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Abstract— Efficient 3-D mapping provides useful and detailed
3-D data for many applications. In this letter, we present a
multisensor calibration and mapping method, to provide highly
efficient and relatively accurate colored mapping for GPS-/global
navigation satellite system-denied environments. The sensor data
include 3-D laser scanning point clouds and camera images.
A simultaneous localization and mapping (SLAM)-assisted cal-
ibration method is first proposed for multiple multibeam light
detection and ranging (LiDAR) and multiple camera calibration.
An improved SLAM method with loop closure is proposed for 3-D
mapping. With the proposed calibration and mapping methods,
centimeter-level colored point clouds can be obtained efficiently.
The proposed method was tested with both backpacked and
car-mounted systems on indoor and outdoor scenes. Experimental
results show the effectiveness and efficiency of the proposed
calibration and mapping methods.

Index Terms— Cameras, GPS-/global navigation satellite sys-
tem (GNSS)-denied, light detection and ranging (LiDAR),
mapping, point cloud, simultaneous localization and mapping
(SLAM).

I. INTRODUCTION

THE 3-D mapping in GPS-/global navigation satellite
system (GNSS)-denied environments provides useful 3-D

dense data for many applications, such as indoor disaster
search and rescue, restoration of complex internal structures
of buildings, and navigation in dense cities [1], [2]. Light
detection and ranging (LiDAR) sensors acquire accurate 3-D
data by measuring the range. Recently, low-cost LiDARs, for
example, the Velodyne multibeam LiDAR sensor, have been
widely used in some surveys and self-driven vehicles [3].

Recent studies in LiDAR-based simultaneous localization
and mapping (SLAM) provide 3-D point cloud maps by
feature-based scan registration or LiDAR odometry [4]. Mean-
while, well-explored visual SLAM methods can achieve sparse
3-D feature maps based on images. For applications, such as
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object recognition and scene understanding, providing both
3-D point cloud and color information for a scene is in high
demand. However, very few studies have explored the efficient
implementation of colored mapping in GPS-/GNSS-denied
environments. Multisensor systems, which typically include
LiDAR sensors and cameras, are used to acquire both point
clouds and images. Some studies attempted to combine camera
and LiDAR by extracting depth from LiDAR measurements
for camera features in visual SLAM [5].

Regarding the extrinsic calibration of LiDAR and cameras,
some works used specially designed calibration targets and
manual feature selection [6]. At present, for most LiDAR
sensor and multiple camera hybrid calibration methods, each
camera and LiDAR sensor must be calibrated separately [7].
It is difficult to find corresponding target points or corner
features from a sparse point cloud in an overlapped view of
multibeam LiDAR sensors and cameras [8].

Based on our previous research [9], in this letter, we present
an efficient 3-D colored mapping method for GPS-/GNSS-
denied environments using multisensor data. The proposed
method, including multisensor calibration and 3-D mapping,
provides efficient and relatively accurate colored mapping
for GPS-/GNSS-denied environments. To achieve extrinsic
calibration of multibeam LiDAR sensors and multiple cam-
eras, a SLAM-assisted calibration method is proposed. Also,
an improved LiDAR-based SLAM method is proposed for 3-D
mapping. The proposed calibration and mapping methods were
tested with different mobile platforms on indoor and outdoor
test scenes.

II. MULTISENSOR SYSTEM CALIBRATION

A. Multisensor System
In the calibration process, a self-built backpacked multisen-

sor system [Fig. 1(a)] is used to collect both LiDAR point
cloud and camera data. The backpacked system consists of
two Velodyne VLP-16 LiDAR sensors for 3-D data acquisition
and a low-cost commercial panoramic camera (one wide-angle
lens camera on each side) for image data acquisition.

