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ABSTRACT
Timely crop classification maps are essential for the agricul-
ture sector to ensure food security and understand the state
and trend of crop growth. Though there are several crop mon-
itoring systems in operation, early-season crop classification
is still in demand. We developed a robust crop growth es-
timation technology previously with synthetic aperture radar
(SAR) imagery for canola in Canadian Prairies, and we are
extending the procedure to enable accurate early-season crop
classification. Here we present a dynamic crop classification
technique with RADARSAT-2 (RS2) polarimetric SAR (Pol-
SAR) imagery for the classification of canola, corn, soybean
and wheat, the four major crop types in Canadian Prairies.
The procedure achieved over 90% classification accuracy of
the major four crop types in the testing area by the end of July.

Index Terms— Agriculture, crop classification, synthetic
aperture radar, RADARSAT-2

1. INTRODUCTION

Timely and accurate crop monitoring is an essential need
for Canada as one of the largest producers and exporters of
agricultural products in the world. Remote sensing has been
the indispensable tool for such task and current annual crop
inventory (ACI) are produced by Agriculture and Agri-food
Canada (AAFC) at end of each season. However, more timely
and accurate crop inventory information is still in demand for
monitoring and prediction purposes. This study aims to pro-
duce a system to generate crop classification maps as early
as possible in growing seasons to support better decision-
making for the government and the industry.
Most successful crop classifiers utilize all-season data, es-
pecially mid-season and late-season. Example literature in
[1, 2, 3, 4] used multi-temporal images from both electro-
optical data and multi-polarization SAR images at different
frequency bands to classify different crops. Around 90%
accuracy for different types of crops can be achieved if mid-
season and end-season data is available.
Early season crop classification is more challenging as most

crops have similar reflectance patterns until certain growth
stages. In [5] a mapping procedure to discriminate winter
crops from spring/summer crops was developed without dif-
ferentiating individual crop types. [6] studied early-season
classification of corn, soybean and pasture-forage using both
RS2 and TerraSAR-X (TSX) data. Results showed TSX
can deliver accurate maps of corn and soybeans (above 85%
accuracy) by end of June. Current studies on early-season
classification are still limited to using one season of data or
limited crop types. In addition, observed frequent cloud cov-
erage in spring would limit the availability of optical satellite
images, so that SAR sensors could potentially deliver crucial
information for early-season classification.
One of the factors affecting crop phenological development
is the accumulated heat over the growing season. Without
extreme conditions such as drought, flood or disease, the
accumulated heat is directly affected by temperature. This
causes large year-to-year and region-to-region variations in
calendar dates of crop growth stages. In this project, accumu-
lated heat, represented by Growing Degree Days (GDD), is
used instead of calendar days to make the product cross-year
and cross-region compatible. The method has been proven
effective in predicting growth stages of canola and it’s cross-
region and cross-season compatible in our previous research
[7]. We are extending this method to other crop types to
enable successful early-season crop classification.

2. DATA AND STUDY AREA

The proposed study areas (SA) are in the Prairie Provinces
in Canada are: Carman, Manitoba (SA1), Red deer, Al-
berta (SA2) and Rosthern, Saskatchewan (SA3), with similar
topography but different crop seasoning. The data for devel-
oping the algorithm include archived RS2 quad polarization
(quad-pol) images in SA1 in previous Soil Moisture Active
Passive Validation Experiment (SMAPVEX) campaigns in
2012 and 2016, as well as acquisitions in 2014 and 2017.
RS2 quad-pol images in SA2 and SA3 were acquired from
the archives. There are 10, 4, 75 and 20 scenes in SA1 in
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Table 1. RS2 polarimetric features

Features Details

Cloude-Pottier
decomposition [9]

Alpha, Beta, Delta, Gamma, Lambda, Entropy,
Anisotropy

Reflectivity ratios SHH/SHV , SHH/SV V , SHV /SV V

Differential
reflectivity ratios

(SHH − SV V )/SV V , (SHH − SHV )/SHV ,
(SHV − SV V )/SV V

Alternative
polarimetric
parameters

Conformity coefficient, Scattering predominance,
Scattering diversity, Degree of purity,
Depolarization index

