

SWW

SSW

Fig. 3.11 Three different direction systems
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The core problem of this metric distance relation is to define a criterion that can

transform quantitative distance relations into qualitative ones. They can be defined

after a couple of prerequisites are defined.

Above all, “directly adjacent” between two objects need to be defined.

Given that there are two objects A and B in a scene, C represents an arbitrary

object in the scene. The conclusion “A and B are directly adjacent” can be made, if

and only if no object intersects with an arbitrary line segment L that direct connects

the boundaries of A and B. Of course,Lhas no other intersection withA andB except

for its starting point and the end point at the two boundaries.

An example is shown in Fig. 3.13 to demonstrate the concept “direct adjacent.”

Near

Equal

Medium

Far1

1

1

Fig. 3.12 Qualitative

descriptions of distance

relations

Table 3.5 Costs in

direction relation

transformations in the

8-direction system

N NE E SE S SW W NW

N 0 1 2 3 4 3 2 1

NE 1 0 1 2 3 4 3 2

E 2 1 0 1 2 3 4 3

SE 3 2 1 0 1 2 3 4

S 4 3 2 1 0 1 2 3

SW 3 4 3 2 1 0 1 2

W 2 3 4 3 2 1 0 1

NW 1 2 3 4 3 2 1 0

B
A

C

D

E

Fig. 3.13 Concept of

“directly adjacent”
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Then the mean distance between directly adjacent objects can be calculated,

supposing that there are totally N pairs of objects that are directly adjacent.

D ¼
Xn

i¼1

di
N

ð3:23Þ

where D is the mean distance and di is the distance between the ith pair of objects.

The four terms in qualitative description of distance relations may be given,

based on the above two definitions, supposing that the distance between A and B is

dAB.
Equal: ifA andB are topologically equal, or intersected/overlap, or dAB ¼ 0, they

are “equal.”

Near: if dAB � D, A and B are “near.”

Medium: if D < dAB � 2D, A and B are “medium.”

Far: if dAB > 2D, A and B are “far.”

To quantitatively express the qualitative distance means expressing each of the

four terms using corresponding digital values. The values are usually obtained by

psychological experiments.

3.4.2.4 Attributes

Attribute is a similarity factor that measures the internal attribute of an object group

that consists of two or more spatial objects. The attributes are composed of two

parts, i.e., geometric attributes and thematic attributes, and each part includes many

attributes. The attributes are either quantitative (usually expressed using digital

values) or qualitative (usually expressed using descriptive words or terms).

Suppose that there are two object groups A and B, each of them have n attributes.
Their overall attribute similarity may be expressed as:

Simattribite A;Bð Þ ¼
Xn

i¼1

wiSim AttrituteAi ;AttributeBi
� � ð3:24Þ

whereAttributeAi is the ith attribute ofA, AttributeBi is the ith attribute ofB, andwi is

the weight of the ith attribute.

3.4.3 Psychological Tests for Determining the Weights
of the Factors

Although the factors that affect human’s spatial similarity judgments have been

presented, and the idea for quantifying the factors has also been addressed in the
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previous sections, a crucial problem regarding the factors has not been solved yet,

i.e., the weights of the factors are unknown. Because the weights depend on

human’s cognition, psychological experiments are employed to determine the

weights here. The experiments are divided into two parts: Experiment 1 is for

object groups, and Experiment 2 is for individual objects.

The following gives a detailed description of the experiments.

• Basic information of the test

– Time: October 12, 2013

– Place: Lanzhou Jiaotong University, P.R. China

– Subjects: 52 students at undergraduate or graduate level, 24 female and

28 male. Their age ranges from 17 to 27. All subjects are majoring in or

have majored in geography and related communities, including 27 in geo-

graphic information science, 17 in cartography, 2 in surveying, 3 in human

geography, and 3 in physical geography

It is not easy to recruit enough subjects. To carry out this task, an adver-

tisement was posted in the webpage of Lanzhou Jiaotong University, China,

about 20 days before the psychological tests. Every subject is required to

register his/her basic information (e.g., name, age, gender, major/career, and

contact information) in a table

• Goal of the test

– To get the weights of topological relations, direction relations, distance

relations, and attributes of object groups in human’s spatial similarity

judgments

– To get the weights of the attributes (geometric attributes and thematic attri-

butes) of individual spatial objects in human’s spatial similarity judgments

• Steps in the two experiments

– Step 1: Select the factors that need to be tested and design the structure of the

answer sheet. In Experiment 1, because it is for object groups, topological

relations, direction relations, distance relations, and attributes need to be

considered. In Experiment 2, because it is for individual objects, only attri-

butes need to be considered

– Step 2: Systematically design the samples that are used in the experiments.

There are totally six types of object group in the two-dimensional space, i.e.,

point–point, point–line, point–polygon, line–line, line–polygon, and

polygon–polygon; therefore, six samples corresponding to the six types of

object group are constructed. In each sample four changes are designed to

show the corresponding four factors (i.e., topological relation, direction

relation, distance relation, and attribute). The samples are shown in

Figs. 3.14 and 3.16 to Fig. 3.20

– Step 3: Distribute the samples to the subjects and explain the regulations to

them
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Each of the subjects is invited, respectively, to participate in the test. The

subject is given one of the samples and an answer sheet; then the subjects are

told that the four transformations in the sample; last, they are required to

compare the original graph with each of the four transformations, describe

their similarity degree using a decimal, and ensure that the sum of the four

decimal is equal to 1

– Step 4: Collect the test sheets, analyze the data

• Experiment 1: for object groups

Figure 3.14 illustrates the three transformations in topological relations, direc-

tion relations, distance relations, and attributes, respectively. The subjects are

required to answer the following questions on the answer sheet according to the

instructions (see Fig. 3.15).

The same answer sheets are used in the other samples of Experiment 1.

Because the three relations may exist between six kinds of object pairs, i.e.,

polygon–polygon, polygon–line, polygon–point, line–line, line–point, and point–

point, the other five kinds of examples are also used in the experiments (from

Figs. 3.16, 3.17, 3.18, 3.19 and 3.20).

A
B

B
A

a b

d e

c

A
B

B

A

B
A

Fig. 3.14 Factors for polygon–polygon groups in similarity judgments. (a) Original object group

with two objects A andB; (b) topological transformation; (c) direction transformation; (d) distance

transformation; and (e) attribute transformation

Please use a decimal to denote the weights of topological relations, direction relations, 
distance relations, and attributes after evaluating corresponding similarity changes in 
this example. The sum of the four weights should be 1. 

(1) Weight of the topological relations ____________

(2) Weight of the direction relations______________

(3) Weight of the distance relations ______________

(4) Weight of the attributes ______________

Fig. 3.15 Answer sheet used in Experiment 1
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a b

d e

c

Fig. 3.16 Factors for polygon–line groups in similarity judgments. (a) Original object group;

(b) topological transformation; (c) direction transformation; (d) distance transformation; and

(e) attribute transformation

a b

d
e

c

Fig. 3.17 Factors for polygon–point groups in similarity judgments. (a) Original object group;

(b) topological transformation; (c) direction transformation; (d) distance transformation; and

(e) attribute transformation

a

d
e

b c

Fig. 3.18 Factors for line–line groups in similarity judgments. (a) Original object group;

(b) topological transformation; (c) direction transformation; (d) distance transformation; and

(e) attribute transformation



The answers to Experiment 1 are listed in Table 3.6, by which the mean value of

each weight can be obtained.

wtopological ¼
X6

1

w topological
i

52� 6ð Þ ¼ 0:22 ð3:25Þ

wdirection ¼
X6

1

wdirection
i

52� 6ð Þ ¼ 0:25 ð3:26Þ

wdistance ¼
X6

1

wdistance
i

52� 6ð Þ ¼ 0:31 ð3:27Þ

wattribute ¼
X6

1

w attribute
i

52� 6ð Þ ¼ 0:22 ð3:28Þ

where w topological
i , wdirection

i , wdistance
i , and w attribute

i correspond to the data listed in

Table 3.6.

a

d
e

b c

Fig. 3.19 Factors for line–point groups in similarity judgments. (a) Original object group;

(b) topological transformation; (c) direction transformation; (d) distance transformation; and

(e) attribute transformation

a

d e

b c

Fig. 3.20 Factors for point–point groups in similarity judgments. (a) Original object group;

(b) topological transformation; (c) direction transformation; (d) distance transformation; and

(e) attribute transformation
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The standard deviations of the four weights obtained from the 52 subjects are

listed in Table 3.6. Accordingly, the standard deviations of the four weights for per

subject are 1.07/52¼ 0.021, 1.08/52¼ 0.021, 0.44/52¼ 0.008, 1.01/52¼ 0.019.

The percentages of the four standard deviations in the corresponding weights are

0.021/0.22¼ 9.5 %, 0.021/0.25¼ 8.4 %, 0.008/0.31¼ 2.6 %, 0.019/0.22¼ 8.6 %.

This shows that the subjects’ recognition to the four weights is stable.

• Experiment 2: for individual objects

Attributes of spatial objects consist of geometric attributes and thematic attri-

butes. There are many geometric attributes and numerous of that of the thematic

attributes in map spaces, and the attributes that are used for similarity judgments

change on different occasions; thus it is impossible to get the weights of all

attributes that can be popularly accepted. To simplify this problem, only geometric

attributes and thematic attributes are differentiated, and therefore two weights

corresponding to each of them are considered.

Three categories of individual spatial objects (i.e., points, lines, and polygons)

are enumerated in the following three samples (Figs. 3.21, 3.22, and 3.23) and the

answer sheet (Fig. 3.24) together with the samples is presented to the subjects. Two

transformations are shown in each of the three samples.

Table 3.6 Weights of the four factors of the object groups

Total weights obtained from the 52 subjects

Topological Direction Distance Attribute

Figure 3.15 13.00 10.92 16.12 11.96

Figure 3.16 13.00 11.44 16.64 10.92

Figure 3.17 10.92 12.48 15.60 13.00

Figure 3.18 11.44 13.52 16.64 10.40

Figure 3.19 10.92 13.00 16.12 11.96

Figure 3.20 10.92 15.60 15.60 9.88

Standard deviation 1.08 0.44 1.01

A

a b c

A A

Fig. 3.21 Factors for an individual areal object in similarity judgments. (a) Original object;

(b) change of geometric attributes; and (c) change of thematic attributes

a b c

Fig. 3.22 Factors for an individual point object in similarity judgments. (a) Original object;

(b) change of geometric attributes; and (c) change of thematic attributes
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The answers of the experiment 2 are listed in Table 3.7, by which the mean value

of each weight can be obtained.

wGeometric ¼
X3

1

wGeometric
i

52� 3ð Þ ¼ 0:53 ð3:29Þ

wThematic ¼
X3

1

wThematic
i

52� 3ð Þ ¼ 0:47 ð3:30Þ

where the values of wGeometric
i and wThematic

i are listed in Table 3.7.

The standard deviations of the two weights obtained from the 52 subjects are

listed in Table 3.7. Accordingly, the standard deviations of the two weights for per

subject are 3.309/52¼ 0.064, 3.309/52¼ 0.064. The percentages of the two stan-

dard deviations in the corresponding weights are 0.064/0.53¼ 12.1 %, 0.064/

0.47¼ 13.6 %. This shows that the subjects’ recognition to the two weights is

stable.

a b c

Fig. 3.23 Factors for an individual linear object in similarity judgments. (a) Original object;

(b) change of geometric attributes; and (c) change of thematic attributes

Please use a decimal to denote the weights of the geometric attributes and the 
thematic attributes after evaluating corresponding similarity changes in this example. 
The sum of the two weights should be 1. 

(1) Weight of the geometric attributes______________
(2) Weight of the thematic attributes______________

Fig. 3.24 Answer sheet used in Experiment 1

Table 3.7 Weights of geometric and thematic attributes from the 52 subjects

Geometric attributes Thematic attributes

Figure 3.21 27.56 24.44

Figure 3.22 32.24 19.76

Figure 3.23 22.36 29.64

Standard deviation 3.309 3.309
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3.5 Classification

Classification of spatial similarity relations not only presents the relations of every

aspect of spatial similarity relations, but also helps to organize relevant research

work clearly. This section addresses the classification of spatial similarity relations

in the geographic space and on line maps.

3.5.1 A Classification System of Spatial Similarity Relations
in Geographic Spaces

As far as similarity in geography is concerned, it may be classified into two

categories: similarity in real geographic spaces and similarity in analog geographic

spaces (Fig. 3.25), taking geographic spaces as the criterion in the classification.

This study is only interested in similarity in map spaces; hence stimulated geo-

graphic spaces are further classified into “similarity in higher dimensional spaces,”

“similarity in two-dimensional spaces,” and “similarity in lower dimensional

spaces” according to their dimensions. Similarity in two-dimensional spaces com-

prises “similarity of images,” “similarity of line maps,” and “similarity of the

mixture of images and line maps.”

Similarity in multiscale map spaces belongs to the similarity of line maps. It

needs to be classified further.

Similarity in geographic spaces

Similarity in real geographic spaces Similarity in stimulated geographic spaces

Different geographic spaces

Similarity in higher 
dimensional spaces

Similarity in two 
dimensional spaces

Similarity in lower 
dimensional spaces

Different dimensions

Similarity of
images

Similarity of the mixture of
images and line maps

Similarity of line
maps

Different components

Fig. 3.25 A classification system of similarity in geographic spaces
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3.5.2 A Classification System of Spatial Similarity Relations
on Line Maps

Figure 3.26 presents a classification system for spatial similarity relations on line

maps.

First, spatial similarity relations on line maps can be classified into similarity in

same scale map spaces and similarity in multiscale (different) scale map spaces.

The former is called horizontal similarity relations, considering the similarity

between objects at same map scale; the latter is called perpendicular similarity

relations (Yan 2010), focusing on the similarity of objects at different map scales,

which is the emphasis of this study.

Second, similarity in multiscale scale map spaces may be evaluated either

between individual objects or between object groups.

Figure 3.27 presents an example to demonstrate this concept: a cluster of land

parcel and an individual land parcel on the map at scale 1:10 K is generalized to

generate the graphs at scales 1:25 and 1:50 K. That what spatial similarity relations

are changed between the individual parcels and between the original parcel group

and the generalized counterparts is of great interests to many cartographers.

similarity on line maps

similarity in same scale map spaces similarity in multi-scale (or different) 
scale map spaces

Different map scales

Similarity between
individual objects

Similarity between
individual objects

Similarity between
object groups

Similarity between
object groups

Similarity in 
thematic attributes

Similarity in 
geometric attributes

Direction 
similarity

Topological 
similarity

Spatial 
similarity

Non-spatial 
similarity

Distance 
similarity

Fig. 3.26 A classification system of similarity on line maps
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Third, suppose that an individual object A is at scale SA and another individual

objectB is at scale SB and SA 6¼ SB, similarity relations betweenA andB are a kind of

similarity between individual objects in multiscale map spaces. Such similarity is

evaluated by both the geometric attributes and thematic attributes.

IfSB < SA andA andB are different symbols of the same object (see Fig. 3.27, for

example), the spatial similarity relation between them is of significance to auto-

mated map generalization.

Last, spatial similarity relations between object groups in multiscale map spaces

include either different object groups or different symbols of the same object groups at

different scales. To evaluate such kind of spatial similarity relations, both nonspatial

similarity (including geometric and thematic attributes) and spatial similarity (includ-

ing topological, directional, and distance relations) should be taken into account.

3.6 Chapter Summary

This chapter addresses the fundamental issues of spatial similarity relations.

It first proposes the definitions of similarity relation, spatial similarity relation,

and spatial similarity relation in multiscale map spaces.

Second, it addresses the features of spatial similarity relations, including equal-

ity, finiteness, minimality, auto-similarity, symmetry, nontransitivity, weak sym-

metry, asymmetry, triangle inequality, and scale dependence.

1:10K

1:25K

1:50KMap scale

Similarity between 

object groups

Similarity between 

individual objects

Fig. 3.27 An example of similarity in multiscale scale map spaces
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Third, it proposes the factors that affect human’s direction judgments. These

factors include the ones for individual objects and the ones for object groups. The

psychological experiments are designed to get the weights of the factors in spatial

similarity judgments.

Last, a classification system for spatial similarity is presented.
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Chapter 4

Models for Calculating Spatial Similarity

Degrees in Multiscale Map Spaces

It is a challenge work to propose new models for calculating spatial similarity

degrees between objects in multiscale map spaces. In this chapter, ten new models

are proposed. Three models are for individual objects and the other seven models

are for object groups. To be exact, the former comprises the models for individual

point objects, individual linear objects, and individual areal objects, and the latter

comprises the models for point clouds, parallel line clusters, intersected line

networks, tree-like networks, discrete polygon groups, connected polygon groups,

and maps.

4.1 Models for Individual Objects

As proposed in Chap. 3, two factors that affect human’s spatial similarity judgments

should be taken into consideration in constructing the models for individual objects,

i.e., geometric attributes and thematic attributes.

