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Three-Dimensional Indoor Mobile Mapping
With Fusion of Two-Dimensional Laser

Scanner and RGB-D Camera Data
Chenglu Wen, Ling Qin, Qingyuan Zhu, Cheng Wang, Member, IEEE, and Jonathan Li, Senior Member, IEEE

Abstract—Three-dimensional mobile mapping in indoor envi-
ronment, mostly global navigation satellite system-denied space, is
to consecutively align the frames to build a global 3-D map of an
indoor environment. One of the major difficulties of the current
solutions is the failure at the insufficient overlapping between
the frames, which is the reality of a lack of correspondences
between the frames. To overcome this problem, a 3-D indoor
mobile mapping system that integrates a 2-D laser scanner, and
an RGB-Depth camera is presented in this letter. In this system,
a fusion-iterative closest point (ICP) method, which combines
the 2-D mobile platform pose from a Rao–Blackwellized particle
filter estimation, an ICP, and a generalized-ICP method, is pro-
posed for the consecutive frame alignment. Fusion-ICP achieves
effective frame alignment, particularly in solving the insufficient
overlapping frame alignment problem. Comparative experiments
were conducted to evaluate the mapping system. The experimental
results demonstrate the effectiveness and efficiency of our system
for 3-D indoor mobile mapping.

Index Terms—Laser scanner, mobile platform, RGB-D camera,
sensor fusion, 3-D indoor mapping.

I. INTRODUCTION

ACCURATE maps of interior spaces created by mobile
mapping form the basis for applications such as emer-

gency response, situational awareness, and creation of accurate
floor plans. The process of the mobile indoor mapping is
nonreliant on global navigation satellite system (GNSS) local-
ization, since these signals cannot penetrate into the interiors
of buildings. Building a 3-D map requires the current position
and orientation of the mobile platform, while estimating the
location of a mobile platform in an environment requires a
3-D map of that environment. This process is referred to as
simultaneous localization and mapping (SLAM) [1].
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In recent decades, 2-D SLAM solutions based on the 2-D
laser scanner have achieved great success by applying the
Bayesian probability model. However, such solutions are con-
fined to building 2-D grid maps, whereas the 3-D map brings
exponential complexity to the Bayesian probability model. The
RGB-D camera, which mainly uses an active vision method or
time-of-flight sensing technology to generate the depth image,
is a novel sensor that captures an RGB image and a depth
image simultaneously. Since there is a corresponding relation-
ship between the pixels in the RGB and depth images, the
RGB-D camera can build a dense 3-D map with appearance
information. The iterative closest point (ICP) [2] algorithm
or its variants are generally used for 3-D frame alignment.
However, ICP is a local optimum iterative algorithm that suffers
from huge computational consumption that adversely affects
the instantaneity of the 3-D mapping. The algorithm also suffers
from unstable convergence caused by bad initialization of the
rigid transformation that ultimately adversely affects the accu-
racy of the 3-D map.

This letter presents a 3-D indoor mobile mapping system,
with data fused by a 2-D laser scanner and an RGB-D camera.
This system can precisely locate the mobile platform and build
a 2-D grid and a 3-D dense map. First, a SLAM posterior
probability, using a 2-D laser scanner and odometer data, is
estimated, and a 2-D grid map and mobile platform pose are
achieved. Second, 3-D data frames from the RGB-D camera
are consecutively aligned by our proposed fusion-ICP method.
Here, the 2-D mobile platform pose from 2-D SLAM and sparse
visual features from RGB images are used to accelerate the ICP
convergence. Because the pair-wise alignment between frames
is not globally consistent, the following are applied to build
an accurate global 3-D map: 1) loop closure detection by a
particle weight threshold; and 2) pose graph optimization by
minimizing nonlinear error function.

II. RELATED WORK

The state-of-the-art 2-D SLAM is generally considered as
a posterior probability estimation problem usually solved with
a Bayesian probability model. The extended Kalman filter [3]
and the particle filter [4] are the two primary solutions for the
probability model. The 2-D map represents the environment as
the relationship between the mobile platform and the obstacles
in a plane, which results in limitations of environmental
representation.