SHH denotes the intensity of the horizontal transmit and horizontal
receive (HH) polarization, SV V denotes the intensity of the vertical
transmit and vertical receive (VV) polarization, SHV denotes the
intensity of the horizontal transmit and vertical receive (HV) polarization

2012, 2014, 2016 and 2017, respectively, plus 24 and 12
scenes in 2017 for SA2 and SA3, respectively. Field obser-
vations of crop growth stage data was provided by AAFC
during the above period. Corresponding daily weather data at
nearest weather stations was acquired from the Government
of Canada. The ground truth of the classification was col-
lected from ACI maps produced by AAFC [8] in 2017.
In this study, we used all RS2 images and the corresponding
crop growth stage data to produce growth stage models for
canola, corn, soybean and wheat. Since the data from SA2
and SA3 does not have all four crop types, SA1 in 2017 was
used as validation site to compare with ACI maps.

3. METHOD

3.1. Data Preprocessing

The RS2 quad pol images were first preprocessed with a re-
fined Lee filter, and 18 polarimetric features were derived.
The RS2 polarimetric features are listed in Table 1. After-
wards, polarimetric features were extracted from all images
per field with crop growth stage information. The RS2 fea-
tures were summarized per field using the median values.
The crop growth stages were recorded in the format of Bi-
ologische Bundesanstalt, Bundessortenamt und CHemische
Industrie (BBCH) scales, where number presents particular
growing stages. The BBCH values are continuous, so that
BBCH to standard cumulative GDD mappings was created
for each crop with reference to literature. With the mappings,
BBCH values could be translated to a continuous variable.

3.2. Feature Modelling

Since each crop need different GDDs to mature, we use a
normalized state variable called maturity for feature calibra-
tion and modelling. Crop maturity is in the interval [0, 1] and
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Fig. 1. Feature response models of four crops (X axis: crop
maturity, Y axis: alpha angle

it changes linearly with GDD:

Crop Maturity(n) =

Avg. GDD crop to reach
BBCH n from seeding

Avg. GDD crop lifetime
(1)

Feature selection was performed to evaluate most effective
RS2 features in the crop fields. Maximal Information Coeffi-
cient (MIC) [10] was used as a measurement of dependency
between features and crop maturity. The selection criteria
were each selected feature should have a moderate depen-
dency with crop maturity and not exhibit high dependency
with each other. The selected RS2 features are alpha angle,
anisotropy, beta, delta, lambda from the Cloud-Pottier de-
composition [9], reflectivity ratio HH/HV, and reflectivity ra-
tio HH/VV. With beam mode compensation, GDD calibration
and noise filtering, crop growth models for each crop were es-
tablished. The feature response model between alpha angle,
referring to the dominant scattering mechanism of the target,
and crop maturity is illustrated in Fig. 1.

3.3. Effective GDD calculation

We first calculate the daily GDD in the testing area on all the
dates. GDD is calculated as:

GDD = max(Tmean − Tbase, 0) (2)

where Tmean stands for the daily mean temperature, and
Tbase represents the base temperature for certain crops. Dif-
ferent crops have different base temperatures, and typical
base temperatures are 0°C, 5°C and 10°C for spring crops.
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The BBCH to GDD mappings were created at base tempera-
ture of 0°C for wheat, 5°C for canola, and 10°C for soybeans
and corn. Therefore, in this study, GDDs with all three base
temperatures were calculated. Crop seasonings are still differ-
ent across regions, since the accumulated heat units are also
related to the length of daylight in addition to temperature.
The accumulated effective GDD (EGDD) model [11] used by
AAFC with a day length factor (DLF ) according to latitude
(L) was calculated to be the variable to better estimate the
crop types. The accumulated EGDD was calculated as:

EGDD = DLF ∗
∑

GDD (3)