In this system, LiDAR sensor A (Xl1, Yl1, Zl1) is mounted
horizontally; LiDAR sensor B (Xl2, Yl2, Zl2) is mounted
45 below LiDAR sensor A [Fig. 1(b)]. The point cloud in the
coordinate system of the LiDAR sensor is shown in Fig. 1(c).
The LiDAR point cloud data, P (x, y, z), in the Cartesian
coordinate system (X, Y, Z) are calculated using (1). R is
the distance from P to the origin of the coordinate system.
Based on our previous work [10], point cloud data of LiDAR
sensor A, (PA), and point cloud data of LiDAR sensor B, (PB),
are fused into Pf by the 4 × 4 transform matrix between the
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Fig. 1. Overview of multisensor system calibration. (a) Multisensor system.
(b) Multisensor coordinates. (c) Coordinate of LiDAR sensor. (d) Flowchart
of the calibration process.

two LiDAR sensors, (Tcal) (2). In addition, terrestrial laser
scanning (TLS) data are introduced to bridge the calibration
between LiDAR sensors and cameras. The calibration process
is shown in Fig. 1(d)

P =
⎡
⎣ x

y
z

⎤
⎦ =

⎡
⎣ R ∗ cos(ω) ∗ sin(α)

R ∗ cos(ω) ∗ cos(α)
R ∗ sin(ω)

⎤
⎦ (1)

Pf = PA + Tcal ∗ P B . (2)

B. Intrinsic Calibration of the Cameras

The proposed method can be applied not only to cameras
with regular lenses but also fisheye and wide-angle lenses. The
camera internal reference model is given by⎡

⎣ fx 0 cx
0 fy cy
0 0 1

⎤
⎦

and (k1, k2, k3), where ( f x , fy) is the focal length of the
camera, (cx , cy) is the position of the camera, and (k1, k2, k3)
is the factor of radial distortion. Considering the practicality of
implementation, a camera calibration method proposed in [11]
is used to determine the internal parameters and distortion
factors of the camera and obtain the camera internal reference
model. Specifically, when calibrating fisheye and wide-angle
lens cameras, central areas close to the center point of the
image are used to assure high calibration accuracy.

C. SLAM-Based Calibration Scene Mapping

For each scan of the multibeam LiDAR sensor, the acquired
point cloud includes a limited description of the calibration
scene. The proposed calibration method uses the SLAM-based
method detailed in Section III to achieve large calibration
scene data using mobile platforms. Considering that acquired
point cloud data are relatively sparse, it is inaccurate to locate
features directly in an original point cloud. To acquire denser
points for feature extraction, a high-precision TLS (e.g., Riegl
VZ 1000 [12]) scans the calibration scene and obtains the
point cloud of the entire calibration scene with an accuracy of

about 5 mm (in the range of 1400 m). Using the singular value
decomposition (SVD) method, a coarse registration between
dense TLS point cloud data and sparse SLAM-based point
cloud is obtained from four pairs of manually selected match-
ing points. Then, an iterative closest point (ICP) algorithm
fine-tunes the coarse registration results. The registered dense
point cloud also provides a relatively accurate estimation of
the camera location in the SLAM-based point cloud coordinate
system, since the accuracy of the terrestrial laser scanner
is high.

D. Calibration of the LiDAR and Cameras

In our method, highly reflective boards, which are easily
detected in the point clouds, are used for calibration. For
camera images, a corner detector extracts the candidate edge
points of each square. For point cloud data, an intensity
threshold-based method first extracts the high-intensity areas
of the targets. Then, region growing and plane fitting methods
are applied to obtain high-intensity block candidates on the
reflective boards. Four pairs of correspondent corners are man-
ually selected from the image corner candidates and intensity
corner candidates.

Denote the corner coordinates in the corrected images of
each camera by (μ, ν), the correspondent corner coordinates in
the point cloud by (Xl , Yl , Zl), and the estimation of the cam-
era coordinates in the SLAM-based point cloud coordinate sys-
tem by (Xc, Yc, Zc). Using (Xc, Yc, Zc), (μ, ν), (Xl , Yl , Zl)
and the internal parameters of the cameras, a collinear equation
is established to obtain the directional cosine elements of each
camera and complete the calibration as follows:
μ − cx = − f

a1(Xl − Xc) + b1(Yl − Yc) + c1(Zl − Zc)

a3(Xl − Xc) + b3(Yl − Yc) + c3(Zl − Zc)
(3)