4.1.1 Model for Individual Point Objects

In map generalization, an individual point object cannot be simplified, which means

its geometric attributes and thematic attributes cannot be changed on the map. The

operations that can be executed to it are “deletion” or “retaining” (Fig. 4.1). Thus,

the similarity degree of a point object A at scales l and m can be calculated using the

following formula, given that l>m.
Sim(Al,Am)¼ 0, if A is deleted from the map at scale m; else,

Sim Al;Amð Þ ¼ 1: ð4:1Þ
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H. Yan, J. Li, Spatial Similarity Relations in Multi-scale Map Spaces,
DOI 10.1007/978-3-319-09743-5_4

81

http://dx.doi.org/10.1007/978-3-319-09743-5_3


4.1.2 Model for Individual Linear Objects

Measuring curve similarity is a fundamental problem in many application fields,

including graphics, computer vision, cartography, and geographic information

science (Alt and Godau 1995; Alt et al. 1998; Yan 2010). An individual linear

object on the map may be a line segment (e.g., a short trail), a curve (e.g., a zigzag

country road), or a closed curve (e.g., a boundary of a province or a country, or a

closed contour on a map). When it is generalized, its geometric attributes may be

changed (e.g., removal of curvatures from a zigzag contour line) and its thematic

attributes can also be modified (e.g., change of river grade). Thus, a generic model

that takes into account both geometric attributes and thematic attributes of an

individual linear object may be constructed, based on Formulae 3.9 and 3.10,

given that the original map scale is k and the resulting map scale is m.

Sim Ak;Amð Þ ¼ wthematicSim
thematic
Ak ,Am

þ wgeometricSim
geometric
Ak ,Am

: ð4:2Þ

where wthematic is the weight of thematic attributes of the individual linear object,

wgeometric is the weight of geometric attributes of the individual linear object,

Simthematic
Ak ,Am

is the spatial similarity degree of object A at scale k and scale m, and

Sim
geometric
Ak ,Am

is the spatial similarity degree of object A at scale k and scale m.

Formula 4.2 can be simplified to get Formula 4.3, because cartographers pay

most of their attention to the geometric attributes of individual linear objects and

ignore their thematic information. This conclusion is also supported by the previous

psychological experiments in Chap. 3.

Sim Ak;Amð Þ ¼ Sim
geometric
Ak ,Am

ð4:3Þ

4.1.2.1 A Formula for Calculating Shape Similarity Between Lines

Shape is viewed as the most crucial, sometimes the only, geometric factor for

describing planar curves (Douglas and Peucker 1973; Mokhtarian and Mackworth

1992). This is also the case in multiscale representation of individual lines in map

spaces. Therefore, similarity of shape of an individual line at two scales is an

Delete

Retain

A

Aa

b

c

Fig. 4.1 The individual

pavilion A can be retained

or deleted

82 4 Models for Calculating Spatial Similarity Degrees in Multiscale Map Spaces

http://dx.doi.org/10.1007/978-3-319-09743-5_3#Equ9
http://dx.doi.org/10.1007/978-3-319-09743-5_3#Equ10
http://dx.doi.org/10.1007/978-3-319-09743-5_3


appropriate substitution for the similarity of the line at two of the scales. It can be

expressed as

Sim Ak;Amð Þ ¼ Sim
shape
Ak ,Am

: ð4:4Þ

Hence, the following will propose a method for calculating similarity degrees of the

shapes of individual lines in multiscale map spaces based on the concept “coinci-

dence summary” used to assess the similarity between maps (Berry 1993). “Coin-

cidence summary” used the percentage of the map area in agreement

(or disagreement) between the two maps to indicate the overall similarity. In vector

analysis maps are intersected to generate the areas of the son-and-daughter poly-

gons to summarize the type of disagreement. In grid-based analysis the process

simply involves noting the number of grid cells falling into each category

combination.

Based on coincidence summary and human’s intuition in similarity judgments,

similarity between two lines on the map can be evaluated by comparing the

common length of the two lines. After overlapping the two lines at two different

scales and matching their corresponding endpoints, their common length may be

easily calculated (Fig. 4.2), and their similarity degree can also be obtained.

Sim
shape
Ak ,Am

¼ l

L
ð4:5Þ

where L is the length of the original line at scale m, and l is the common length of

the line at scale m and the simplified line at scale k.
Formula 4.5 can work well in many cases. For example, in Fig. 4.2, the three

similarity degrees are

Sim
shape
Ak ,Am

¼ l

L
¼ 1:00

Sim
shape
Bk ,Bm

¼ l

L
¼ 0:00

Sim
shape
Ck ,Cm

¼ l

L
¼ 0:32

However, it sometimes gives inappropriate results. For example, in Fig. 4.2b1–b3,

the similarity degree of line B at scale m and scale k is Simshape
Bk ,Bm

¼ l
L ¼ 0, because

the length of the intersection of the two lines is 0. This conclusion is obviously

discrepant with human’s spatial cognition in daily life.
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4.1.2.2 Improvement of the Formula

To compensate for the shortcoming, an improved formula is proposed here, taking

into account the distance between the two lines.

Sim
shape
Ak ,Am

¼
Xn

i¼1

wili=L ð4:6Þ

where L is the length of the original line, n is the number of the line segments

contained in the resulting line, li is the length of the ith line segment of the resulting

line, and wi is the weight of li, which can be calculated by

wi ¼ 1� di li
Xn

j¼1

dj lj

ð4:7Þ

where n, li, and lj are the same as that in Formula 4.6; di is the mean distance

between li and the original line, and it is the distance from the midpoint of li to the

original line.

B

A

C

A

B

C

a1 a2 a3

b1 b2 b3

c1 c2 c3

Fig. 4.2 Overlap of an individual line and its generalized counterpart. (a1) Original line at scale

m; (a2) at scale k; (a3) overlap; (b1) original line at scale m; (b2) at scale k; (b3) overlap; (c1)
original line at scale m; (c2) at scale k; (c3) overlap
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Using Formula 4.6, the similarity degrees in Fig. 4.2 can also be calculated.

Sim
shape
Ak ,Am

¼
Xn

i¼1

wili=L ¼ 1:00

Sim
shape
Bk ,Bm

¼
Xn

i¼1

wili=L ¼ 0:78

Sim
shape
Ck ,Cm

¼
Xn

i¼1

wili=L ¼ 0:55

These results are obviously more reasonable.

4.1.3 Model for Individual Areal Objects

Individual areal objects refer to individual polygons. Many objects on maps are

represented using polygons, such as settlements, waterbodies, forest, etc. If the

scale of these maps becomes smaller, the boundaries of the polygons need to be

simplified so that they can be adaptive to the new map scale. As far as the

generalization of an individual polygon is concerned, cartographers usually need

to consider the consistency of the shape of the polygon at different scales and ignore

the other attributes including the thematic attributes and the other geometric

attributes (Douglas and Peucker 1973); thus, similarity of shape of individual

polygons at different scales can be viewed as the similarity of the polygon at

different scales.

The similarity degree of shape of an arbitrary individual polygon P at scale k and
scale m can be simply calculated by

Sim
shape
Pk ,Pm

¼ 1� Abs APk
� APm

j j
APk

ð4:8Þ

where APk
is the area of polygon P at scale k and APm

is the area of polygon P at

scale m.

It should be noted that polygons discussed in this study are simple polygons. A
polygon is called a simple polygon if it contains no holes and its nonadjacent
edges do not intersect with each other.

4.2 Models for Object Groups

It has been proposed in Chap. 3 that four factors affecting human’s spatial similarity

judgments regarding object groups need to be taken into account, i.e., topological

relations, direction relations, distance relations, and attribute relations. The
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following sections address the models for calculating similarity degrees of various

object groups in multiscale map spaces, mainly considering the above four factors.

The problem that is going to be addressed can be described as follows:

Suppose that Al is an object group consisting of Nl objects on the map at scale l, Am

is a generalized object group consisting of Nm objects at scale m. The property
set of Al and Am is P¼ {PTopological,PDirection,PDistance,PAttribute}, and the
corresponding weight set is W¼ {WTopological,WDirection,WDistance,WAttribute}. It
is required to calculate SimAl,Am

.

According to Formula 3.10, Sim Al;Amð Þ ¼
X4

i¼1

wiSim
Pi

Al,Am
.

where wi2W and Pi2P; i¼ 1, 2, 3, 4.

The value of wi2W is obtained by the psychological experiments in Chap. 3.

Therefore, if Sim
PTopological

Al,Am
, SimPDirection

Al,Am
, SimPDistance

Al,Am
, and SimPAttribute

Al,Am
in the new models

can be calculated, Sim(Al,Am) can be obtained. Thus, the following sections focus

on the calculation of Sim
PTopological

Al,Am
, SimPDirection

Al,Am
, SimPDistance

Al,Am , and SimPAttribute

Al,Am
of object

groups at scales l and m.

4.2.1 Model for Point Clouds

Many natural and man-made features appear on maps like point clouds. For

example, the control points in Fig. 4.3 can be viewed as point clouds when they

are displayed on a separated map layer. If the map is reduced to a smaller scale one,

the point clouds need to be simplified so that they are legible, which means some

less important points should be deleted from the original map. The control points in

Fig. 4.3b are generalized by the map in Fig. 4.3a, which shows that the point with

greater weight values has more probabilities to be retained on the generalized map.

4.2.1.1 Similarity in Topological Relations

Above all, the definition of topological relation among points is given here, using

the concept of the k-order Voronoi neighbor.

1. Point P is the 0-order Voronoi neighbor of itself
2. if the Voronoi polygon of point Q shares a common edge with that of a (k�1)-

order Voronoi neighbor of P, Q is defined as a k-order Voronoi neighbor of
P. Where, k¼ 1,2,. . .

3. 1-order Voronoi neighbors of Point P are called the topological neighbors of P

Figure 4.4 shows 1-order to 5-order Voronoi neighbors of point P. It is easy to

know that point P totally has seven 1-order Voronoi neighbors.
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The following two rules are usually obeyed by cartographers to guarantee that

topological relations among points can be preserved well in the process of map

generalization.

1. The deletion of adjacent points is generally unacceptable by cartographers in

practice if the change of map scale does not have a large span (e.g., from 1:10 to

1:25 K). For example, in Fig. 4.4, it is not unsatisfactory to delete points P along

with any of its neighbors when the map is generalized from 1:10 to 1:25 K.

2. In point cloud generalization, simultaneous deletion of a point and some of its

1-order neighbors possibly makes those distant points become neighbors, which

leads to distant things abruptly becoming related. In theory, this operation is

Fig. 4.3 An example of point clouds and generalized point clouds. (a) Control points of a region

on the map can be viewed as point clouds when they are displayed on a separated map layer; and

(b) generalized control points

4.2 Models for Object Groups 87



contrary to the First Law of Geography: “everything is related to everything

else, but near things are more related than distant things” (Tobler 1970, p. 234).

For example, in Fig. 4.5, if point P and its 1-order neighbors P1 and P2 are

deleted, points P3 and P4 (they are 3-order neighbors of each other) will be

1-order neighbors and abruptly become closely related; whereas, if only point

P is deleted, points P1 and P4, 2-order neighbors of each other, will become

1-order neighbors, which is obviously more natural and acceptable by map

readers.

The similarity degree in topological relations of a point cloud at two map scales

can be defined as:

Sim
PTopological

Al,Am
¼

XNm

i¼1

ni
m

XNm

i¼1

ni
l

ð4:9Þ

where Nm is the number of points retained on the map at scalem; for the ith point on

the map at scale m, nil is the number of its 1-order Voronoi neighbors on the map at

Fig. 4.4 The definition of K-order Voronoi neighbors. The number n¼ 1, 2, 3, 4, 5 in each

Voronoi polygon denotes that the corresponding point is an n-order neighbor of point P
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scale l; and for the ith point on the map at scale m, nim is the number of common 1-

order Voronoi neighbors of the ith point on the map at scale m and on the map at

scale l.

4.2.1.2 Similarity in Direction Relations

Point objects on maps are seldommoved before and after map generalization, so the

change of their direction relations can be ignored. In other words, WDirection can be

viewed as equal to zero, thus its similarity degree does not need to be further

discussed.

4.2.1.3 Similarity in Metric Distance Relations

Relative local density is a metric distance measure to evaluate the density variations

between points before and after generalization. The relative local density of the ith
point is defined as:

ri ¼ Ri

Xn

k¼1

Rk

ð4:10Þ

where ri is the relative local density of the ith point, nis the total number of the

points, and Ri is the absolute local density of the ith point which is defined as:

Ri ¼ 1

Ai
ð4:11Þ

where Ai is the area of the Voronoi polygon containing the ith point.

This definition for absolute local density is a variation of the one given by

Sadahiro (1997, p. 52) ‘a ratio of the local density at the certain location to the

summation of local density over the region’ while the definition here is the inverse

Fig. 4.5 The principles of

point deletion
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of the area of the Voronoi polygon of the point. The improvement of the latter

definition compared with the former is that the latter can give absolute (and relative)

local density of every point while the former cannot. This makes the comparison of

density changes point to point before and after generalization possible.

Based on the definition of relative local density, similarity degrees of a point

cloud at different scales in metric distance relations can be given as follows:

Suppose that Rl is an array for recording all of the values of the relative density

on the map at scale l; the ith element of Rl is ri
l. Rm is an array for recording all of

the values of the relative density on the map at scale m; the ith element of Rm is ri
m.

To compare the change of relative local density point by point on the two maps, the

following strategy is employed:

1. Check Rl, and delete ri
l if the ith point on the map at scale l has been deleted.

2. Sort Rl in increasing order and the elements in Rm are arranged according to the

sequences of the values of the corresponding points in Rl.

3. To quantify to what extent the two arrays of relative local density are similar, the

monotonicity ratio of Rl and Rm is defined:

SimPDistance

Al,Am
¼ 1� na

Nm
ð4:12Þ

where Nm is the number of points on the map at scale m na is the number of the

monotonically abnormal elements in Rm (if the ith element is larger than the (i
+ 1)th in Rm, the ith element is termed monotonically abnormal).

It is obvious that the larger SimPDistance

Al,Am
, the better the relative local density is

preserved.

4.2.1.4 Similarity in Attributes

Importance value is usually used as a comprehensive index to evaluate the change

of importance values of a point cloud over the whole region. Mean importance

value is defined as

I ¼

Xn

i¼1

Ii

n
ð4:13Þ

where I is the mean importance value, Ii is the importance value of the ith point, and
n is the number of points in the point cloud.

The similarity degree of a point cloud in attributes at two different scales is

SimPAttribute

Al,Am
¼ abs Il � Im

�� ��
Il

ð4:14Þ
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where Il is the mean importance value of the point clouds at scale l, Im is the mean

importance value of the point clouds at scale m, and abs Il � Im
�� �� is a mathematic

absolute value.

4.2.1.5 Resulting Formula

Sim Al;Amð Þ ¼ WTopological

w
Sim

PTopological

Al,Am
þWDistance

w
SimPDistance

Al,Am

þWAttribute

w
SimPAttribute

Al,Am
ð4:15Þ

where w¼WTopological +WDistance +WAttribute.

4.2.2 Model for Parallel Line Clusters

Here, a parallel line cluster specifically refers to contour lines. Apparently, contour

lines are approximately parallel curves on maps (Fig. 4.6).

Fig. 4.6 Contours are approximately parallel on the map
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4.2.2.1 Similarity in Topological Relations

There are totally two types of topological relations between two contour lines, i.e.,

topologically neighboring and topologically contained. If the elevations of two

topologically adjacent contour lines are equal, they are called topologically neigh-

boring, and they are “brothers” of each other; otherwise, they are called topolog-

ically contained. The contained one calls the other one “father” and otherwise

“son.” For example, in Fig. 4.7a, the three index contour lines are topologically

neighboring; the contour line L1 and the index contour line marked “400” are

topologically contained.

In process of map generalization, if the contour intervals of the original map and

the resulting map are different, some contour lines need to be deleted. This

inevitably leads to the change of topological relations among contour lines.

Supposing that L is a contour line at scale l and Nl
L is a value for quantitatively

expressing the topological relations of L with other contour lines, it can be calcu-

lated by

nl
L ¼ Fl

L þ Sl
L þ Bl

L ð4:16Þ

Fig. 4.7 Change of topological relations of contour lines in map generalization. (a) Original

contours at scale l. The contour interval is 10 m. (b) Generalized contours at scale m. The contour
interval is 20 m. (c) Generalized contours at scale k. The contour interval is 40 m
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where Fl
L, S

l
L, and Bl

L are the number of fathers, sons, and brothers of L at scale l.
The similarity degree of a cluster of contour lines (say A) at scale l and at scale

m can be defined as:

Sim
PTopological

Al,Am
¼

XNm

j¼1

nm
j

XNl

i¼1

nl
i

ð4:17Þ

where
XNl

i¼1

nl
i is the value of the total quantitative topological relations of the contour

lines at scale l; and
XNm

j¼1

nm
j is that at scale m.

4.2.2.2 Similarity in Direction Relations

It is generally not allowed to move contour lines on maps in the process of map

generalization; therefore, direction relations between contour lines are not changed

after map generalization. In other words, its weight WDirection can be viewed as

equal to zero; hence, its spatial similarity degree does not need to be further

discussed.

4.2.2.3 Similarity in Metric Distance Relations

Metric distance relation of contour lines can be evaluated using the density of

contour lines, which is defined as:

DContour ¼

Xn

i¼1

Li

A
ð4:18Þ

where A is the area occupied by the contour lines, n is the number of the contour

lines, and Li is the length of the ith contour line.

The similarity degree of the contour lines in metric distance relations can be

calculated by

SimPDistance

Al,Am
¼ Dm

Contour

Dl
Contour

ð4:19Þ

where Dl
Contour is the density of contour lines on the map at scale l and Dm

Contour is the

density of contour lines on the map at scale m.
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4.2.2.4 Similarity in Attributes

Attribute change of contour lines on topographic maps in map generalization

generally refers to the change of contours’ names and functions (e.g., a 70 m

index contour line on the map whose contour interval is 10 m may become an

intermediate contour on the map when its contour interval changes to 20 m) caused

by the change of contour interval. Hence, this similarity degree can be calculated by

SimPAttribute

Al,Am
¼ Cl

Cm
ð4:20Þ

where Cl is the contour interval of the original map and Ck is the contour interval of

the generalized map.