There are basically two SLAM solutions based on 3-D
information. One is the probability-based model in the 3-D

1545-598X © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Framework of the system.

spaces [5], whereas the other is the scan-matching-based
algorithm, such as ICP. For example, Bouvrie et al. integrated
position, inertial measurement unit data, and robot velocity to
accelerate the ICP algorithm, thus improving the efficiency of
3-D mapping [6]. Andreasson and Stoyanov used local visual
speeded-up robust features and the 3-D-Normal Distributions
Transform method for frame alignment [7].

Kinect (an RGD-D camera) brought about a revolutionary
breakthrough in 3-D mapping in the fields of indoor mobile
mapping and computer vision [8]. Xu et al. refined plane
parameters of 3-D data based on the segments obtained from the
2-D image of an RGB-D camera, whereas the frame alignment
problem was not addressed in the paper [9]. Stückler and
Behnke integrated depth and color information for dense mul-
tiresolution scene mapping using RGB-D camera, and frames
were registered by an improved ICP method [10]. Henry et al.
built an RGB-D mapping system that applies the scale invariant
feature transform (SIFT) feature [11] and ICP algorithm to
generate a dense indoor 3-D model [12]. The work that is most
similar to the RGB-D mapping system is RGB-D SLAM, which
is an open-source system [13]. The sparse visual keypoints are
extracted from data frames and used for aligning point clouds
by the generalized-ICP (GICP) method [14].

However, most of the above frame aligning methods work
only when there is sufficient overlapping between the two
frames, in which corresponding sparse visual features be-
tween the frames are calculated based on the overlapping part.
Moreover, frame alignment performance of the ICP algorithm
is dramatically affected by rigid transformation initialization.
Du et al. estimated the camera pose by a motion capture system
through a calibration process, and the camera pose provides
initial transformation for ICP-based frame alignment when the
movement between the two frames is large [15].

III. PROPOSED METHOD

Our proposed 3-D indoor mobile mapping system (as shown
in Fig. 1) is divided into three modules as follows: mobile
platform pose estimation, consecutive frame alignment, and
globally consistent alignment.

A. Two-Dimensional Laser Scanner-Based Platform
Pose Estimation

The particle filter is a serialized Monte Carlo filtering method
that uses particle sets to approximate the posterior probability
of the SLAM problem. Given the mobile platform observations

Fig. 2. Simulated grid map built by GMapping. (Green line) Odometer
trajectory and (red line) platform trajectory estimated.

Fig. 3. Fusion-ICP method for frame alignment.

Z0:t, the mobile platform odometry measurement U0:t, and the
initial mobile platform location x0, the posterior about potential
mobile platform trajectories x0:t and maps m is represented as

p(X0:t,m|Z0:t, U0:t, x0)
= p(m|X0:t, Z0:t)× p(X0:t|Z0:t, U0:t, x0). (1)

To estimate the pose of the mobile platform, we apply the
GMapping solution, an open-source approach that adaptively
reduces the particle number of the Rao–Blackwellized parti-
cle filter (RBPF) method to solve the SLAM problem in the
robot operating system [16]. By decoupling the state space
of the Markov chain, RBPF simplifies the steps required to
estimate the probability and greatly reduces the number of
particles. GMapping greatly reduces the number of samples of
the particles by approximating the sampling weights using a
Gaussian distribution. Subsequent to implementing 2-D SLAM
with GMapping, a 2-D grid map for indoor environment is built,
and the mobile platform trajectory is estimated. An example
of a 2-D grid map with a mobile platform trajectory built by
GMapping using simulated data is shown in Fig. 2. Because
the frame alignment is processed in 3-D space, the 2-D mobile
platform pose must be converted into a 4 × 4 matrix, T1, as the
initial estimation of the frame alignment.

B. Consecutive Alignment With Fusion-ICP

The proposed fusion-ICP method includes two separate it-
erations, namely, an ICP-based iteration and a GICP-based
iteration (see Fig. 3). The detailed method is executed in the
following steps.