DLF =


1 L = 49◦N

−19.3257 + 1.158643L−
0.002107689L2 + 0.0001413685L3 49◦N < L < 61◦N

1.18 L = 61◦N
(4)

3.4. Crop classification

Probabilistic procedures for classification use measurement
and process models, and dynamic filtering procedure to clas-
sify objects that evolve over time. Particle filter, a dynamic
filtering procedure for nonlinear and non-Gaussian process
or measurement models, has demonstrated effectiveness in
canola growth stage estimation in previous studies [7, 12].
As the procedure is based on sensor feature response models
at different maturity levels, it does not require observations
at any particular frequency, and is not affected by missing
measurements. An illustration of the process is shown in Fig.
2. A particle filter dynamically estimates the state of a new
observation without restriction to one sensor-specific model,
combining estimations from different sensors seamlessly. In
this study we only used the RS2 data and this method can be
easily extended to include more sensors.
When a new observation enters the model, a probability will
be given on the likelihood of crop type. As more dates of
data available, the estimation would be more accurate. Since
the crops are likely to be planted at different time, different
weights will be given on the probability estimations to deter-
mine the crop type assignment. Bigger weights were given
towards wheat before mid of June, and we did not distinguish
corn and soybean before July. Once the probability of one
field belonging to one of the classes reaches over 99.9%, the
class label will be assigned, otherwise class is determined by
the highest probability.
The fields in the three SAs with growth stage observations
were used to develop the models, and all the fields with RS2
coverage in 2017 in SA1 were used to test the model. The
EGDD calculated from the observation dates and the field-
level features from RS2 were calculated per ACI map and fed
to the classifier, and the weighted accumulated probabilities
determined the crop types. In this study, we just distinguish
the four major crop types and ignored the others.

Fig. 2. Illustration of dynamic classification procedure

In comparison, a multi-layer perceptron (MLP) neural net-
work was trained with all features and estimates crop types
on single observations. Then the probabilities were accumu-
lated using the same method.

4. RESULTS AND DISCUSSIONS

A total of 415 fields on 14 dates in 2017 in SA1 were tested.
F1-score was used to evaluate per crop type accuracy and
overall accuracy (OA) for the classifier. The results are
shown in Table 2, with comparison with the MLP classifier.
The results have shown that our algorithm achieved over 93%
accuracy before end of June in classifying canola, wheat and
corn/soybean. Since end of June is still relatively early to dif-
ferentiate corn and soybean in RS2 response, the two classes
were combined. According to [6], sensors with shorter wave-
length such as TSX, could contribute to better classification
of these two crops. The feature response models for TSX
is currently in development and will be included in the fu-
ture. By end of July, 91% overall accuracy was achieved for
the four crop types, especially canola with 100% accuracy.
Imagery after July mostly contributed to the classification
between corn and soybean, and full season classification
reached over 96%. Compared with the MLP network, our
proposed method performed better in almost all categories.
The classification maps are shown in Fig. 3.
In conclusion, our proposed method is able to classify canola,
corn, soybean and wheat these four major crops in the Cana-
dian Prairies successfully by the end of July. Earlier classifi-
cation of corn and soybean may need data from other sensors.
We are currently working on the feature models using TSX
imagery and will be included in the system. Crop vigour,
orientation and soil moisture could be significant sources of
error, and our method will be further tested and developed for
new data and new regions.
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Table 2. Classification Results

Method Time Canola Corn Soybean Wheat OA
MLP End of June 93.00% 90.60% 83.30% 89.40%
Ours End of June 99.00% 95.00% 85.00% 93.40%
MLP End of July 100.00% 80.80% 86.50% 99.40% 90.10%
Ours End of July 100.00% 84.00% 83.00% 98.00% 91.00%
MLP End of season 100.00% 82.30% 84.70% 98.70% 93.50%
Ours End of season 100.00% 95.10% 95.70% 98.20% 96.90%

Fig. 3. Classification results before end of July compared with ground truth in Carman, MB
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