4.2.2.5 Resulting Formula

Sim Al;Amð Þ ¼ WTopological

w
Sim

PTopological

Al,Am
þWDistance

w
SimPDistance

Al,Am

þWAttribute

w
SimPAttribute

Al,Am
ð4:21Þ

where w¼WTopological +WDistance +WAttribute.

4.2.3 Model for Intersected Line Networks

Intersected line networks majorly refer to road networks on maps. The roads in a

region usually intersected with each other and form a network (Fig. 4.8).

4.2.3.1 Similarity in Topological Relations

To calculate similarity of two road networks in topological relations, it is necessary

to know the difference of topological relations between two road networks at

different scales. To achieve this goal, an approach to quantitatively calculate the

topological relations of a road network and to calculate the difference of topological

relations between two road networks is proposed here.

There are totally two topological relations between two roads on the map, i.e.,

topologically disjoint (e.g., R1 and R3 in Fig. 4.8a) and topologically intersected

(e.g., R2 and R3 in Fig. 4.8a). An n� n matrix A may be used to record the

topological relations of a road network containing n roads, and it is assumed that
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Aij¼ 1 and Aji¼ 1 if the ith road in the road network is intersected with the jth
road; or else

Aij¼ 0 and Aji¼ 0.

Suppose that the matrix for recording the topological relations of the original

road network at scale l is B with Nl�Nl elements, and that for the generalized road

network at scale m is C with Nm�Nm elements, the spatial similarity degree in

topology can be calculated by

Sim
PTopological

Al,Am
¼ 1� DTopological

Nl � Nl
ð4:22Þ

where DTopological is the topological differences between the two road network. It

can be calculated using the following method described in computer language C.

Step 1: Let DTopological¼ 0.
Step 2: Take an element Cij from C starting from i¼ 0 and j¼ 0. Cij denotes the

topological relations between the ith road and the jth road on the map at scale m.

Legend 

Multilane road

Major road

Street 

Avenue

R1

R2

R3

a

b

Fig. 4.8 A road network at two scales. (a) Original city road map at scale l. (b) Generalized city

map at scale m
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Step 3: Search B for the element Bpq that can also record the topological relations of

the ith road and the jth road on the map at scale m.
Step 4: If no Bpq¼Cij can be found, DTopological + +.

Step 5: i++; j++.
Step 6: If i>Nm or j>Nm, end the procedure; else go to step 3.

4.2.3.2 Similarity in Direction Relations

The positions of the roads on the original map and on the generalized map are the

same, so their direction relations are not changed. Therefore, this similarity is

ignored in spatial similarity calculation and does not need to be discussed further.

4.2.3.3 Similarity in Metric Distance Relations

Similarity of road networks in metric distance relations can be evaluated based on

road density, a concept popularly appearing in other communities, such as animal

conservation (Butler et al. 2013) and remote sensing (Zhang et al. 2002). Road

density (D) is defined as the ratio of the length (L ) of the region’s total road network
to the region’s land area (A).

D ¼ L

A
ð4:23Þ

Map generalization may lead to the decrease of the number of roads on the map and

enlarge the distance among roads, and therefore reduce the road density. Hence, we

have

SimPDistance

Al,Am
¼ Dm

Dl
ð4:24Þ

It is obvious that the more roads are deleted, the lessDm is, and the less SimPDistance

Al,Am
is,

which means the similarity degree between the original road network and the

generalized one decreases with the number of roads in map generalization.

4.2.3.4 Similarity in Attributes

Similarity in Attributes of road networks can be calculated by a factor named

“significance value” which depends on several attributes such as road type, road

class, road condition, road grade, etc. To simplify the problem, road class is used to
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represent the differences of road attributes. Each of the road classes is denoted by a

number named class value, and the higher the road class, the greater the class value.

SimPAttribute

Al,Am
may be calculated by

SimPAttribute

Al,Am
¼

Xnm

j¼1

Lm
j � Cm

j

Xnl

i¼1

Ll
i � Cl

i

ð4:25Þ

where Lli is the length of the ith road in the road network at scale l, Cl
i is the class

value of the ith road in the road network at scale l, Lmj is the length of the jth road in

the road network at scale m, and Cm
j is the class value of the jth road in the road

network at scale m.

Here,
Xnl

i¼1

Ll
i � Cl

i can be viewed as the total class value of the road network at

scale l, while
Xnm

j¼1

Lm
j � Cm

j is the total class value of the road network at scale m.

Thus, SimPAttribute

Al,Am
represents the percentage of the total class values of the two road

networks.

4.2.3.5 Resulting Formula

Sim Al;Amð Þ ¼ WTopological

w
Sim

PTopological

Al,Am
þWDistance

w
SimPDistance

Al,Am

þWAttribute

w
SimPAttribute

Al,Am
ð4:26Þ

where w¼WTopological +WDistance +WAttribute.

4.2.4 Model for Tree-Like Networks

The graph of a river basin comprising a main stream and several tributaries is like a

tree on the map. Hence, river basins are often studied using the concept of “tree

structure,” taking their main streams as trunks and tributaries as brunches

(La Barbera and Rosso 1989; Ross 1999). The tree structures are called “tree-like

networks” in this section.
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4.2.4.1 Similarity in Topological Relations

The main stream and its brunches of a tree-like network may be called “root” and

“leaves” in computer science. They can also be called “father,” “sons,” “grand-

sons,” and “grand-grandsons,” etc., to facilitate our discussion, the latter is adopted

in this section. Figure 4.9a presents such a tree-like network. Their relations can be

recorded in a tree data structure (Knuth 1997) in Fig. 4.10, which shows their

descendent relations clearly. The topological relations of a tree-like network are

mainly descendent relations.

If the tree-like network is generalized, some branches are probably deleted,

which changes the topological relations among the father and his children. Appar-

ently, Sim
PTopological

Al,Am
depends on the number of the topological relation changes taken

place in the process of map generalization.

Sim
PTopological

Al,Am
¼ Nm

Topological

N l
Topological

ð4:27Þ

where Nl
Topological is the total number of topological relations of the tree-like network

at scale l (if the main stream and a tributary or two tributaries are father–son

Grandson 5
Father 1

Son 8
Son 7

Son 9

Son 3

Son 2 Grandson 4

Grand-grandson 6

Father 1

Son 8

Son 3

Son 2

a

b

Fig. 4.9 A river basin. (a) Original tree-like network; and (b) generalized tree-like network

1

2 37 8 9

45

5

Fig. 4.10 Tree data

structure of the network for

Fig. 4.9a
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relations, there exists a topological relation in the tree-like network); and Nm
Topological

is the total number of topological relations of the tree-like network at scale m.
For example, Figs. 4.10 and 4.11 show the father–son relations of the two tree-

like networks in Fig. 4.9.

Sim
PTopological

Al,Am
¼ 3

8
¼ 37:5%

4.2.4.2 Similarity in Direction Relations

Rivers on topographic maps are spatial objects with most high accuracy, and they

are essential in spatial positioning, and their positions are not allowed to be

modified. Hence, no direction relations are changed among the components of a

river basin, and their spatial similarity degrees in direction relations do not need to

be discussed further.

4.2.4.3 Similarity in Metric Distance Relations

Density of river network is often used to represent metric distance relations of a

river basin.

Driver ¼ Lriver
Ariver

ð4:28Þ

where Driver is the density of the river network, Ariver is the area of the river basin,

and Lriver is the total length of the main stream and tributaries of the river network.

By the definition of density of river network, the spatial similarity degree of the

river network in metric distance relations can be obtained.

SimPDistance

Al,Am
¼ Dm

river

Dl
river

ð4:29Þ

where Dl
river is the density of the original river network at scale l and Dm

river is the

density of the generalized river network at scale m.

1

2 38

Fig. 4.11 Tree data

structure of the network for

Fig. 4.13b
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4.2.4.4 Similarity in Attributes

Although many geometric and thematic attributes are used in river network gener-

alization, stream order is the most popularly accepted one. Stream order is a

comprehensive index calculated by a combination of several attributes such as

length of the river, width of the river, level of the river, etc. A number of encoding

rules have been proposed for calculating stream order (Fig. 4.12), e.g., Horton,

Strahler, Shreve, and Branch (Horton 1945; de Serres and Roy 1990; Thomson and

Brooks 2002; Zhang 2006). Each of the rules has its advantages and disadvantages,

which is not necessary to be further discussed in this section. Here, the Branch rule

proposed by Zhang (2006) is utilized and it calculates stream order by

Sorder ¼ nþ 1 ð4:30Þ

where n is the total number of children the stream owns.

Both Figs. 4.12d and 4.13 illustrate the principle of the Branch rule.

The similarity in attributes of a river network at two scales can be obtained by a

comparison of the attribute changes between the original river network at scale

l and the generalized river network at scale m.

SimPAttribute

Al,Am
¼

Xn

i¼1

Sm
i

Xn

i¼1

Sl
i

ð4:31Þ
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Fig. 4.12 Four encoding rules for ordering streams. (a) Horton; (b) Strahler; (c) Shreve; and

(d) Brunch
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where
Xn

i¼1

Sm
i is the sum of the stream order in the generalized river network;

Xn

i¼1

Sl
i

is the sum of the stream order of the streams in the original river network but also

existing in the generalized river network.

For example, in Figs. 4.12d and 4.13,

SimPAttribute

Al,Am
¼ 7

15
� 46:7%

4.2.4.5 Resulting Formula

Sim Al;Amð Þ ¼ WTopological

w
Sim

PTopological

Al,Am
þWDistance

w
SimPDistance

Al,Am

þWAttribute

w
SimPAttribute

Al,Am
ð4:32Þ

where w¼WTopological +WDistance +WAttribute.

4.2.5 Model for Discrete Polygon Groups

A number of features on maps are represented using discrete polygonal symbols

such as settlements, green lands, ponds, islands, etc. In map generalization, such

kinds of polygonal symbols are often clustered and processed taking group as unit.

As one of the most popular features on topographic maps, settlement group is

selected as a representative to discuss the model for calculating similarity degrees.

Indeed, settlements are regarded as groups in automated map generalization in past

research work (Bader and Weibel 1997; Ruas 1998; Boffet and Rocca Serra 2001;

Regnauld 2001; Christophe and Ruas 2002; Rainsford and Mackaness 2002; Li

et al. 2004; Bader et al. 2005), which is theoretically supported by a number of

Gestalt principles (Palmer 1992; Rock 1996) such as proximity, similarity, and

common directions/orientation (Fig. 4.14).

4

1

1

1

Fig. 4.13 Branch encoding

for the generalized river

network in Fig. 4.12d
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4.2.5.1 Similarity in Topological Relations

A number of operations can be exerted to generalize settlement groups, including

aggregation, collapse, displacement, exaggeration, elimination, simplification, and

typification. Some of them cause changes of topological relations in the process of

settlement group generalization (Table 4.1), while some others do not.

It is necessary to compare the topological relations of a settlement group before

and after map generalization to obtain the topological change so that spatial

similarity in topological relations can be calculated.

Apparently, every two settlements in the original settlement group are topolog-

ically separated; hence there are Nl� (Nl� 1) topologically disjoint relations in the

original settlement group. The number of topologically disjoint relations (i.e.,

Nm� (Nm� 1) in the generalized settlement group depends on the number of the

settlements in the generalized group. The difference of disjoint relations between

the two settlement groups reveals the changes of similarity degree.

a b c

Fig. 4.14 Settlements grouping. (a) Proximity: two close settlements form a group; (b) similarity:

only the two buildings of same size and shape form a group; and (c) common direction: only those

objects that are arranged in the same directions form a group. Settlements in each of the dotted

rectangles form a group

Table 4.1 Operations and topological changes in settlement group generalization

Operations Examples Topological change

Aggregation Yes

Collapse No

Displacement No

Exaggeration No

Elimination Yes

Simplification No

Typification Yes
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Sim
PTopological

Al,Am
¼ Nm � Nm � 1ð Þ

Nl � Nl � 1ð Þ ð4:33Þ

Taking Fig. 4.15 as an example, their similarity degree is

Sim
PTopological

Al,Am
¼ 14� 13

21� 20
¼ 65%

4.2.5.2 Similarity in Direction Relations

Direction relations among settlements are possibly be changed in the process of

map generalization due to operations such as aggregation, displacement, and

elimination. A natural thought to calculate SimPDirection

Al,Am
is to record and compare

the direction relations of the settlement group before and after map generalization.

Direction relations between two settlements can be described using direction

group (Yan et al. 2006). Direction group is based on a fact that people often

describe directions between two objects using multiple directions but not a single

direction (Peuquet and Zhan 1987; Hong 1994; Goyal 2000); therefore description

of direction relations should use multiple directions, i.e., direction group. A direc-

tion group consists of two components: the azimuths of the normals of direction

Voronoi Diagram (DVD) edges between two objects and the corresponding weights

of the azimuths.

For example in Fig. 4.16, the direction relations between the pavilion B and the

settlement A can be expressed as Dir(A,B)¼ {<N, 30%>,< S, 30%>,<
W, 40%>} by means of direction group.

To record direction relations among settlements, two matrixes are defined:

Nl�Nl matrix Bl is for the original settlement group at scale l, and Nm�Nm matrix

Cm is for the generalized settlement group at scale m. Each element in Bl and Cm is a

direction group for recording direction relations between two settlements.

Fig. 4.15 Topological similarity of a settlement group in map generalization. (a) Original group

with 21 settlements. (b) Generalized group with 14 settlements
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It is necessary to calculate the intersection of Bl and Cm in order to obtain

SimPDirection

Al,Am
. The basic idea is: take an element bij from Bl. Here, bij represents the

direction relations between the ith settlement and the jth settlement in the original

settlement group. Then search for Cm to find an element, say ckp, that totally or

partially represents the direction relations between the ith and the jth generalized

settlements. Compare ckp and bij to get their intersection. In the eight-direction

system, if ckp and bij are totally same, their intersection value is 8. Otherwise, their

intersection value is the number of the common directions. After comparing each

element in Bl with the elements in Cm, the total intersection value nm can be

obtained. This value denotes the common direction relations between the original

settlement group and the generalized settlement group. Hence, we have

SimPDirection

Al,Am

nm
8Nl Nl � 1ð Þ ð4:34Þ

where 8Nl(Nl� 1) is the total direction relations among the settlements in the

original settlement group.

4.2.5.3 Similarity in Metric Distance Relations

SimPDistance

Al,Am
¼ 1� abs Dl � Dm

� �

Dl

ð4:35Þ

where Dl is the mean settlement density of the original settlement group and Dm is

the mean settlement density of the generalized settlement group.

The mean settlement density of a settlement group (D) may be calculated by

D ¼

Xn

i¼1

Ai

S

where S is the total area of the region occupied by the settlement group, comprising

the area of the settlements and the area of common space, n is the number of the

settlement in the group, and
Xn

i¼1

Ai is the total area of the settlements in the group.

Settlement APavilion B

DVD edges

Fig. 4.16 An example of

direction group. Forty

percent of B is to the west of

A, and 30 % of B is to the

north of A, and 30 % of B is

to the south of A
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4.2.5.4 Similarity in Attributes

Settlement attributes (e.g., height, building material, etc.) are seldom taken into

consideration in map generalization; thus, they have little effect to similarity

relations. In other words, the attribute similarity degree of a settlement group before

and after map generalization does not change and does not need to be further

investigated.

4.2.5.5 Resulting Formula

Sim Al;Amð Þ ¼ WTopological

w
Sim

PTopological

Al,Am
þWDirection

w
SimDirection

Al,Am

þWDistance

w
SimPDistance

Al,Am
ð4:36Þ

where w¼WTopological +WDirection +WDistance.

4.2.6 Model for Connected Polygon Groups

Categorical maps consist of connected polygons. These categorical spatial patterns

are typically the result of mapping, classification, or modeling exercises that

produce maps of land cover or some other categorical representation of a landscape

(Boots and Csillag 2006; Remmel and Fortin 2013). Here it is selected as a

representative for addressing similarity relations between connected polygon

groups.

4.2.6.1 Similarity in Topological Relations

There exist three types of topological relations between polygons on categorical

maps, i.e., topologically disjoint, topologically adjacent, and topologically

contained. “Inside” is an inverse of “topologically contained,” therefore they may

be viewed as the same type. For example, in Fig. 4.17 (revised from http://ishare.

iask.sina.com.cn/f/13293700.html), P1 and P4 are disjoint, P1 and P2 are adjacent,

and P4 is contained by P3.

To get Sim
PTopological

Al,Am
, it is necessary to record the topological relations of the two

connected polygon groups and then compare the two maps before and after

generalization and get the intersection of their topological relations.

Suppose that a Nl�Nl matrix B is used to record topological relations of the

original connected polygon group, element bij in B records the topological relations
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between the ith polygon and the jth polygon; and a Nm�Nm matrix C in the same

way is used to record topological relations of the generalized connected polygon

group.

The following algorithm can be used to calculate the intersection of B and C:

Step 1: Let Nsame¼ 0.

Step 2: Take the first element, say bij, from B.
Step 3: Traverse C from the first element to the last element and compare each

element of C with bij. If there exists an element in C representing the topological

relations of the same objects in the original group and the topological relations

are the same, Nsame + +.

Step 4: If bij is not the last element of B, take the next element from B and still name

it bij, and go to Step 3.

Step 5: End the procedure.