1) Step 1: The RGB images Is and It and two local 3-D
point cloud maps Ms, and Mt are obtained from two
adjacent data frames. SIFT descriptors are separately
extracted from the RGD images Is and It, and the
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Fig. 4. Consecutive alignment. (a) 2-D SIFT features. (b) Corresponding 3-D
SIFT points. (c) Before alignment. (d) Frame aligned by fusion-ICP method.

matched SIFT pairs in the two images are obtained by
a fast nearest neighbor searching method [11]. Then, the
corresponding SIFT 3-D point sets, i.e., Fs and Ft, are
obtained. Finally, using the original ICP algorithm with
point sets Fs and Ft as the input and mobile platform
pose T1 as the initial rigid transformation, the initial rigid
transformation for adjacent frames, i.e., T2, is computed.

2) Step 2: The final rigid transformation, i.e., T , between
maps Ms and Mt is estimated using the GICP algorithm
with rigid transformation T2 for the initial iterative com-
putation. The optimal rigid transform T , consisting of
rotation and translation component (R and t), is used
for registering the point cloud frames into a global 3-D
coordinate system.

To deal with frame alignment with insufficient correspon-
dence or nonoverlapping frames, we compare the number of
the 3-D corresponding feature points to a specified threshold
right after step (1). If sufficient 3-D correspondences exist, the
iterative convergence of T2 by ICP is accelerated by an ini-
tialization transformation T1 from a platform pose estimation.
Then, an optimal rigid transformation T is estimated by GICP.
If insufficient correspondence exists, T1 will directly replace T ,
since the platform and the RGB-D camera are considered as
rigidly assembled and with the same pose change.

Fig. 4 shows an example of a consecutive alignment using
the fusion-ICP method. We extract SIFT features [see Fig. 4(a)]
from the RGB image and the corresponding 3-D feature points
[see Fig. 4(b)] from the point cloud. Then, we align two frames
[see Fig. 4(c)] to create a common coordinate system [see
Fig. 4(d)].

C. Globally Consistent Alignment

By aligning frames consecutively, it is expected that a global
3-D map should finally be built. However, misalignment among
consecutive frames, or noise in the depth data, results in the
mobile platform pose estimation deviating over time. In partic-
ular, when exploring a large-scale environment, the cumulative
error in frame alignment causes a series of unpredictable errors,
which is known as the closed-loop problem.

Since the 2-D grid map and the 3-D point cloud map ge-
ometrically represent the real world, a 3-D map is consistent
with a 2-D map. Therefore, the loop closure detection method in
RBPF can be applied to recognize previously visited locations
in a 3-D map. Along with exploration of the environment, the
particle weight of RBPF changes over time. Once the variance
of the particle weight values falls within a given threshold, it is
considered to meet a closed loop. At this time, RBPF resamples
its particles, resets all particles’ weights, and corrects the pose
and 2-D map. At this point, the loop closure information is
shared with the 3-D map building process.

Creation of a globally consistent trajectory and an accurate
3-D map requires globally consistent alignment, which can be
treated as a nonlinear least-square problem. One solution is to
represent the 3-D map as a graph structure, in which each node
of the graph is a mobile platform pose-related state variable to
be optimized, and each edge between the two nodes represents
a geometric constraint. Then, the global consistent alignment
problem is converted to a pose graph optimization process. We
employ the g2o framework to optimize the pose graph [17]. The
g2o framework efficiently reduces the errors in the pose graph,
where each node in the pose graph is parameterized by the rigid
transformation, and each edge between the two nodes depicts
constraints calculated based on associated covariance matrices.
When returning to a known area in a 3-D map, accumulative
errors are minimized and global optimal poses are generated,
and a global accurate map is achieved.