Based on this calculation, we have,

Sim
PTopological

Al,Am
¼ Nsame

Nl � Nl
ð4:37Þ

Fig. 4.17 A land-use map consists of connected polygons
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4.2.6.2 Similarity in Direction Relations

No direction between polygons is changed, because the polygons are not moved

before and after map generalization. Thus, similarity in direction relations is usually

ignored.

4.2.6.3 Similarity in Metric Distance Relations

No operations in the process of map generalization can change the distance

relations between connected polygons. Thus, similarity in metric distance relations

is usually ignored.

4.2.6.4 Similarity in Attributes

To get the similarity in attributes, it is a feasible way to overlap the original

connected polygon group with the corresponding one after map generalization.

Indeed, the literature regarding spatial analysis is crowded with the ideas that

measure, describe, or compare categorical spatial patterns (Uuemaa et al. 2009)

using vector-based (Milenkovic 1998; Liu 2002; Sadahiro 2012) and raster-based

approaches (Gustafson 1998; Hagen 2003; Csillag and Boots 2004). Here, a raster-

based approach is employed to calculate the intersection of the original polygons

and generalized polygons.

Suppose that an N�N regular grid network is used to rasterize the two polygon

groups, respectively, their intersection (i.e., the number of the grids with same

attribute in the two polygon groups) is Nintersection. We have

SimPAttribute

Al,Am

Nintersection

N � N
ð4:38Þ

A problem that should be noticed is the value of N, because the great N is, the more

accurate and the lower efficient the rasterization is and vice versa. Here, N ¼ ffiffiffi
A

p
.

A is the least polygon in the original polygon group.

4.2.6.5 Resulting Formula

Sim Al;Amð Þ ¼ WTopological

w
Sim

PTopological

Al,Am
þWAttribute

w
SimPAttribute

Al,Am
ð4:39Þ

where w¼WTopological +WAttribute.
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4.3 Model for Calculating Spatial Similarity Degrees

Between Maps

Previous sections of this chapter view a map as a combination of a number of

separated feature layers (i.e., individual objects and object groups) and propose a

series of models for calculating spatial similarity degrees of each of the feature

layers before and after map generalization. No doubt, these models can be used to

assess the change of similarity degrees of individual map feature layers. Neverthe-

less, it is usually necessary to overlap the generalized features layers to form a

resulting map before they are put into practical use. Hence, problems arise here:

how can the similarity degree between the original map and the resulting map

obtained? Can it calculated by the models for calculating similarity degrees of

individual feature layers at different scales?

This section will try to solve the problems by integrating the previous models for

calculating similarity degrees of individual feature layers to form a comprehensive

model. This new model will be a vector-based model, because those ones for

individual feature layers are vector based, too.

Because it seems considerably difficult to construct a generic model for all types

of maps, only topographic map is taken as a representative for addressing the idea

of the new integrated model here. A detailed description of a topographic map may

be given first.

Suppose that there is a topographic map Tl at scale l, it consists of N feature

layers. The numbers of objects in the N feature layer are n1, n2, . . ., nN, respectively.
A generalized counterpart of Tl is the topographic map Tm at scale m. It consists of
M feature layers. The numbers of objects of the M feature layer are m1,m2, . . .,mM,

respectively. Nl¼ n1 + n2 + . . .+ nN; Nm¼m1 +m2 + . . .+mM.

The four types of similarity relations between two topographic maps need to be

considered, i.e., topological similarity, direction similarity, metric distance simi-

larity, and attribute similarity. The degrees of the four types of similarity relations

are denoted by Sim
Topological
Tl,Tm

, SimDirection
Tl,Tm

, SimDistance
Tl,Tm

, and SimAttribute
Tl,Tm

, respectively.

The similarity between the two maps (Sim
Map
Tl,Tm

) is:

Sim
Map
Tl,Tm

¼ w1Sim
Topological
Tl,Tm

þ w2Sim
Direction
Tl,Tm

þ w3Sim
Distance
Tl,Tm

þ w4Sim
Attribute
Tl,Tm

ð4:40Þ

where, w1, w2, w3, and w4 are the weights of Sim
Topological
Tl,Tm

, SimDirection
Tl,Tm

,

SimDistance
Tl,Tm

, and SimAttribute
Tl,Tm

, respectively. They are obtained by psychological tests

which have been addressed in Chap. 3. Thus, the following sections will focus on

the calculation of the four types of similarity degrees.
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4.3.1 Similarity in Topological Relations

It is necessary to compute, record, and compare the topological relations between

the two maps to get their intersection for the purpose of calculating their topological

similarity degree.

The methods for computing topological relations among map objects (including

points, lines, and polygons) have crowded literature for decades (Egenhofer

et al. 1994; Clementini et al. 1994; Bjørke 2004; Du et al. 2008; Formica

et al. 2013), which provides sufficient theoretical and technical supports for

obtaining topological relations.

Two matrixes are defined to record topological relations among objects on the

two maps: Nl�Nl matrix Bl is for the map at scale l, and Nm�Nm matrix Cm is for

the generalized map at scale m. Each element in Bl and Cm is a positive integer for

indicating a topological relation between two objects. Their corresponding relations

are listed in Table 4.2.

An algorithm is proposed to compute the intersection of Bl and Cm.

Step 1: Let Nsame¼ 0.

Step 2: Take the first element, say bij, from Bl.

Step 3: Traverse Cm from the first element to the last element and compare each

element of Cm with bij. If there exists an element in Cm representing the

topological relations of the same objects in the original map and the topological

relations are the same, Nsame + +.

Step 4: If bij is not the last element of Bl, take the next element from Bl and still

name it bij, and go to Step 3.

Step 5: End the procedure.

Based on this calculation, we have

Sim
Topological
Tl,Tm

¼ Nsame

Nl � Nl
ð4:41Þ

4.3.2 Similarity in Direction Relations

Directional similarity degree between two maps depends on the change of the

direction relations between the two maps. Therefore, the direction relations

Table 4.2 Integers for

denoting topological relations
Topological relations Recorded values

Disjoint 1

Meet 2

Overlap/intersect 3

Contain and meet 4

Contain 5

Equal 6
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among the objects of the map at scale l and that at scale m should be calculated,

recorded, and compared.

Direction group (Yan et al. 2006) is employed to describe direction relations

between arbitrary two objects. To record direction relations among objects on the

two maps, two matrixes are defined: Nl�Nl matrix Bl is for the map at scale l, and
Nm�Nmmatrix Cm is for the generalized map at scalem. Each element in Bl and Cm

is a direction group for recording direction relations between two settlements. The

eight-direction system is used here.

The basic idea for comparing Bl and Cm is: take an element bij from Bl. Here, bij
represents the direction relations between the ith object and the jth object on the

original map at scale l. Then search for Cm to find an element, say ckp, that totally or
partially represents the direction relations between generalized ith object and jth
object on the map at scale m. Compare ckp and bij to get their intersection, i.e., the

number of same directions. In the eight-direction system, if ckp and bij are totally

same, their intersection value is 8. After comparing each element in Bl with the

elements in Cm, the total intersection value Nintersection
direction can be achieved. This value

denotes the common direction relations between the original map and the general-

ized map, by which the direction similarity between the two maps can be obtained.

SimDirection
Tl,Tm

¼ N intersection
direction

8Nl Nl � 1ð Þ ð4:42Þ

4.3.3 Similarity in Metric Distance Relations

Metric distance relations of a topographic map can be described using the Voronoi

Diagram, because Voronoi Diagram has been regarded as an ideal tool in tessella-

tion of two-dimensional map spaces (Aurenhammer 1991) and description of

spatial relations (Chen et al. 2001). Concept of the Voronoi Diagram has already

been extended from the tessellation of point clusters to that of spatial objects,

including points, lines, and polygons. Figure 4.18 illustrates the principle of the

Voronoi Diagram for spatial objects (Li et al. 1999).

For point objects, they may be put into a group and regarded as a point cloud.

Formulae 4.11–4.13 can be used to calculate and compare the values of relative

local density of all points at scales of l and m, and then get the similarity degree of

the point objects (SimDistance, Point
Tl,Tm

) before and after generalization.

All linear objects can be put together and regarded as a line cluster. The three

pairs of formulae, i.e., Formulae 4.19 and 4.20, Formulae 4.24 and 4.25, and

Formulae 4.28 and 4.29, that express the same idea “distance relations of linear

objects can be described using density of linear objects,” can be employed to

calculate the similarity degree of the linear objects (SimDistance, Linear
Tl,Tm

) before and

after generalization. It should be noted that the area occupied by each of the linear

objects is the area of its Voronoi polygon (Li et al. 1999).
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For areal objects, they can be regarded as discrete polygon group though they

may be connected polygons or discrete polygons. Formulae 4.34 and 4.35 may be

used to calculate the similarity degree of the area objects (SimDistance,Areal
Tl,Tm

) before

and after map generalization. The area occupied by each of the polygons is the area

of its Voronoi polygon. For connected polygons, their density, according to For-

mula 4.34, should be equal before and after map generalization.

The distance similarity degree of the map before and after generalization can be

expressed as:

SimDistance
Tl,Tm

¼ N Point
l

Nl
SimDistance, Point

Tl,Tm
þ N Linear

l

Nl
SimDistance,Linear

Tl,Tm

þ NAreal
l

Nl
SimDistance,Areal

Tl,Tm
ð4:43Þ

where NPoint
l is the number of the points on the map at scale l, NLinear

l is the

number of the linear objects on the map at scale l, and NAreal
l is the number of the

polygons on the map at scale l.
N Point
l

Nl
,
N Linear
l

Nl
, and

N Areal
l

Nl
are the weights. The greater the number of a type of objects

on the map, the greater the weight value.

4.3.4 Similarity in Attributes

Topographic maps show physical and human-made features of the Earth and regard

all of the feature layers as the same importance by default (Harvey 1980; Barber

2005). Hence, the attribute weights for all of the feature layers are equal.

A

B

C

D

Legend

Voronoi Daigram

Fig. 4.18 Voronoi Diagram of spatial objects
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SimAttribute
Tl,Tm

¼

XN

i¼1

Sim
Layer Attributei

Tl,Tm

N
ð4:44Þ

where SimAttribute
Tl,Tm

is the attributes similarity degree between the two topographic

maps and Sim
Layer Attributei

Tl,Tm
is the attributes similarity degree between two ith map

feature layers of the two topographic maps.

Sim
Layer Attributei

Tl,Tm
may be calculated by a formula in the previous sections of this

chapter. The formula can be decided according to the type of the features.

4.4 Chapter Summary

This chapter proposes the models for calculating spatial similarity degrees of

various types of objects at different map scales. Totally ten models for the following

ten types of objects are addressed, i.e. (1) individual points, (2) individual lines,

(3) individual polygons, (4) point clouds, (5) parallel lines clusters, (6) intersected

line networks, (7) tree-like networks, (8) discrete polygon groups, (9) connected

polygon groups, and (10) maps. All of the proposed models are oriented to vector

map data.
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Chapter 5

Model Validations

People are accustomed to taking spatial similarity relation as a qualitative factor to

describe the geographic space (Guo 1997); therefore whether the quantitative

values of spatial similarity relations calculated by the proposed models coincide

with human’s spatial cognition is worth validating so that the questions like “Are

the similarity degrees calculated by the models the same as that of my recognition?”

and “Are the calculated similarity degrees acceptable by most people?” can be

answered. For this purpose, this chapter focuses on validating the ten models

proposed in Chap. 4, aiming at proving that the models are acceptable to majority

of people.

5.1 General Approaches to Model Validation

Correctness of models is often addressed through model verification and validation

(Schlesinger 1979; Carson 2002; Banks et al. 2010). Model verification is defined

as “ensuring that the computer program of the computerized model and its imple-

mentation are correct” (Sargent 2011). Model validation is usually defined to mean

“substantiation that a computerized model within its domain of applicability pos-

sesses a satisfactory range of accuracy consistent with the intended application of

the model” (Naylor and Finger 1967; Schlesinger 1979) and is the definition used

here. This study assumes that the correctness of the computer program can be

ensured and therefore setting model verification aside. It only emphasizes on the

validation of the proposed models for calculating spatial similarity degrees in map

multiscale spaces.

Generally, a model is developed for a specific purpose or application, and its

validity is determined with respect to that purpose and application. If the purpose is

to solve a variety of problems, the validity of the model should be determined with

respect to solving all of those problems. Hence, numerous experimental conditions

are required to define the domain of the applications of the model. A model is
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viewed as valid if for each of the experimental conditions its accuracy is always

within its acceptable range. Usually, the acceptable range of accuracy for each

model should be specified prior to starting the development of the model or very

early in the model development process.

It is often too costly and time consuming to determine that a model is absolutely

valid over the complete domain of its intended applicability. Instead, tests and

evaluations are conducted until sufficient confidence is obtained that a model can be

considered valid for its intended application (Sargent 1982, 1984). If a test deter-

mines that a model does not have sufficient accuracy for any one of the sets of

experimental conditions, then the model is invalid. However, determining that a

model has sufficient accuracy for numerous experimental conditions does not

guarantee that a model is valid everywhere in its applicable domain.

There are four basic approaches for determining whether a model is valid

(Sargent 2010, 2011). Each of the approaches requires conducting model validation

as a part of the model development process.

First, a frequently used approach is for the model development team itself to

make the decision as to whether a simulation model is valid. A subjective decision

is made based on the results of the various tests and evaluations conducted as part of

the model development process.

Second, if the size of the simulation team developing the model is small, a better

approach is to have the model users involved with the model development team in

deciding the validity of the simulation model, i.e., the focus of determining the

validity of the simulation model moves from the model developers to the model

users.

Third, a third (independent) party can be used to decide whether the simulation

model is valid. The third party is independent of both the simulation development

team and the model sponsors/users. The approach should be used when developing

large-scale simulation models, whose developments usually involve several teams.

The third party needs to have a thorough understanding of the intended purpose(s)

of the simulation model.

Last, a scoring model can be employed to decide whether a model is valid (Balci

1989; Gass 1983, 1993). Scores are determined subjectively. A simulation model is

considered valid if its overall and category scores are greater than some passing

score(s). This approach is seldom used in practice, because the passing scores are

usually decided in subjective way, and the scores may cause overconfidence in a

model, or the scores can even be used to argue that one model is better than another.

In sum, model validation is critical in the development of a simulation model.

Nevertheless, no specific approach can easily be applied to determine the “correct-

ness” of all models, and no algorithm exists to determine what techniques or

procedures to use. Every simulation presents a new and unique challenge to the

model development team.
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5.2 Strategies for Validating the New Models

Each of the proposed models in Chap. 4 is a simulation of cartographers’ similarity

judgment process regarding corresponding map features or maps in map general-

ization. As is well known, in human being’s cognition, the spatial relations are

typically qualitative, approximate, categorical, or topological rather than metric or

analog. They may even be incoherent, that is, people may hold beliefs that cannot

be reconciled in canonical three-dimensional space (Tversky et al. 2006). On the

other hand, these models, if proved correct, can substitute for cartographers to judge

spatial similarity in map generalization so that full automation of map generaliza-

tion can be implemented; thus, whether the models have sufficient accuracy is of

great importance. Thus, three strategies are employed to form a comprehensive

approach to ensure the validity of the newly proposed models due to the above

reasons. They include theoretical justifiability, third part involvement, and experts’

participation.

5.2.1 Strategy 1:Theoretical Justifiability

The models for calculating similarity degrees in this study are for map generaliza-

tion and aim at automating the algorithms used in generalizing various map layers

and maps. Hence, this study first classifies the research object into ten categories

that can be directly operated by the algorithms (i.e., individual points, individual

lines, individual polygons, point clouds, parallel lines clusters, intersected line

networks, tree-like networks, discrete polygon groups, connected polygon groups,

and maps). Then the ten models are constructed in accordance with the ten

categories of objects. This ensures that all potential algorithms that use spatial

similarity degrees in map generalization have been taken into consideration.

To ensure the difference between the similarity degrees calculated by the new

models and the ones judged by human beings can be as small as possible, all of the

major factors that affect human’s spatial similarity judgments in map generalization

have been taken into consideration to construct the new models. Cartographers

consider spatial relations and nonspatial relations of spatial objects in map gener-

alization. The former includes topological relations, direction relations, and dis-

tance relations, while the latter refers to attributes of spatial objects. To simulate

cartographers’ thinking process accurately, the four factors (i.e., the three spatial

relations and one nonspatial relation) are all used in the models. This, though cannot

ensure the simulation models match cartographers’ judgments well, provides a

theoretically plausible way for calculating spatial similarity degrees.
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5.2.2 Strategy 2: Third Party Involvement

To obtain the weights of topological relations, direction relations, distance rela-

tions, and attributes of spatial objects in human’s spatial similarity judgments, a

number of subjects are invited and sample data are distributed to them to know the

weights of the four factors. The average values of these weights are directly used in

the new models.

5.2.3 Strategy 3: Experts’ Participation

Now that the proposed new models are used as substitutions of cartographers (i.e.,

the experts in map generalization), it is justifiable to survey a number of experi-

enced cartographers by psychological experiments to know to what extent they

agree with the results calculated by the new models.

Strategies 1 and 2 have been used in the construction of the new models and

presented in previous sections.

The following sections introduce Strategy 3, i.e., using psychological experi-

ments to test the validity of the new models. The design of the psychological

experiments is presented first; then a number of samples are shown and the

psychological surveys are implemented. Finally, the data collected from the exper-

iments are analyzed and discussed, and some conclusions are drawn.

5.3 Psychological Experiment Design

• Basic information of the experiments

Time: October 20, 2013.

Place: Lanzhou Jiaotong University, P.R. China.

Subjects: 50 students at undergraduate or graduate level, 24 female and 26 male.

Their ages range from 17 to 27. Each of the subjects has least 6 months

experience in making maps. All subjects are majoring or have majored in

geography and related communities, including 16 in geographic information

science, 22 in cartography, 9 in surveying, 3 in geography. As far as nation-

ality is concerned, 35 subjects are in Han nationality, 11 subjects are

Muslims, four subjects are Mengols, and two subjects belong to Wei

nationality.

An advertisement is posted in the webpages of Lanzhou Jiaotong University and

Gansu Map Institute for the purpose of recruiting enough subjects who are

experienced in mapping and/or geographic information systems.
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• Goal of the experiments

1. To know the confidence level of the new models; and

2. To know if the models can be used in automated map generalization.

• Procedure of the experiments

Step 1:Preparation of samples

Totally ten types of objects are prepared, i.e. (1) individual points, (2) individual

lines, (3) individual polygons, (4) point clouds, (5) parallel lines clusters,

(6) intersected line networks, (7) tree-like networks, (8) discrete polygon

groups, (9) connected polygon groups, and (10) maps.

For each type of the objects, at least three samples, either real or analogous,

should be prepared. Each sample consists of the original objects at a larger

scale and five counterparts of generalized objects at smaller scales; the

similarity degree between the original objects and each counterpart of the

generalized objects calculated by the corresponding new models is given.

To ensure that each sample is a good representative of the corresponding type of

the ten object groups and to ensure that the original map/object group can be

correctly generalized, four experienced cartographers are invited to provide

samples and generalize the maps.

Step 2: Psychological experiments

Each of the subjects is invited to participate in the experiments, respectively. The

samples are printed and distributed to each of the subjects one by one. After

getting a sample (e.g., Fig. 5.35) and five decimals (e.g., Fig. 5.36) for

describing the similarity degrees, the subject is required to evaluate the

similarity degree between the original map and each of the generalized

ones, and are required to tell if the similarity degrees are acceptable.

Step 3: Statistical analysis

The similarity degrees calculated by the new models and that obtained from

the experiments are listed in Table 5.1. After statistical analysis on these

data, the spatial similarity degrees calculated by the new models and map

scale changes as well as the number of the subjects that agree/disagree with

the calculated credibility of the spatial similarity degrees are listed in

Table 5.2.
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Table 5.1 Similarity degrees obtained by three different methods

Experiment no. SimV
a;b, Sim

V
a;c, Sim

V
a;d , Sim

V
a;e, Sim

V
a;f SimE

a;b, Sim
E
a;c, Sim

E
a;d , Sim

E
a;e, Sim

E
a;f

1 1.00, 1.00, 1.00, 1.00, 1.00 1.00, 1.00, 1.00, 1.00, 1.00

2 1.00, 1.00, 1.00, 1.00, 1.00 1.00, 1.00, 1.00, 1.00, 1.00

3 1.00, 1.00, 1.00, 1.00, 1.00 1.00, 1.00, 1.00, 1.00, 1.00

4 0.87, 0.64, 0.38, 0.38, 0.38 0.86,0.49,0.34,0.25,0.21

5 0.91, 0.78, 0.52, 0.44, 0.36 0.91,0.67,0.51,0.35,0.18

6 0.75, 0.55, 0.44, 0.35, 0.26 0.78,0.57,0.40,0.24,0.19

7 1.00, 1.00, 1.00, 1.00, 1.00 1.00, 1.00, 1.00, 1.00, 1.00

8 0.95, 0.88, 0.73, 0.65, 0.55 0.88,0.76,0.52,0.37,0.28

9 0.91, 0.82, 0.66, 0.52, 0.52 0.88,0.75,0.56,0.36,0.27

10 1.00, 0.55, 0.055, 0.55, 0.55 0.95,0.64,0.49,0.41,0.33

11 1.00, 1.00, 1.00, 1.00, 1.00 1.00, 1.00, 1.00, 1.00, 1.00

12 0.76, 0.57, 0.36, 0.21, 0.15 0.89,0.79,0.63,0.54,0.41

13 0.82, 0.62, 0.36, 0.19, 0.12 0.86,0.74,0.60,0.45,0.36

14 0.71, 0.58, 0.40, 0.18, 0.11 0.85,0.71,0.55,0.44,0.37

15 0.95, 0.88, 0.67, 0.45, 0.36 0.91,0.78,0.60,0.49,0.39

16 0.93, 0.83, 0.76, 0.51, 0.42 0.91,0.79,0.64,0.50,0.38

17 0.96, 0.86, 0.75, 0.55, 0.40 0.91,0.81,0.65,0.51,0.38

18 0.77, 0.52, 0.31, 0.22, 0.18 0.89,0.76,0.57,0.42,0.36

19 0.75, 0.55, 0.37, 0.28, 0.19 0.90,0.76,0.60,0.48,0.31

20 0.68, 0.49, 0.34, 0.28, 0.16 0.88,0.75,0.61,0.48,0.37

21 0.82, 0.55, 0.27, 0.21, 0.17 0.80,0.71,0.54,0.40,0.34

22 0.63, 0.49, 0.32, 0.22, 0.15 0.83,0.69,0.52,0.40,0.25

23 0.74, 0.56, 0.29, 0.23, 0.15 0.83,0.71,0.52,0.41,0.26

24 0.68, 0.38, 0.31, 0.16, 0.16 0.73,0.60,0.44,0.34,0.27

25 0.82, 0.58, 0.33, 0.21, 0.15 0.84,0.67,0.51,0.38,0.24

26 0.85, 0.51, 0.31, 0.22, 0.14 0.84,0.67,0.51,0.34,0.27

27 0.74, 0.47, 0.29, 0.25, 0.14 0.82,0.67,0.52,0.42,0.27

28 0.88, 0.76, 0.61, 0.44, 0.28 0.89,0.73,0.60,0.48,0.35

29 0.74, 0.57, 0.55, 0.38, 0.21 0.87,0.66,0.56,0.44,0.37

30 0.85, 0.72, 0.65, 0.46, 0.22 0.88,0.77,0.63,0.48,0.36

31 0.53, 0.39, 0.23, 0.22, 0.15 0.75,0.60,0.47,0.39,0.32

32 0.82, 0.67, 0.46, 0.33, 0.18 0.84,0.72,0.58,0.45,0.34

33 0.80, 0.69, 0.47, 0.27, 0.17 0.85,0.75,0.60,0.49,0.36

34 0.88, 0.68, 0.46, 0.39, 0.21 0.88,0.73,0.58,0.46,0.36

Notes: The following variables are applicable to Figs. 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10,
5.11, 5.12, 5.13, 5.14, 5.15, 5.16, 5.17, 5.18, 5.19, 5.20, 5.21, 5.22, 5.23, 5.24, 5.25, 5.26, 5.27,

5.28, 5.29, 5.30, 5.31, 5.32, 5.33, and 5.34

SimV
a;b: similarity degree between (a) and (b) calculated by the new model

SimV
a;c: similarity degree between (a) and (c) calculated by the new model

SimV
a;d: similarity degree between (a) and (d) calculated by the new model

SimV
a;e: similarity degree between (a) and (e) calculated by the new model

SimV
a;f : similarity degree between (a) and (f) calculated by the new model

(continued)
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5.4 Samples in Psychological Experiments

5.4.1 Rules Obeyed in Sample Selection

Totally ten types of samples are considered. Every type has three or four samples.

All of the samples used in the experiments are shown below. All maps in the

experiments are not shown to exact scales.

It is evident that the more samples are used in the psychological experiments, the

better the results will be. However, it is not possible to use all sample of objects

(object groups) in the geographic space in the experiments. A feasible way is to

pursue a balance between the number of the samples and the accuracy of the

experiments. Hence, some rules are employed in selecting the samples for each

of the experiments so that the balance can be reached.

At least three samples should be selected for each category of the objects. In

each sample, five generalized results of the original objects (or object groups) are

shown. Therefore, after psychological experiments, at least 15 coordinate pairs can

be obtained with spatial similarity degrees and map scale change as coordinates.

This ensures that enough points can be supplied for constructing the relations

between spatial similarity degree and map scale change as coordinate by curve

fitting.

The ten categories of objects discussed in this thesis are all taken into consid-

eration so that the samples can include all types of objects on topographic maps.

The samples in each category of objects (or object groups) should be obviously

different from each other so that they can be good representations of other objects of

corresponding category. To guarantee good representation of the samples, many

experienced cartographers have been invited to design examples for each category

of objects and choose typical samples from three map databases owned by the

Chinese Academy of Survey and Mapping, the National Centre of Geomatics,

China, and the Map Academy of Gansu Province. The differences of the samples

in each category can be seen by the figure captions in Figs. 5.1, 5.2, 5.3, 5.4, 5.5,

5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13, 5.14, 5.15, 5.16, 5.17, 5.18, 5.19, 5.20, 5.21,

5.22, 5.23, 5.24, 5.25, 5.26, 5.27, 5.28, 5.29, 5.30, 5.31, 5.32, 5.33, and 5.34.

Table 5.1 (continued)

Experiment no. SimV
a;b, Sim

V
a;c, Sim

V
a;d , Sim

V
a;e, Sim

V
a;f SimE

a;b, Sim
E
a;c, Sim

E
a;d , Sim

E
a;e, Sim

E
a;f

SimE
a;b: similarity degree between (a) and (b) given by the subjects

SimE
a;c: similarity degree between (a) and (c) given by the subjects

SimE
a;d: similarity degree between (a) and (d) given by the subjects

SimE
a;e: similarity degree between (a) and (e) given by the subjects

SimE
a;f : similarity degree between (a) and (f) given by the subjects
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Table 5.2 Similarity degree and map scale change

Experiment

no.

SimV
a;b, Sim

V
a;c, Sim

V
a;d ,

SimV
a;e, Sim

V
a;f

DScalea,b, DScalea,c, DScalea,d,

DScalea,d, DScalea,d

NAgree,

NDisagree,

NNoidea

1 1.00, 1.00, 1.00, 1.00,

1.00

2, 4, 8, 16, 32 50, 0, 0

2 1.00, 1.00, 1.00, 1.00,

1.00

2, 4, 8, 16, 32 50, 0, 0

3 1.00, 1.00, 1.00, 1.00,

1.00

2, 4, 8, 16, 32 50, 0, 0

4 0.87, 0.64, 0.38, 0.38,

0.38

2, 4, 8, 16, 32 50, 0, 0

5 0.91, 0.78, 0.52, 0.44,

0.36

2, 4, 8, 16, 32 50, 0, 0

6 0.75, 0.55, 0.44, 0.35,

0.26

2, 4, 8, 16, 32 48, 0, 2

7 1.00, 1.00, 1.00, 1.00,

1.00

2, 4, 8, 16, 32 50, 0, 0

8 0.95, 0.88, 0.73, 0.65,

0.55

2.5, 10, 25, 50, 125 50, 0, 0

9 0.91, 0.82, 0.66, 0.52,

0.52

2.5, 10, 25, 50, 100 50, 0, 0

10 1.00, 0.55, 0.055, 0.55,

0.55

2.5, 10, 25, 50, 100 50, 0, 0

11 1.00, 1.00, 1.00, 1.00,

1.00

2.5, 5, 10, 25, 50 50, 0, 0

12 0.76, 0.57, 0.36, 0.21,

0.15

2, 5, 10, 25, 50 50, 0, 0

13 0.82, 0.62, 0.36, 0.19,

0.12

2, 5, 10, 25, 50 50, 0, 0

14 0.71, 0.58, 0.40, 0.18,

0.11

2, 5, 10, 25, 50 50, 0, 0

15 0.95, 0.88, 0.67, 0.45,

0.36

2, 5, 10, 25, 50 50, 0, 0

16 0.93, 0.83, 0.76, 0.51,

0.42

2, 5, 10, 25, 50 50, 0, 0

17 0.96, 0.86, 0.75, 0.55,

0.40

2, 5, 10, 25, 50 50, 0, 0

18 0.77, 0.52, 0.31, 0.22,

0.18

2, 5, 10, 25, 50 50, 0, 0

19 0.75, 0.55, 0.37, 0.28,

0.19

2, 5, 10, 25, 50 49, 0, 1

20 0.68, 0.49, 0.34, 0.28,

0.16

2, 5, 10, 25, 50 48, 0, 2

21 0.82, 0.55, 0.27, 0.21,

0.17

2.5, 5, 10, 50, 100 47, 0, 3

22 0.63, 0.49, 0.32, 0.22,

0.15

2.5, 5, 10, 50, 100 49, 0, 1

(continued)
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Table 5.2 (continued)

Experiment

no.

SimV
a;b, Sim

V
a;c, Sim

V
a;d ,

SimV
a;e, Sim

V
a;f

DScalea,b, DScalea,c, DScalea,d,

DScalea,d, DScalea,d

NAgree,

NDisagree,

NNoidea

23 0.74, 0.56, 0.29, 0.23,

0.15

2.5, 5, 10, 50, 100 48, 0, 2

24 0.68, 0.38, 0.31, 0.16,

0.16

2.5, 5, 10, 25, 50 49, 0, 1

25 0.82, 0.58, 0.33, 0.21,

0.15

2.5, 5, 10, 25, 50 50, 0, 0

26 0.85, 0.51, 0.31, 0.22,

0.14

2.5, 5, 10, 25, 50 48, 0, 2

27 0.74, 0.47, 0.29, 0.25,

0.14

2.5, 5, 10, 25, 50 50, 0, 0

28 0.88, 0.76, 0.61, 0.44,

0.28

2, 5, 10, 20, 50 50, 0, 0

29 0.74, 0.57, 0.55, 0.38,

0.21

2.5, 5, 10, 25, 50 50, 0, 0

30 0.85, 0.72, 0.65, 0.46,

0.22

2.5, 5, 10, 25, 50 50, 0, 0

31 0.53, 0.39, 0.23, 0.22,

0.15

2.5, 5, 10, 25, 50 50, 0, 0

32 0.82, 0.67, 0.46, 0.33,

0.18

2, 5, 10, 25, 50 50, 0, 0

33 0.80, 0.69, 0.47, 0.27,

0.17

2, 5, 10, 25, 50 50, 0, 0

34 0.88, 0.68, 0.46, 0.39,

0.21

2, 5, 10, 25, 50 50, 0, 0

Notes: “the Fig” in following variables refers to Figs. 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10,
5.11, 5.12, 5.13, 5.14, 5.15, 5.16, 5.17, 5.18, 5.19, 5.20, 5.21, 5.22, 5.23, 5.24, 5.25, 5.26, 5.27,

5.28, 5.29, 5.30, 5.31, 5.32, 5.33, and 5.34

DScalea,b: map scale change from (a) to (b) in the Fig

DScalea,c: map scale change from (a) to (c) in the Fig

DScalea,d: map scale change from (a) to (d) in the Fig

DScalea,e: map scale change from (a) to (e) in the Fig

DScalea,f: map scale change from (a) to (f) in the Fig

NAgree: the number of the subjects that can accept the three similarity degrees calculated by the

new model

NDisagree: the number of the subjects that disagree with the three similarity degrees calculated by

the new model

NNoidea: the number of the subjects that have no idea about the three similarity degrees calculated

by the new model
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5.4.2 Samples Used

5.4.2.1 Individual Points

Three individual point objects are used in the experiments (Figs. 5.1, 5.2, and 5.3).

It is not possible to simplify a point symbol; hence their symbols are all the same at

different map scales.

Fig. 5.1 Experiment 1:a broadcasting station at different map scales

At scale   S  At scale   S / 2 At scale  S / 4  

At scale   S / 8 At scale   S / 16 At scale   S / 32 At scale  

Fig. 5.2 Experiment 2: an individual tree at different map scales

At scale   S At scale   S / 2 At scale   S / 4

At scale    S / 8 At scale  S / 32At scale  S / 16

Fig. 5.3 Experiment 3: a traffic light at different map scales
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5.4.2.2 Individual Lines

a
d

b c f

e

Fig. 5.4 Experiment 4: a road at different map scales. (a) At scale S; (b) at scale S/2; (c) at scale
S/4; (d) at scale S/8; (e) at scale S/16; and (f) at scale S/32

a c e

b d

f

Fig. 5.5 Experiment 5: a segment of a boundary line at different map scales. (a) At scale S/32;
(b) at scale S/2; (c) at scale S/4; (d) at scale S/8; (e) at scale S/16; and (f) at scale S/32
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a

b c d

e f

Fig. 5.6 Experiment 6: a coastline at different map scales. (a) At scale S/32; (b) at scale S/2; (c) at
scale S/4; (d) at scale S/8; (e) at scale S/16; and (f) at scale S/32

a

b c d

e f

Fig. 5.7 Experiment 7: a straight road at different map scales. (a) At scale S/32; (b) at scale S/2;
(c) at scale S/4; (d) at scale S/8; (e) at scale S/16; and (f) at scale S/32
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5.4.2.3 Individual Polygons

Fig. 5.8 Experiment 8: a land patch at different map scales. (a) 1:200; (b) 1:500; (c) 1:2 K; (d)

1:5 K; (e) 1:10 K; and (f) 1:25 K

Fig. 5.9 Experiment 9: a settlement at different map scales. (a) 1:1 K; (b) 1:2,500; (c) 1:10 K (d)

1:25 K (e) 1:50 K; and (f) 1:100 K
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c

d e

a

f

b

Fig. 5.10 Experiment 10: a round settlement at different map scales. (a) 1:200; (b) 1:500; (c)

1:2 K; (d) 1:5 K; (e) 1:10 K; and (f) 1:20 K

b

d f

c

(

e

a

Fig. 5.11 Experiment 11:a rectangular settlement at different map scales. (a) 1:200; (b) 1:500 (c)

1:1 K; (d) 1:2 K; (e) 1:5 K; and (f) 1:10 K
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5.4.2.4 Point Clouds

a

b c

d

e f

Fig. 5.12 Experiment 12: point clouds at different map scales. The weights of all points are equal.