Pose graph optimization can be solved by minimizing the
error function, i.e.,

F (x) =
∑

〈i,j〉∈C
e(xi, xj , zij)

TΩije(xi, xj , zij) (2)

x∗ = argmin
x

F (x) (3)

where x = (xT
1 , . . . , x

T
n )

T is a vector of state variables, where
each state variable xi represents a pose or rigid transformation,
Ωij and zij depict the information matrix and the mean of
a constraint of the state variables xi and xj , respectively.
e(xi, xj , zij) is a vector error function that measures how much
the state variables xi and xj match the constraint zij . When
xi and xj perfectly satisfy zij , the estimated trajectory exactly
matches the real path has visited.

D. Map Modeling

The global 3-D map achieved after pose graph optimization
contains a large amount of data, which is redundant and requires
computation. Surface reconstruction of a 3-D map is usually
the optimal choice. However, mobile mapping raises some extra
requirements, including robustness to noises, nearly real-time
speed, and incremental surface mapping.

To accelerate modeling process, a fast greedy triangula-
tion surface reconstruction method [18], which is a greedy
algorithm-based method, is used for building a map model
where the triangular edges are directly written and never
deleted. The points are consecutively connected to form tri-
angles by pruning points according to the following criteria:
visibility, maximum angle, and minimum angle.
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Fig. 5. 2-D and 3-D maps of Robot Lab 1 in CSD building after pose graph op-
timization. (a) 2-D map built by 2-D laser scanner. (b) Corresponding 3-D map.

Fig. 6. Example of a built 3-D map. (a) 3-D map in one perspective by our
system. (b) 3-D map in corresponding perspective to (a) by RGB-D SLAM
system. (c) 3-D map in other perspective by our system. (d) 3-D map in
corresponding perspective to (c) by RGB-D SLAM system.

IV. EXPERIMENTS AND RESULTS

The hardware of our 3-D mapping system consists of the fol-
lowing: a mobile robot Pioneer 3-AT, a 2-D laser scanner SICK
LMS-100, and a Kinect camera. Robot pose, 2-D grid map, and
3-D global map are obtained while the robot is exploring the en-
vironment. Several 3-D mapping experiments under an indoor
environment were conducted to evaluate system performance.
We also compared our system with RGB-D SLAM system.

A. Globally Consistent Alignment

Two data sequences were used to evaluate global optimiza-
tion in our mapping system. The two sequences were obtained
from Robot Lab 1 and a corridor in the Cognitive Science
Department (CSD) building of Xiamen University. Fig. 5 shows
a more complicated 3-D map of Robot Lab 1. The 2-D grid
map of Robot Lab 1 is built by the 2-D laser scanner [see
Fig. 5(b)]; the Robot Lab path is approximately 13 m long.
Fig. 5 demonstrates that 2-D maps are highly consistent with
3-D maps in our 3-D mapping system.

B. Comparison With RGB-D SLAM

We compared our 3-D mapping system with the RGB-D
SLAM system by building 3-D maps of a closed loop ap-
proximately 16 m long within the CSD building of Xiamen
University (Robot Lab 2).

Fig. 6 shows some detailed mapping results between the two
systems. Compared with the 2-D gird map, the two systems
both produce 3-D dense maps with few misalignments. Some
details are marked by blocks in the 3-D maps built by our sys-

TABLE I
EUCLIDEAN NORMS FOR CONSECUTIVE FRAMES ALIGNMENT

USING DIFFERENT ICP VARIATIONS IN METERS

TABLE II
TIMING RESULTS PER FRAME FOR CONSECUTIVE FRAMES ALIGNMENT

USING DIFFERENT ICP VARIATIONS IN SECONDS

tem and the RGB-D SLAM system. The detailed comparisons
show our system achieves a more accurate and robust mapping
performance in reducing alignment errors. We used 2-D robot
pose to estimate the initial rigid transformation, whereas RGB-
D SLAM used sparse visual feature matching.

C. Frame Alignment Comparison With ICP Variations

We compared the proposed fusion-ICP method with ICP and
two other ICP variations, namely, GICP and SIFT + ICP. We
evaluated them by aligning consecutive frames for four differ-
ent indoor scenes and analyzed the error and timing results.
We collected the following four data sets: a) Robot Lab 1-1
(approximately 20 m long) within Robot Lab 1; b) Robot Lab
1-2 (approximately 30 m long) within Robot Lab 1; c) Robot
Lab 2-1 within Robot Lab 2, achieved by rotating the robot
approximately 100◦; and d) Robot Lab 2-2 (approximately 15 m
long) within Robot Lab 2.