(a) 1:10 K, 113 points; (b) 1:20 K, 78 points; (c) 1:1, 50 K, 58 points; (d) 1:100 K, 38 points; (e)

1:250 K, 19 points; and (f) 1:500 K, 12 points
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a

b

Legend:

First class control point. The weight is 4.
Second class control point. The weight is 2.

Third class control point. The weight is 1.

c d

e f

Fig. 5.13 Experiment 13: control points in a regular area at different scales. (a) 1:10 K, 43 points;

(b) 1:20 K, 29 points retained; (c) 1:50 K, 20 points retained; (d) 1:100 K, 10 points retained; (e)

1:250 K, 6 points retained; and (f) 1:500 K, 3 points retained
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a

b

Legend:

First class, weight is 4.

Second class, weight is 2.

Third class, weight is 1.

c

d
e

f

Fig. 5.14 Experiment 14: control points in an irregular area at different scales. (a) 1:10 K,

36 points; (b) 1:20 K, 24 points retained; (c) 1:50 K, 17 points retained; (d) 1:100 K, 8 points

retained; (e) 1:250 K, 6 points retained; and (f) 1:500 K, 3 points retained
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5.4.2.5 Parallel Lines Clusters

Fig. 5.15 Experiment 15: contours representing a gentle hill at different scales. (a) 1:10 K; (b)

1:20 K; (c) 1:50 K; (d) 1:100 K; (e) 1:250 K; and (f) 1:500 K
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Fig. 5.16 Experiment 16: contours representing a steep slope at different scales. (a) 1:10 K;

(b) 1:20 K; (c) 1:50 K; (d) 1:100 K; (e) 1:250 K; and (f) 1:500 K
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Fig. 5.17 Experiment 17: contours representing a gulley at different scales. (a) 1:10 K; (b)

1:20 K; (c) 1:50 K; (d) 1:100 K; (e) 1:250 K; and (f) 1:500 K
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5.4.2.6 Intersected Line Networks

Fig. 5.18 Experiment 18: an ordinary road network at different map scales. (a) 1:10 K; (b)

1:20 K; (c) 1:50 K; (d) 1:100 K; (e) 1:250 K; and (f) 1:500 K
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Fig. 5.19 Experiment 19: a road network with ring roads at different map scales. (a) 1:10 K; (b)

1:20 K; (c) 1:50 K; (d) 1:100 K; (e) 1:250 K; and (f) 1:500 K
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Fig. 5.20 Experiment 20: a road network with zigzag roads at different map scales. (a) 1:10 K; (b)

1:20 K; (c) 1:50 K; (d) 1:100 K; (e) 1:250 K; and (f) 1:500 K
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5.4.2.7 Tree-Like Networks

Fig. 5.21 Experiment 21:a river network at different map scales. (a) 1:10 K; (b) 1:25 K; (c)

1:50 K; (d) 1:250 K; (e) 1:500 K; and (f) 1:1 M
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Fig. 5.22 Experiment 22: a river network at different map scales. (a) 1:10 K; (b) 1:25 K; (c)

1:50 K; (d) 1:250 K; (e) 1:500 K; and (f) 1:1 M
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Fig. 5.23 Experiment 23: a river network at different map scales. (a) 1:10 K; (b) 1:25 K; (c)

1:50 K; (d) 1:250 K; (e) 1:500 K; and (f) 1:1 M
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5.4.2.8 Discrete Polygon Groups

Fig. 5.24 Experiment 24: regularly shaped and distributed settlements. The settlements are

rectangular shaped and regular distributed in a block at different map scales. (a) 1:10 K; (b)

1:25 K; (c) 1:50 K; (d) 1:100 K; (e) 1:250 K; and (f) 1:500 K
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Fig. 5.25 Experiment 25: simple settlements at different map scales. The settlements have simple

and rectangular shapes and have different orientations and much parallelism. (a) 1:10 K; (b)

1:25 K; (c) 1:50 K; (d) 1:100 K; (e) 1:250 K; and (f) 1:500 K
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Fig. 5.26 Experiment 26: complex settlements at different map scales. The settlements are

complex shaped but basically orthogonal in the corners and show different orientations and little

parallelism. (a) 1:10 K; (b) 1:25 K; (c) 1:50 K; (d) 1:100 K; (e) 1:250 K; and (f) 1:500 K

5.4 Samples in Psychological Experiments 143



Fig. 5.27 Experiment 27: irregular-shaped settlements at different map scales. The settlements

have complex and nonconvex shapes with arbitrary angles in the corners and have arbitrary

orientations and little parallelism. (a) 1:10 K; (b) 1:25 K; (c) 1:50 K; (d) 1:100 K; (e) 1:250 K;

and (f) 1:500 K
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5.4.2.9 Connected Polygon Groups

Fig. 5.28 Experiment 28: a township consisting of patches at different map scales. (a) 1:500; (b)

1:1 K; (c) 1:2.5 K; (d) 1:5 K; (e) 1:10 K; and (f) 1:25 K
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Fig. 5.29 Experiment 29: polygonal boundary map at different scales. (a) 1:2 K; (b) 1:5 K; (c)

1:10 K; (d) 1:20 K; (e) 1:50 K; and (f) 1:100 K
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Fig. 5.30 Experiment 30: connected polygonal farmlands at different map scales. (a) 1:2 K; (b)

1:5 K; (c) 1:10 K; (d) 1:20 K; (e) 1:50 K; and (f) 1:100 K
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5.4.2.10 Maps

Fig. 5.31 Experiment 31:a street map at different map scales. (a) 1:10 K; (b) 1:25 K; (c) 1:50 K;

(d) 1:100 K; (e) 1:250 K; and (f) 1:500 K
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Fig. 5.32 Experiment 32: a categorical map with irregular patches at different map scales. (a)

1:10 K; (b) 1:25 K; (c) 1:50 K; (d) 1:100 K; (e) 1:250 K; and (f) 1:500 K
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Fig. 5.33 Experiment 33: a topographic map at different map scales. (a) 1:10 K; (b) 1:25 K; (c)

1:50 K; (d) 1:100 K; (e) 1:250 K; and (f) 1:500 K
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Fig. 5.34 Experiment 34: a categorical map with regular patches at different map scales. (a)

1:10 K; (b) 1:25 K; (c) 1:50 K; (d) 1:100 K; (e) 1:250 K; and (f) 1:500 K

5.4 Samples in Psychological Experiments 151



5.5 Statistical Analysis and Discussion

The similarity degrees calculated by the new models and obtained from the subjects

in the experiments (from Fig. 5.1 to Fig. 5.34) are listed in Table 5.1.

The spatial similarity degrees calculated by the new models and map scale

changes as well as the number of the subjects that agree/disagree with the calculated

credibility spatial similarity degrees are listed in Table 5.2.

A number of insights can be gained from the statistical data listed in Table 5.1,

Table 5.2, and the experiments.

First, similarity degrees are closely related to map scale change. It is obvious from

Table 5.2 that the similarity degrees increase with the corresponding map scale

Fig. 5.35 A sample used in the psychological experiments. The above shows a map at six

different scales. Below gives two groups of fractions in A and B. Each group comprises

five values, representing the five similarity degrees between (a) and each of the other five

objects/maps
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changes in any of the experiments. The smaller the similarity degree between

two objects/maps, the bigger the map scale change. This conclusion can also be

easily drawn from the similarity degrees obtained from the subjects in the

experiments.

Second, people are accustomed to describing spatial similarity relations qualita-

tively and fuzzily; however, quantitative spatial similarity relations do exist and

are used in many communities such as cartography, environment, and geogra-

phy. People sometimes describe spatial similarity degrees or compare the degree

of similarity between spatial objects using accurate values (for example, some-

body may say: “this small building is 20 % similar to that tall one but 90 %

similar to that short one”).

Third, each of the percentages of the subjects that agree with the similarity degrees

calculated by the new models is between 94 and 100 %. Therefore, the ten new

models are acceptable to the majority of people in the experiments.

Fourth, average deviation between the similarity degrees calculated by the new

models and that given by the subjects is 0.045, which shows that the similarity

degrees calculated by the new models are high accuracy.

The average deviation is calculated by Formula 5.1.

D ¼
Xf

i¼b

abs SimV
a, i � SimE

a, i

� �
= 34� 5ð Þ ð5:1Þ

where i¼ b, c, d, e, f.

Similarity degrees

, , , , .

You are required to complete the following work.

Tick at appropriate positions to tell if you can accept the similarity degrees in A.

A is acceptable ( )    A is not acceptable ( )  I have no idea 
( )

Use three values in [0,1] to represent the describe similarity degrees between (a) and the 

other five maps, respectively. 

Value 1: ( ) Value 2: ( )           Value 3: 
(               )

Value 4: ( ) Value 5: ( )           

Fig. 5.36 The answer sheet used in the psychological experiments
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Last, the new models are tested selecting 50 experienced cartographers as subjects,

which makes the experiments go easily. On the other hand, it limits the varieties

of the subjects and therefore decreases the credibility of the experimental results.

5.6 Chapter Summary

This chapter aims at validating the new models.

Firstly, it introduces the four basic approaches generally used for validation of

simulation models, including the approach depending on the model development

team, the approach depending on the model users and the model development team,

the approach depending on a third party, and the score model.

Secondly, it proposes the four strategies for invalidating new models, which

include Strategy 1: theoretical justifiability, Strategy 2: third party involvement,

Strategy 3: comparison with existing approaches, and Strategy 4: experts’ partici-

pation. Because Strategies 1 and 2 have been addressed in previous sections, it

emphasizes on the other two strategies.

Therefore, it then gives a design of a series of psychological experiments and

presents a number of samples to do the experiments taking many experienced

cartographers as subjects. The subjects are required to tell if the similarity degrees

calculated by the new models are acceptable. In addition, they need to tell the

similarity degrees between the spatial objects.

Finally, the data from the experiments are analyzed, and some conclusions are

drawn.
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Chapter 6

Applications of Spatial Similarity Relations

in Map Generalization

It has been mentioned in Chap. 1 that this book mainly aims at solving three

problems: (1) fundamental theory of spatial similarity relations in multiscale map

spaces, (2) calculation approaches/models/measures of spatial similarity relations

in multiscale map spaces, and (3) application of the theories of spatial similarity

relations in automated map generalization. Now that the first two problems have

been touched, it is pertinent to address the third one which includes the following

three important issues.

1. To find an approach to determine the relations between spatial similarity degree

and map scale change in map generalization

2. To find an approach to determine when to terminate a map generalization

algorithm/procedure

3. To find an approach to calculate the threshold values of a specific algorithm.

Here, the threshold values refer to those dependent on spatial similarity degrees

of the corresponding objects at different map scales but are input by human

interruption while the algorithm is executed in a map generalization system

6.1 Relations Between Map Scale Change and Spatial

Similarity Degree

Previous psychological experiments have discovered that similarity degree

increases with map scale change, but a quantitative description of their relations

is unknown yet. Therefore, the following sections focus on this problem and try to

solve it using mathematical methods. Because ten models have been proposed for

the corresponding ten types of objects in map generalization, they need to be

researched, respectively.
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6.1.1 Description of the Problem

Suppose that there is a mapM0 at scale S0, it is generalized to produce N mapsM1,

M2, . . .,MN at scales S1, S2, . . ., SN, respectively, and S1> S2> . . .> SN.

Cscale
i ¼ S0/Si is the map scale change from map M0 to map Mi, and Si is the scale

of map Mi; SimM0,Mi
is the similarity degree between map M0 and map Mi, where,

i¼ 1, 2, . . .,N.

The question is: how to get a quantitative relation between Cscale
i and SimM0,Mi

?

This question can be divided into two parts: “if Cscale
i is known, how to obtain

SimM0,Mi
?” and “if SimM0,Mi

is known, how to obtain Cscale
i ?” Each of them

corresponds with an expression that considers SimM0,Mi
and Cscale

i as the indepen-

dent variables, respectively.

SimM0,Mi
¼ f C scale

i

� � ð6:1Þ
C scale
i ¼ g SimM0,Mi

ð Þ ð6:2Þ

Some applications of the two expressions can be found in the communities of

cartography and geographical information science. For example, decision-makers

(e.g., urban planners) are often seen using a number of maps of an area at different

scales in order to get different levels of detail of the region. They may say: “how

similar the maps are!” Nevertheless, many decision-makers even do not know what

quantitative similarity is, let alone to tell the similarity degrees between the maps at

multiple scales.

In academic research work, such as map generalization, as well as in our daily

life, Expression (6.1) is much more popularly used than Expression (6.2), because

people usually know the map scales (i.e., Cscale
i ) but seldom know the similarity

degrees (i.e., SimM0,Mi
). This situation is popular in automated map generalization.

Hence, the following sections will focus on Expression (6.1).

6.1.2 Conceptual Framework for Solving the Problem

To simplify the expression, let x¼Cscale
i and y ¼ SimM0,Mi

. Expression (6.1) is

transformed to

y ¼ f xð Þ ð6:3Þ

In Table 5.2, it is easy to get that each experiment provides five pairs of x, y that can
be viewed as five pairs of coordinates in the Cartesian coordinate system, i.e.,

(SimV
a;b, DScalea,b), (Sim

V
a;c, DScalea,c), (Sim

V
a;d, DScalea,d), (Sim

V
a;e, DScalea,e), and

(SimV
a;f , DScalea,f). For example, the five pairs of coordinates in the experiment

5 are (0.91, 0.500), (0.78, 0.250), (0.52, 0.125), (0.44, 0.0625), and (0.36, 0.03125).
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Three or four experiments are employed to test each category of objects in the

experiments; hence each category of objects has 15 or 20 pairs of coordinates.

To find the relation between x¼Cscale
i and y ¼ SimM0,Mi

means to get formulas

that can calculate y by x. Because the relation between them can apparently be

expressed using empirical formulae, the curve fitting approach is employed to

construct formulae using the experimental data for the ten categories of objects.

Curve fitting is a process of constructing a curve or a mathematical function that

has the best fit to a series of data points (Arlinghaus 1994). Fitted curves should

capture the trend in the data across the entire range and can be used as an aid for

data visualization to infer values of the function where no data are available and to

summarize the relationships among two or more variables. Thus, it may be

employed to substantiate Function (6.3).

The curve fitting employed here comprises the following three steps, which is

addressed in detail before it is put into use.

1. Determine the data points that are used in the curve fitting. All of the data points
obtained from the experiments may be adopted. In addition, a special point

(1.000, 1.000) can be added in the point set obtained from the experiments for

each category of objects. This point refers the situation that a map, an object, or

an object group is totally similar to itself; thus, its similarity is 1.00 and its map

scale change is 1.00, too.

2. Select some functions as candidates. An infinite number of generic forms of

functions can be chosen as candidates for almost any shape curves. It is not easy

to select an appropriate function from numerous candidates to fit a series of

points, because an inappropriate candidate may be either under-fit or over-fit.

Potential candidate functions usually used in curve fitting comprise polynomials,

power functions, logarithmic functions, and exponential functions. Previous exper-

iments have revealed that the candidate functions should be monotonic decrease

functions, so only first- and second-order polynomials can be considered, because

the other polynomials (e.g., third- and fourth-order polynomials) have n� 2 (n is

the order of the polynomial) inflection point(s) which indicates that the curve is not

monotonic. Hence, the following functions will be taken into account.

y ¼ a1xþ a0 ð6:4Þ

y ¼ a2x
2 þ a1xþ a0 ð6:5Þ

y ¼ a2e
a1x þ a0 ð6:6Þ

y ¼ a1ln xð Þ þ a0 ð6:7Þ
y ¼ xa ð6:8Þ

3. Calculate the coefficient(s) of each function. The least square method (Lanczos

1988), a widely used method, is used to pick the coefficient(s) of each function

that best fits the curve to the data points.
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4. Compare the functions to determine the best fit one. R2, i.e., R-squared, is usually
used to compare the candidate functions. The greater an R2, the better its

corresponding curve. Thus, the curve with the greatest R2 among all of the

candidates is the best curve fitting the point set.

R2 can be calculated by the following method.

There is a function y¼ f(x). Its dependent variable y has n modeled/predicted

values ŷ i and n observed values yi. Here, i¼ 1, 2, . . ., n.
y is the mean of the observed data:

y ¼ 1

n

Xn
i¼1

yi;

where n is the number of observations.

The “variability” of the dataset is measured through different sums of squares:

SSTotal ¼
Xn
i¼1

�
yi � y

�
2 : the total sum of squares (proportional to the sample

variance)

SSRegression ¼
Xn
i¼1

�
ŷ i � y

�
2: the regression sum of squares, also called the explained

sum of squares

SSResidual ¼
Xn
i¼1

�
yi � ŷ i

�
2: the sum of squares of residuals, also called the residual

sum of squares

The most general definition of the coefficient of determination is:

R2 � 1� SSRegression
SSTotal

ð6:9Þ

R2 is a statistic that gives some information about the “goodness” of fit of a model.

In regression, the R2 coefficient of determination is a statistical measure of how well

the regression line approximates the real data points. An R2 of 1 indicates that the

regression line perfectly fits the data.