Some of the above four data sets have a few objects in
their environment, whereas some data sets have many objects.
Consequently, the environment differs from data set to data
set. For the four methods, Euclidean norms of consecutive
frame alignment are compared. In most cases, our fusion-ICP
method performed well compared with the other three methods
(see Table I). In particular, our method outperformed SIFT +
ICP method regarding the maximum alignment error, and this
usually happens when the mobile platform is making turns at
the corner or there is lack of features between the frames.

We also evaluated timing results according to the above
data sequences. As shown in Table II, for four data sequences,
the fusion-ICP method achieved acceptable timing results per
frame. In particular, the average running time of the fusion-ICP
method is 1.399 s/frame, which is faster than the GICP method
but slower than the ICP method, because the fusion-ICP method
includes platform pose estimation, ICP, and GICP steps. In
fusion-ICP, the GICP step is used to align the frames after a
good estimation of initial rigid transformation is achieved in
the ICP step, thus accelerating the aligning process.
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Fig. 7. Alignment accuracy comparison with different overlapping percentages.

Fig. 8. Nonoverlapping frame alignment. (a) Two local data frames required.
(b) Aligning nonoverlapping frames by robot pose.

D. Nonoverlapping Frame Alignment

A visual sparse feature-based frame alignment method is
valid only when sufficient correspondence between frames ex-
ists; the method cannot work when only little or no correspon-
dence exists because of the insufficient corresponding features
for ICP. Our 3-D mapping system is designed to deal with
frame alignment with little correspondence, even nonoverlap-
ping frame alignment. The robot pose obtained by 2-D SLAM
initializes the rigid transformation between the consecutive
frames when sufficient feature correspondence exists; it aligns
the frames directly when insufficient correspondence exists or
nonoverlapping frames are aligned.

We acquired the laser scanner and RGB-D data frame at one
position and then rotated the robot through a certain angle to
acquire another data frame to achieve frames with different
overlapping percentages. The Euclidean norms of aligning
frames are summarized in Fig. 7 with different overlapping
percentages for fusion-ICP method and SIFT + ICP method.

We observed that the alignment accuracy of both methods
decreased when frame overlapping percentage decreased, and
the fusion-ICP method (triangle icons in Fig. 7) outperformed
the SIFT + ICP method (square icons in Fig. 7) overall. The
fusion-ICP method triggers the process of aligning the frames
by the current estimated 2-D pose of the platform when the
Euclidean norms are larger than a threshold of 0.1 (diamond
icons in Fig. 7). Under this situation, the SIFT + ICP fails to
align the two frames, according to the large Euclidean norms.
For example, when the overlapping percentage between the
frames is 50%, the Euclidean norms of fusion-ICP is 0.120 m,
and it performs much better than the SIFT + ICP of 0.302 m,
where the latter is considered to fail in aligning frames.

Data frame 1 (dark purple point cloud, marked as 1) and data
frame 2 (red point cloud, marked as 2) in Fig. 8(a), respectively,
are obtained at two positions and the two local data frames
share no correspondence. Thus, 3-D mapping approaches using
the data association algorithm based on sparse visual features,
for example, the SIFT + ICP method, are invalid for aligning
the frames. With fusion-ICP, frames were aligned using no data
association but a 2-D platform pose [as shown in Fig. 8(b)].

V. CONCLUSION

A 3-D indoor mobile mapping system with fusion data from
a 2-D laser scanner and an RGB-D camera has been introduced
for mapping of GNSS-denied spaces. Accurate mobile platform
positioning is achieved by laser scanner-based 2-D SLAM,
and no inertial measurement unit is required. The proposed
fusion-ICP method accelerates the alignment process and im-
proves aligning accuracy, and it particularly deals with frame
alignment when insufficient correspondence exists or nonover-
lapping frames alignment. Experimental results showed the
effectiveness of our system to build a 3-D global and accurate
indoor map.