6.2 Formulae for Map Scale Change and Spatial

Similarity Degree

The formula for each of the ten types of objects is constructed using the method

discussed in Sect. 6.1.2 and is implemented by means of Microsoft EXCEL

(Version 2010).
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The following three steps are carried in determining each of the ten formulae.

1. Point used: present the points used in the curve fitting. The coordinates are from
Table 5.2.

2. Candidate curves: illustrate the candidate curves, the corresponding formulae,

and R2.

3. Formula: present the selected formula directly and give a short explanation if

needed.

6.2.1 Individual Point Objects

Points used (6 points, obtained from the data of Experiments 1, 2, and 3 listed in

Table 5.2)

(1, 1.00)

(2, 1.00), (4, 1.00), (8, 1.00), (16, 1.00), (32, 1.00)

Candidate curves

The feature of the point set is too obvious to describe using other curves but a

horizontally straight line (Fig. 6.1), because all of the coordinates of y are

equal to 1.

Formula

y ¼ 1 ð6:10Þ

6.2.2 Individual Linear Objects

Points used (21 points, obtained from the data of Experiments 4, 5, 6, and 7 listed in

Table 5.2)

(1, 1.00)

(2, 0.87), (4, 0.64), (8, 0.38), (16, 0.38), (32, 0.38),

(2, 0.91), (4, 0.78), (8, 0.52), (16, 0.44), (32, 0.36),

(2, 0.75), (4, 0.55), (8, 0.44), (16, 0.35), (32, 0.26),

(2, 1.00), (4, 1.00), (8, 1.00), (16, 1.00), (32, 1.00).

Candidate curves

Totally 21 points are taken into account. Sixteen points are used in the curve

fitting and the other five points (the last line in the point set) are considered

separately, because they are from the experiment that tested on a horizontal

line segment, and the five resulting points are collinear.

The five candidate curves are shown in Fig. 6.2.
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Fig. 6.1 Curve fitting for

individual points

Fig. 6.2 Curve fitting for individual linear objects
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Formula

Function y¼ 1.0164x� 0.343 should be selected, because its corresponding R2 is

the greatest.

Considering the special case, the function should be:

y ¼ 1, if the original line is a straight line, else

1:0164x�0:343

�
ð6:11Þ

6.2.3 Individual Areal Objects

Points used (21 points, obtained from the data of Experiments 8, 9, 10, and 11 listed

in Table 5.2)

(1, 1.00)

(2.5, 0.95), (10, 0.88), (25, 0.73), (50, 0.65), (125, 0.55),

(2.5, 0.91), (10, 0.82), (25, 0.66), (50, 0.52), (100, 0.52),

(2.5, 1.00), (10, 0.55), (25, 0.55), (50, 0.55), (100, 0.55),

(2.5, 1.00), (5, 1.00), (10, 1.00), (25, 1.00), 50, 1.00).

Candidate curves

Totally 21 points are taken into account. Sixteen points are used in the curve

fitting and the other five points (the last line in the point set) are considered

separately, because they are from the experiment that tested on a polygon

(a square-shaped building) that does not need to be simplified at any scale.

The five candidate curves are shown in Fig. 6.3.

Formula

Function y¼ ‐ 0.11 ln(x) + 1.0216 should be selected, because its corresponding

R2¼ 0.7998 is the greatest.

Considering the special case, the function should be:

y ¼ 1, if the original polygon is a square, else

�0:011 ln xð Þ þ 1:0216

�
ð6:12Þ

6.2.4 Point Clouds

Points used (16 points, obtained from the data of Experiments 12, 13, and 14 listed

in Table 5.2)

(1, 1.00)

(2, 0.76), (5, 0.57), (10, 0.36), (25, 0.21), (50, 0.15),

(2, 0.82), (5, 0.62), (10, 0.36), (25, 0.19), (50, 0.12),

(2, 0.71), (5, 0.58), (10, 0.40), (25, 0.18), (50, 0.11).
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Candidate curves

The five candidate curves are shown in 6.4.

Formula

The resulting function should be

y ¼ �0:217 ln xð Þ þ 0:9235 ð6:13Þ

because its corresponding R2¼ 0.9702 is the greatest in the five R2 of the

candidate curves.

6.2.5 Parallel Line Clusters

Points used (16 points, obtained from the data of Experiments 15, 16, and 17 listed

in Table 5.2)

Fig. 6.3 Curve fitting for individual areal objects
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(1, 1.00)

(2, 0.95), (5, 0.88), (10, 0.67), (25, 0.45), (50, 0.36),

(2, 0.93), (5, 0.83), (10, 0.76), (25, 0.51), (50, 0.42),

(2, 0.96), (5, 0.86), (10, 0.75), (25, 0.55), (50, 0.40).

Candidate curves

The five candidate curves are shown in Fig. 6.5.

Formula

The resulting function should be

y ¼ 0:0003x2 � 0:0285xþ 0:9977 ð6:14Þ

because its corresponding R2¼ 0.9786 is the greatest in the five R2 of the

candidate curves.

Fig. 6.4 Curve fitting for point clouds
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6.2.6 Intersected Line Networks

Points used (16 points, obtained from the data of Experiments 18, 19, and 20 listed

in Table 5.2)

(1, 1.00)

(2, 0.77), (5, 0.52), (10, 0.31), (25, 0.22), (50, 0.18),

(2, 0.75), (5, 0.55), (10, 0.37), (25, 0.28), (50, 0.19),

(2, 0.68), (5, 0.49), (10, 0.34), (25, 0.28), (50, 0.16).

Candidate curves

The five candidate curves are shown in Fig. 6.6.

Fig. 6.5 Curve fitting for parallel line clusters

166 6 Applications of Spatial Similarity Relations in Map Generalization

http://dx.doi.org/10.1007/978-3-319-09743-5_5#Tab2


Formula

The resulting function should be

y ¼ 1:0022x�0:439 ð6:14Þ

because its corresponding R2¼ 0.9754 is the greatest in the five R2 of the

candidate curves.

6.2.7 Tree-Like Networks

Points used (16 points, obtained from the data of Experiments 21, 22, and 23 listed

in Table 5.2)

(1, 1.00)

(2.5, 0.82), (5, 0.55), (10, 0.27), (50, 0.21), (100, 0.17),

Fig. 6.6 Curve fitting for intersected line networks
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(2.5, 0.63), (5, 0.49), (10, 0.32), (50, 0.22), (100, 0.15),

(2.5, 0.74), (5, 0.56), (10, 0.29), (50, 0.23), (100, 0.15).

Candidate curves

The five candidate curves are shown in Fig. 6.7.

Formula

The resulting function should be

y ¼ 0:9572x�0:398 ð6:16Þ

because its corresponding R2 is the greatest.

Fig. 6.7 Curve fitting for tree-like networks
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6.2.8 Discrete Polygon Groups

Points used (21 points, obtained from the data of Experiments 24, 25, 26, and

27 listed in Table 5.2)

(1, 1.00)

(2.5, 0.68), (5, 0.38), (10, 0.31), (25, 0.16), (50, 0.16),

(2.5, 0.82), (5, 0.58), (10, 0.33), (25, 0.21), (50, 0.15),

(2.5, 0.85), (5, 0.51), (10, 0.31), (25, 0.22), (50, 0.14),

(2.5, 0.74), (5, 0.47), (10, 0.29), (25, 0.25), (50, 0.14).

Candidate curves

The five candidate curves are shown in Fig. 6.8.

Fig. 6.8 Curve fitting for discrete polygon groups
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Formula

The resulting function should be

y ¼ 1:1381x�0:53 ð6:17Þ

because its corresponding R2¼ 0.9601 is the greatest in the five R2 of the

candidate curves.

6.2.9 Connected Polygon Groups

Points used (16 points, obtained from the data of Experiments 28, 29, and 30 listed

in Table 5.2)

(1, 1.00)

(2, 0.88), (5, 0.76), (10, 0.61), (20, 0.44), (50, 0.28),

(2.5, 0.74), (5, 0.57), (10, 0.55), (25, 0.38), (50, 0.21),

(2.5, 0.85), (5, 0.72), (10, 0.65), (25, 0.46), (50, 0.22).

Candidate curves

The five candidate curves are shown in Fig. 6.9.

Formula

The resulting function should be

y ¼ �0:187 ln xð Þ þ 0:9973 ð6:18Þ

because its corresponding R2¼ 0.9443 is the greatest in the five R2 of the

candidate curves.

6.2.10 Maps

Points used (21 points, obtained from the data of Experiments 31, 32, 33, and

34 listed in Table 5.2)

(1, 1.00)

(2.5, 0.53), (5, 0.39), (10, 0.23), (25, 0.22), (50, 0.15),

(2, 0.82), (5, 0.67), (10, 0.46), (25, 0.33), (50, 0.18),

(2, 0.80), (5, 0.69), (10, 0.47), (25, 0.27), (50, 0.17),

(2, 0.88), (5, 0.68), (10, 0.46), (25, 0.39), (50, 0.21).

Candidate curves

The five candidate curves are shown in Fig. 6.10.
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Formula

The resulting function should be

y ¼ �0:194 ln xð Þ þ 0:9118 ð6:19Þ

because its corresponding R2¼ 0.8502 is the greatest in the five R2 of the

candidate curves.

6.3 Discussion About the Formulae

Some insights and conclusions can be gained from the formulae for calculating the

relations between map scale change and spatial similarity degree.

1. There are four logarithmic functions, four power functions, and two polynomials

(the linear function can be viewed as a special case of polynomials) in the

Fig. 6.9 Curve fitting for connected polygon groups
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selected functions, but no exponential function is used (Table 6.1). Thus, it is

necessary but difficult to provide an identical formula for different types of

objects.

2. The ten formulae in Table 6.1 can be used to calculate the spatial similarity

degree (y) if the map scale change (x) between an original map and a generalized

map is given.

On the other hand, the corresponding inverse functions of the ten formulae can

be obtained, which can be used to calculate the map scale change between a map

and its generalized version if their spatial similarity degree is known.

3. The domain of the ten formulae is identical, i.e., x2 (1,1); their corresponding

range is also identical, i.e., y2 [0, 1].

4. The formulae can be used to interpolate any values belonging to the domain (and

belonging to the range if the inverse functions are used), though the formulae

only have been experimented by a few commonly used map scales.

For example, there is a road network at scale 1:1,000, if it is generalized to get

three maps at scale 1:1,950, 1:5,650, and 1:270,000, respectively. The spatial

similarity degrees can be calculated by formula y¼ 1.0022x� 0.439.

Fig. 6.10 Curve fitting for maps
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For the map at scale 1:1,950,

y ¼ 1:0022x�0:439 ¼ 1:0022� 1:950-0:439 � 0:748:

For the map at scale 1:5,650,

y ¼ 1:0022x�0:439 ¼ 1:0022� 5:650-0:439 � 0:469:

For the map at scale 1:270,000,

y ¼ 1:0022x�0:439 ¼ 1:0022� 270-0:439 � 0:086:

5. The formulae are based on limited number of psychological experiments. Hence,

they can be “adjusted” by using more samples in the experiments.

6.4 Approach to Automatically Terminate a Procedure

in Map Generalization

Map generalization is a process that simplifies an original map for the purpose of

producing a smaller scale map. In semiautomated map generalization, this process

is implemented by a series of algorithms. The map is usually divided into many

feature layers, and each feature layer is generalized by one or more algorithms.

Table 6.1 Formulae for calculating spatial similarity degrees using map scale changes

Type of objects

Type of the

formula Formula

Individual point

objects

Polynomial

(Linear)

y¼ 1

Individual linear

objects

Power
y ¼ 1, if the original line is a straight line, else

1:0164x�0:343

�

Individual areal

objects

Logarithmic
y ¼ 1, if the original polygon is a square, else

�0:011 ln xð Þ þ 1:0216

�

Point clouds Logarithmic y¼� 0.217 ln(x) + 0.9235

Parallel line clusters Polynomial y¼ 0.0003x2� 0.0285x + 0.9977

Intersected line

networks

Power y¼ 1.0022x� 0.439

Tree-like networks Power y¼ 0.9572x� 0.398

Discrete polygon

groups

Power y¼ 1.1381x� 0.53

Connected polygon

groups

Logarithmic y¼� 0.187 ln(x) + 0.9973

Maps Logarithmic y¼� 0.194 ln(x) + 0.9118
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As is well known, each algorithm is a simulation of cartographers’ work in map

simplification, which means it generalizes the corresponding map feature layer

gradually and tentatively, and presents intermediate maps one by one to cartogra-

phers to determine which one is satisfactory and if the generalization can be

terminated. The disadvantage of this process is obvious: human’s interference

decreases the efficiency of map generalization and increases the uncertainty of

the resulting map (because it is possible for different cartographers to select

different maps as the resulting map). A crucial reason for cartographers’ determin-

ing when an algorithm can be terminated is that no appropriate methods have been

developed for calculating spatial similarity degrees between maps and between map

feature layers.

Now that a series of models have been proposed for calculating spatial similarity

degrees, an approach to automatically determining when to terminate an algorithm

or a system composed of many algorithms in map generalization is proposed here.

Step 1: calculate the spatial similarity degree between the original objects/map

and the resulting objects/map using the corresponding appropriate formula (i.e.,

Formula (6.10) to Formula (6.19)).

Step 2: simplify the objects/map using the algorithm/system, which generates a

series of intermediate objects/maps after each round of generalization. Calculate the

spatial similarity degree between the original objects/map and the intermediate

objects/map using the corresponding model proposed in Chap. 4. The spatial

similarity degree between the original objects/map and the intermediate objects/

map generated after the ith round of generalization is called yi.
Step 3: if yi> y, go to step 2;

else if in this case, the model that is adopted is Formula (4.15), because the type

of the generalized objects belongs to point clouds.

and i¼ 1, go to step 4;

else if abs(yi� y)� abs(yi� 1� y), the intermediate objects/map generated after the

(i� 1)th round of generalization is the resulting objects/map;

else, go to step 4.

Step 4: take the intermediate objects/map generated after the ith round of

generalization as the resulting objects/map, and end the procedure.

This approach can be demonstrated by means of simplifying a point cloud using

the Voronoi-based algorithm (Yan and Weibel 2008). Suppose that a point cloud

map at scale 1:10 K (Fig. 6.11) is simplified using the Voronoi-based algorithm to

generate a map at scale 1:100 K. In this case, the model that should be adopted to

calculate similarity degree taking map scale change as dependent variable is

Formula (4.15), because the type of the generalized objects belongs to point clouds.

Hence, the similarity degree can be obtained:

y ¼ �0:217 ln xð Þ þ 0:9235 ¼ �0:217 ln 10ð Þ þ 0:9235 � 0:42

The point cloud is deleted by iteratively constructing Voronoi diagrams. It gener-

ates an intermediate point cloud after each round of deletion. The spatial similarity

degree between the original point cloud and each intermediate point cloud is
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calculated using the corresponding model proposed in Chap. 4 and it is compared

with y.
After the fifth round of deletion (Fig. 6.11c), y5¼ 0.38, so y5< y.
According to the previous calculation using the same model for calculating y5,

y4¼ 0.44. Thus, it is clear abs(y5� y)> abs(y4� y), and the resulting point cloud

should be the one obtained after the fourth round of deletion (Fig. 6.11b).

6.5 Calculation of the Distance Tolerance

in the Douglas–Peucker Algorithm

To simplify geometry to suit the displayed resolution, various line simplification

algorithms exist, while the Douglas–Peucker algorithm is the most well known

(Ramer 1972; Douglas and Peucker 1973; Hershberger and Snoeyink 1992). This

algorithm is for reducing the number of points in a curve that is approximated by a

series of points. The purpose of the algorithm is, given a curve composed of line

segments, to find a similar curve with fewer points. The simplified curve consists of

a subset of the points that defined the original curve.

6.5.1 The Douglas–Peucker Algorithm and Its
Disadvantages

Given that the original curve is an ordered set of points or lines and the distance

tolerance is ε> 0, the algorithm keeps/deletes points by recursively dividing the

curve (Fig. 6.12).

Fig. 6.11 Demonstration of the point cloud generalization algorithm. (a) A point cloud with

173 points at scale 1:10 K. The number of points weighted 1 is 4 points, and the number of points

weighted 2 is 63, and the number of points weighted 4 is 69, and the number of points weighted 8 is

37; (b) generalized point cloud at scale 1:100 K with 58 points retained, among which the number

of points weighted 2 is 4, and the number of points weighted 4 is 23, and the number of points

weighted 8 is 31; and (c) generalized point cloud at scale 1:100 K with 49 points retained, among

which the number of points weighted 2 is 2, and the number of points weighted 4 is 18, and the

number of points weighted 8 is 29
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The algorithm first automatically marks the first and last point to be kept.

Second, it finds the point (this point is called the worst point) that is furthest from

the line segment with the first and last points as end points. If the distance from

the point to the line segment is less than ε, then any points currently not marked

to keep can be discarded. Otherwise, if the point furthest from the line segment is

greater than ε from the approximation then that point must be kept. The algorithm

recursively calls itself with the first point and the worst point and then with the

worst point and the last point. When the recursion is completed a new output

curve can be generated consisting of all (and only) those points that have been

marked as kept.

Although the Douglas–Peucker algorithm has been the most popular algorithm

used in line simplification in map generalization, it is not a fully automatic

algorithm, because cartographers often need to input the distance tolerance ε in

the execution of the algorithm which decreases the efficiency of line simplification.