ACKNOWLEDGMENT

The authors would like to thank the associate editor and
anonymous reviewers for their valuable comments to improve
this letter.

REFERENCES

[1] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial rela-
tionships in robotics,” in Proc. 2nd Annu. Conf. Uncertainty Artif. Intell.,
1986, pp. 435–461.

[2] P. Besl and N. McKay, “A method for registration of 3-D shapes,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 14, no. 2, pp. 239–256, Feb. 1992.

[3] M. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and
M. Csorba, “A solution to the simultaneous localization and map building
(SLAM) problem,” IEEE Trans. Robot. Autom., vol. 17, no. 3, pp. 229–
241, Jun. 2001.

[4] S. Thrün, D. Fox, and W. Burgard, “A real-time algorithm for mobile robot
mapping with application to multi robot and 3-D mapping,” in Proc. IEEE
Int. Conf. Robot. Autom., 2000, pp. 321–328.

[5] K. Pathak, N. Vaskevicius, J. Poppinga, M. Pfingsthorn, S. Schwertfeger,
and A. Birk, “Fast 3D mapping by matching planes extracted from range
sensor point-clouds,” in Proc. IEEE/RSJ Int. Conf. Intell. Rob. Syst.,
Oct. 2009, pp. 1150–1155.

[6] B. D. Bouvrie, “Improving RGBD Indoor Mapping with IMU data,” M.S.
thesis, Dept. Softw. Technol., Delft Univ. Technol., Delt, The Netherlands,
2011.

[7] H. Andreasson and T. Stoyanov, “Real time registration of RGB-D data
using local visual features and 3D-NDT registration,” presented at the
Semantic Perception, Mapping and Exploration Workshop of IEEE Int.
Conf. Robot. Autom., May 2012.

[8] [Online]. Available: http://www.xbox.com/en-US/kinect and http://www.
primesense.com/

[9] K. Xu, L. Qin, and L. Yang, “RGB-D fusion toward accurate 3D
mapping,” in Proc. IEEE Int. Conf. Robot. Biomimetics, Dec. 2011,
pp. 2618–2622.

[10] J. Stuckler and S. Behnke, “Integrating depth and color cues for dense
multi-resolution scene mapping using RGB-D cameras,” in Proc. IEEE
Int. Conf. Multisensor Fusion Integr. Intell. Syst., Sep. 2012, pp. 162–167.

[11] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Computer Vis., vol. 60, no. 2, pp. 91–110, Nov. 2004.

[12] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D mapping:
Using Kinect-style depth cameras for dense 3D modeling of indoor envi-
ronments,” Int. J. Robot. Res., vol. 31, no. 5, pp. 647–663, Apr. 2012.

[13] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard,
“An evaluation of the rgb-d slam system,” in Proc. IEEE Int. Conf. Robot.
Autom., May 2012, pp. 1691–1696.

[14] A. Segal, D. Haehnel, and S. Thrun, “Generalized-ICP,” in Proc. Robot.:
Sci. Syst., Jun. 2009, vol. 25, pp. 26–27.

[15] J. Du, Y. Ou, and W. Sheng, “Improving 3D indoor mapping with
motion data,” in Proc. IEEE Int. Conf. Robot. Biomimetics, Dec. 2012,
pp. 489–494.

[16] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid
mapping with Rao-Blackwellized particle filters,” IEEE Trans. Robot.
Autom., vol. 23, no. 1, pp. 34–46, Feb. 2007.

[17] R. Kuemmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A General framework for graph optimization,” in Proc. IEEE Int.
Conf. Robot. Autom., May 2011, pp. 3607–3613.

[18] Z. C. Marton, R. B. Rusu, and M. Beetz, “On fast surface reconstruction
methods for large and noisy datasets,” in Proc. IEEE Int. Conf. Robot.
Autom., May 2009, pp. 3218–3223.

View publication statsView publication stats

https://www.researchgate.net/publication/260541111


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