Hence, it is of importance to find an approach to calculate ε.
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Fig. 6.12 Principle of the Douglas–Peucker algorithm. (a) Original curve; (b) link AI and keep

points A, I and H, because A and I are the first point and the last point, and H is the farthest point to

AI and the distance is greater than ε; (c) link AH and keep point E, because it is the farthest point to
AE and the distance is greater than ε; (d) link AE and EH, and keep D and G, because they are the
farthest points to AE and EH, respectively, and the two distances are greater than ε; (e) link AD and

keep C, and link EG and keep F, because they are the farthest points to AD and EG, respectively,
and the two distances are greater than ε; and (f) B is the last point to be kept, and the number, saym,
beside each point denoting that this point can be deleted in the mth round of deletion. Here, ε is
supposed to tend to be 0 in order to demonstrate the algorithm clearly
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6.5.2 Approach to Calculating the Distance Tolerance
for the Douglas–Peucker Algorithm

The problem can be described as follows: a series of digital line maps at a specific

scale (say, S0) are planned to be generalized to produce the maps at a given smaller

scale (say, S1) using the Douglas–Peucker algorithm. How can the distance toler-

ance (ε) be obtained so that the execution of the Douglas–Peucker algorithm

becomes fully automatic?

The problem can be analyzed and solved in the following way.

First, a theoretical spatial similarity degree (say, yT) can be calculated by

Formula (6.11) because the map scale change (i.e., S0/S1) can be obtained. Consid-

ering ε has no effects to straight lines in map generalization, yT can be calculated by
yT¼ 1.0164� (S0/S1)

� 0.343.

Second, ε is an imperial and therefore fuzzy value, and it is the criterion for all

curves simplification. On the other hand, ε is closely related to spatial similarity

degrees and map scale changes in curve simplification. A greater ε means a greater

map scale change and a smaller spatial similarity degree between the original and

the simplified curve. In addition, ε does not serve for one curve. Therefore, it should
be plausible to obtain ε by calculating its relations with spatial similarity degrees

taking the curves on the original maps as samples.

Third, yT is the criterion for evaluating if a curve simplified from another curve at

scale S0 is appropriate to appear on the map at scale S1, which means the similarity

degree (say, yP) between the simplified curve and the original curve should be

approximately equal to yT. On the other hand, a simplified curve corresponds to a

distance tolerance. Hence, if yP can be obtained, its corresponding distance toler-

ance is possible to be calculated. According to previous work in Chap. 4, Formula

(4.6) may be used to calculate yP.
Last, because each simplified curve corresponds to a yP, and each yP corresponds

to a distance tolerance, it is reliable to select a number of curves so that an average

value of a number of distance tolerance can be obtained as the resulting distance

tolerance.

Suppose that εo¼ 0, N (N> 1) curves on the original maps are selected as

samples. εo can be used as the substitute of ε to determine the order of point

selection of each curve (e.g., Fig. 6.12). Obviously, the order of point deletion

can be got by the reversion of the point selection.

As far as a sample curve is concerned, after the order of point deletion is

determined, a series of intermediate curves (e.g., Fig. 6.13) may be formed when

the original curve is gradually simplified according to the point deletion order

calculated by the Douglas–Peucker algorithm if the distance tolerance is 0.

After the kth round of point deletion, the similarity degree (ykP) between the new

curve and the original curve is calculated using Formula (4.16). If ykP > yT, continue
with the next round of point deletion; else end point deletion procedure and

determine which curve is more appropriate to be viewed as the resulting curve.
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If abs(ykP � yT)< abs(yk� 1
P � yT) the curve formed after the kth round of point

deletion is the resulting curve; otherwise, the one formed after the (k� 1)th round of

point deletion is the resulting curve. The greatest distance (i.e., the dotted line in

Fig. 6.13) in the previous round of point deletion used to evaluate if a point can be

retained is the distance tolerance. For example, if the curve in Fig. 6.13d is the

resulting curve, the length values of dotted lines in Figs. 6.13b, c are compared.

Obviously, the length of the dotted line from point D to line AE is the distance

tolerance.

If the distance tolerance of the ith sample curve is εi, ε is the average of the

N tolerance values obtained from the N sample curves.

ε ¼

XN
i¼1

εi

N
ð6:20Þ
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Fig. 6.13 Gradual deletion of the points, taking Fig. 6.12 as an example. (a) Original points;

(b) B is deleted in the first round of deletion; (c) C and F are deleted in the second round of

deletion; (d) D and G are deleted in the third round of deletion; (e) E is deleted in the fourth round

of deletion; and (f)H is deleted in the last round of deletion, and only the first and the last points are

retained
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6.5.3 An Example for Testing the Approach

To test the approach for calculating the distance tolerance of the Douglas–Peucker

algorithm, a topographic map at scale 1: 100 K is selected which comprises a

number of contour lines (Fig. 6.14). The study region is in Hubei Province, China.

The left-bottom of the map is (10402877.801, 3046627.198), and the right-top is

(10404262.01, 3050953.432). The contour interval is 20 m. The purpose here is to

get the distance tolerance of the Douglas–Peucker algorithm so that the map can be

generalized to get a map at scale 1:200 K.

First, the theoretical spatial similarity degree may be calculated by Formula

(6.11):

yT ¼ 1:0164� S0
S1

� �-0:343
¼ 1:0164� 1=100000

1=200000

� ��0:343

¼ 1:0164� 2�0:343

¼ 0:80133:

Second, three contour lines are used as the representatives to calculate the distance

tolerance, i.e., L1, L2, and L3 in Fig. 6.14.

Third, each of the three contours is “simplified” using the Douglas–Peucker

algorithm. Taking L1 as an example, in the process of line simplification, record

each intermediate distance tolerance and calculate the similarity degree (say, yP)
between each intermediate simplification result and the original contour. Select the

intermediate contour when its corresponding yP is most close to yT. Then the

corresponding distance tolerance (say, εL1) is viewed as the most appropriate

distance tolerance for simplifying L1.

Fig. 6.14 Original topographic map at scale 1:100 K
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By the same method, the corresponding distance tolerance for L2 (say, εL2) and
L3 (say, εL3) can also be obtained.

εL1 ¼ 111:23m

εL2 ¼ 131:77m

εL3 ¼ 124:14m

Therefore, the resulting distance tolerance can be obtained by Formula (6.21),

ε ¼

XN
i¼1

εi

N
¼ 111:23þ 131:77þ 124:14

3
¼ 122:57m

Using ε¼ 122.57 m as the distance tolerance in the Douglas–Peucker algorithm to

simplify the contour lines, the resulting map can be generated (Fig. 6.15).

After simplification of the contour lines, a question arises: “is the resulting map

acceptable?” In other words, “is the tolerance distance appropriate?” The Radical

Law (i.e., the Principle of Select) proposed by Töpfer and Pillewizer (1966) may be

used to evaluate the resulting map, because it gives a formula for calculating the

number of points retained on the resulting maps:

Nr ¼ No

ffiffiffiffiffi
So
Sr

r
: ð6:21Þ

where Nr is the number of points that retained on the resulting contours, No is the

number of points on the original contours, So is the denominator of the original map

scale, and Sr is the denominator of the resulting map scale.

Fig. 6.15 Simplified topographic map at scale 1:200 K
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Taking Fig. 6.14 (original map) and Fig. 6.15 (resulting map) as an example,

So¼ 100K, Sr¼ 200K. According to the original database, No¼ 988; so

Nr ¼ No

ffiffiffiffiffi
So
Sr

r
¼ 988

ffiffiffiffiffiffiffiffiffiffiffiffi
100K

200K

r
¼ 698

In the light of the resulting database, the number of the points retaining on the

contours is 655. Hence, the deviation is D¼ (698� 655/698)¼ 6.2%. This reveals

that the resulting contours are acceptable.

6.6 Chapter Summary

This chapter addresses the three typical applications of spatial similarity relations in

automated map generalization.

First, it discusses the relations between map scale change and spatial similarity

degree in map generalization and proposes a general approach to quantitatively

describing their relation. Further, ten formulae corresponding to the ten types of

objects are given that can calculate spatial similarity degrees regarding map scale

change as independent variables.

Second, it presents an approach for terminating a map generalization algorithm/

system if the original map scale and resulting map scale are given. The approach is

demonstrated taking a Voronoi-based algorithm for point clouds simplification as

an example.

Third, it proposes an approach to calculating the distance tolerance used in the

Douglas–Peucker algorithm in curve simplification. The approach serves for map

generalization and can obtain the distance tolerance if the original map scale and

the resulting map scale are known. The traditional Douglas–Peucker algorithm may

become fully automatic with the help of this approach.
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Chapter 7

Conclusions

7.1 Overall Summary

This book focuses on spatial similarity relation. It aims at proposing the fundamen-

tal theory of spatial similarity relation and the models for calculating spatial

similarity relations in multiscale map spaces. The theory and the models can

serve for automated map generalization.

For the purpose of obtaining quantitative relations between spatial similarity

degree and map scale change, this book classifies the research objects into ten

categories and presents three major objectives in Chap. 1: (1) fundamental theories

of spatial similarity relations, including the definitions, features, classification

systems of spatial similarity relations, and the factors that affect humans’ judgment

of similarity in two-dimensional map spaces; (2) approaches to calculating spatial

similarity relations between two individual objects, or between two object groups,

or between two maps in multiscale map spaces; and (3) applications of the theories

of similarity relations in automated map generalization, including calculating

similarity degrees between a map and its generalized counterparts, calculating the

threshold values of the Douglas–Peucker algorithm, and determining when a map

generalization system/algorithm can be terminated.

A systematic review of literature is presented in Chap. 2, including the defini-

tions and features of similarity in various communities, a classification system of

spatial similarity relations, and the calculation models of similarity relations in the

communities of psychology, computer science, music, and geography, as well as a

number of raster-based approaches for calculating similarity degrees between

maps/images. The review not only summarizes previous achievements in spatial

similarity relations and lays a theoretical foundation for this study, but also clearly

shows the gap between previous achievements and the objectives of this book.

Chapter 3 investigates the fundamental theory of spatial similarity relations

systematically. It gives a definition of spatial similarity relations/degrees based on

the Set Theory, addresses the ten features of spatial similarity relations and the
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factors that affect human’s spatial similarity judgments, and proposes a classifica-

tion system of spatial similarity relations. The weights of the factors that affect

human’s spatial similarity judgments have been achieved by psychological

experiments.

Chapter 4 proposes the ten models for calculating spatial similarity degrees of

the ten types of objects at different map scales, i.e., individual points, individual

lines, individual polygons, point clouds, parallel lines clusters, intersected line

networks, tree-like networks, discrete polygon groups, connected polygon groups,

and maps. Each of these ten models takes into account the corresponding factors

that affects human’s similarity judgments and uses the weights of the factors

obtained by psychological experiments presented in Chap. 3.

In Chap. 5, four strategies are employed, i.e., theoretical justifiability, third part

involvement, comparison with existing approaches, and experts’ participation, to

validate the ten models. The first three strategies are briefly addressed; on the

contrary, the last one, various psychological experiments accompanied by the

third strategies, is discussed in detail. This has proved that the ten models are

acceptable and therefore can be put into use in map generalization.

In Chap. 6, the proposed ten models are used in map generalization at three

aspects. First, they are used to construct the ten formulae that can determine

quantitative relations between spatial similarity degree and map scale change of

the corresponding ten types of objects in map generalization. Second, an approach

is proposed based on the ten models that can determine when to terminate a map

generalization system/algorithm in the process of map generalization. Third, the

models are used to calculate the distance tolerance of the Douglas–Peucker algo-

rithm so that the algorithm can become fully automatic in map generalization.

7.2 Contributions

Although various achievements have been made on similarity relations in many

fields including image processing, few books and articles can be found that research

on spatial similarity relations in vector map spaces. This book emphasizes on

approaches to calculating spatial similarity degrees in multiscale map spaces and

has made innovative contributions in the following aspects.

First, the fundamental issues of spatial similarity relations are explored, i.e. (1) a

classification system is proposed that classifies the objects processed by map

generalization algorithms into ten categories; (2) the Set Theory-based defini-

tions of similarity, spatial similarity, and spatial similarity relation in

multiscale map spaces are given; (3) mathematical language-based descrip-

tions of the features of spatial similarity relations in multiscale map spaces are

addressed; (4) the factors that affect human’s judgments of spatial similarity

relations are proposed, and their weights are also obtained by psychological
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experiments; and (5) a classification system for spatial similarity relations in

multiscale map spaces is proposed.

Second, the models for calculating spatial similarity degrees for the ten types of

objects in multiscale map spaces are proposed, and their validity is tested by

psychological experiments. If a map (or an individual object, or an object group)

and its generalized counterpart are given, the models can be used to calculate the

spatial similarity degrees between them.

Third, the proposed models are used to solve problems in map generalization:

(1) ten formulae are constructed that can calculate spatial similarity degrees by

map scale changes in map generalization; (2) an approach based on spatial

similarity degree is proposed that can determine when to terminate a map

generalization system or an algorithm when it is executed to generalize objects

on maps, which may fully automate some relevant algorithms and therefore

improve the efficiency of map generalization; and (3) an approach is proposed to

calculate the distance tolerance of the Douglas–Peucker algorithm so that the

Douglas–Peucker algorithm may become fully automatic.

7.3 Limitations

Despite having made many achievements in spatial similarity relation, the theory

and the approaches proposed in this study possess several limitations.

First, spatial similarity relations are usually described using qualitative termi-

nologies, and people, including cartographers and geographers, are not accustomed

to quantitative descriptions of spatial similarity relation; hence, it is difficult for

cartographers and geographers to accept and use the mathematical formulae and

models proposed in this study in short period of time.

Second, the proposed formulae and models are based on psychological experi-

ments. As is well known, the more subjects and samples (i.e., maps and objects) the

experiments possess, the more accurate the experiments are, and the better the

models and the formulae are. Nevertheless, the number of the surveyed subjects and

the number of used samples in the psychological experiments are limited, which is a

negative aspect for the accuracy of the formulae and the models.

As a final note, spatial similarity relation roots itself in human’s spatial cogni-

tion. It may be slightly different from people to people due to their difference in age,

gender, educational background, culture, etc. Thus, the adaptability of the models

and formulae should be taken into consideration before they are widely used.

7.3 Limitations 185



7.4 Recommendations for Further Research

Further research of this issue may target on the following areas.

First, more experiments should be done to improve the accuracy and adaptability

of the proposed models and formulae. The new experiments should select more

typical maps and map objects as samples, and find more subjects from different

cultural background.

Second, is it possible to design an identical and simple model for the ten models

proposed in Chap. 4 that can calculate spatial similarity degrees between two maps/

objects at different scales? In the meanwhile, is it possible to construct an identical

and simple formula for the ten formulae proposed in Chap. 6 that can calculate

spatial similarity degree taking map scale change as independent variable?

The significance of solving the two problems is too evident to discuss further.

Third, it is important to find the algorithms and operators that are not parameter

free and closely related to spatial similarity relation and map scale change. More

importantly, it is worth exploring the approaches for automatically obtaining the

parameters used in these algorithms and operators with the help of the models and

formulae proposed in this study. Progress in this area may lay good foundation for

full automation of map generalization.

Additionally, it is of great use to tell the similarity degree of two arbitrary vector

maps. The ability to objectively compare maps is fundamental to map analysis yet

is often neglected by far, and visual comparison is far too limited. The theory of

spatial similarity relation in multiscale map spaces provides a way for comparing

maps, whether the theory can be extended to compare maps in general map spaces

is worth of further investigation.
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Appendix
List of Basic Logic Symbols

Symbol Name Explanation Example

) implies; if

. . . then
A)B is true just in the case that

either A is false or B is true, or both

x¼ 2) x2¼ 4 is true, but

x2¼ 4) x¼ 2 is in general

false (since x could be �2)
!
� ! and�may mean the same as )
, if and only

if; if; means

the same as

A, B is true just in case either both

A and B are false, or both A and B

are true

x + 5¼ y + 2 , x + 3¼ y

�
$
Ø not The statement ØA is true if and only

if A is false

Ø(ØA) , A x 6¼ y , Ø(x¼ y)

˜

A slash placed through another

operator is the same as “Ø” placed
in front

!

^ and The statement A ^ B is true if A and

B are both true; else it is false

n< 4 ^ n >2 , n¼ 3 when

n is a natural number•

&

_ or The statement A _ B is true if A or B

(or both) are true; if both are false,

the statement is false

n� 4 _ n� 2 , n 6¼ 3 when

n is a natural number+

k
L

xor The statement A
L

B is true when

either A or B, but not both, are true.

A ⊻ B means the same

(ØA)
L

A is always true.

A
L

A is always false⊻

⊤ top, verum The statement ⊤ is unconditionally

true

A)⊤ is always true

T

1

⊥ bottom,

falsum

The statement ⊥ is unconditionally

false

⊥)A is always true

F

0

8 for all; for

any; for each

8 x: P(x) or (x) P(x) means P(x) is
true for all x

8 n 2 N: n2� n

()

∃ there exists ∃ x: P(x) means there is at least one

x such that P(x) is true
∃ n 2 N: n is even

(continued)
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(continued)

Symbol Name Explanation Example

∃! there exists

exactly one

∃! x: P(x) means there is exactly one

x such that P(x) is true
∃! n 2 N: n + 5¼ 2n

:¼ is defined as x :¼ y or x � y means x is defined to
be another name for y (but note that
� can also mean other things, such

as congruence). P:, Q means P is

defined to be logically equivalent to

Q

cosh x :¼ (1/2)(exp x + exp

(�x)) A XOR B :, (A _ B) ^
Ø(A ^ B)

�
:,

‘ provable x ‘ y means y is provable from
x (in some specified formal system)

A ! B ‘ ØB ! ØA

⊨ entails x ⊨ y means x semantically entails y A ! B ⊨ ØB ! ØA
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