ν − cx = − f
a2(Xl − Xc) + b2(Yl − Yc) + c2(Zl − Zc)

a3(Xl − Xc) + b3(Yl − Yc) + c3(Zl − Zc)
(4)

where f is the focal length; for simplicity, f is set at fx+ f y/2
in the method. For each camera, nine directional cosine
elements (a1, a2, a3, b1, b2, b3, c1, c2, c3) are calculated for
the three angles between the SLAM-based LiDAR point cloud
frame and camera frame (ϕ, ρ, θ) as follows in (5), as shown
at the top of the next page.

III. LIDAR-BASED 3-D MAPPING METHOD

A. Feature Point Extraction

Feature points on sharp edges and planar surface patches in
each frame are first selected separately for LiDAR data frame
matching. Because of the radial effect, when the angle between
the planar and the laser beam is small, the points on this
planar may be misclassified as edge points, which eventually
results in map mismatching. To solve the point misclassifi-
cation problem, we improve the original feature extraction
method in LiDAR Odometry and Mapping (LOAM) [4] by
normalizing the distance during the smoothness calculation
of the feature point. Here, the smoothness of each point, C ,
determines which category one point belongs to. Considering
that each acquired frame includes multiple individual laser
beams, the smoothness of each laser scanner point can be
evaluated through the spatial relationship with its surrounding
points on a scanning beam.
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R =
⎡
⎣ a1 a2 a3

b1 b2 b3
c1 c2 c3

⎤
⎦ =

⎡
⎣ cos ϕ cos θ − sin ϕ sin ρ sin θ − cos ϕ sin θ − sin ϕ sin ρ cos θ − sin ϕ cos ρ

cos ω sin θ cos ω cos θ − sin ω
sin ϕ cos θ + cos ϕ sin ρ sin θ − sin ϕ sin θ + cos ϕ sin ρ cos θ cos ϕ cos ρ

⎤
⎦ (5)

Let Pn
f be the nth fused point cloud frame of two LiDAR

sensors (Pn
A, Pn

B). Tcal is the transform matrix between the two
LiDAR sensors

Pn
f = Pn

A + Tcal ∗ Pn
B. (6)

There are multiple (e.g., 16 for Velodyne VLP-16) beams
in each frame in both LiDAR sensors. The scanning point
of each beam is stored in clockwise/counterclockwise order.
Let P(n,l)

f (l ∈Z+, l ≤ 32) be the lth beam in Pn
f , and the

coordinates of a point Pi (xi , yi , zi ), pi ∈ Pn
f , be Xn

(l,i). The
smoothness, c, for each point in Pn

f is calculated as follows:
D(i, j) = Xn

(l,i) − Xn
(l, j ) (7)

c =
∥∥∥∥∥∥

1

2x

i+x∑

j=i−x

D(i, j)
�D(i, j)�

∥∥∥∥∥∥
(8)

where D(i, j) is a vector from point Pi (xi , yi , zi ) to point
Pj (x j , y j , z j ), and x is the number of points on each side of
point Pi (x is set at 5 in this letter). In LOAM, when calcu-
lating c, all the D(i, j) are combined without normalization,
which may lead to misclassification between the planar points
and edge points. In our method, the distance vector, D(i, j),
is normalized as a direction vector; the mean of all direction
vectors is calculated to obtain the c value. We divide each
beam in a frame into six sections and select not more than
20 edge points from each section. A point is classified as an
edge point with a value of c less than 0.25 or a planar point
with a value of c more than 0.5. The same point selection
strategies as defined in LOAM are used to avoid selecting
weak edge points that are roughly parallel to the laser beam
or points on the boundary of the occluded region.

B. LiDAR-Based Mapping by Feature Matching

Then, a 3-D point cloud map and the corresponding tra-
jectory are reconstructed by matching the above-mentioned
feature points. Let Pn

w be the mapping result from P1
f to Pn

f
in the world coordinate system, and Tn be the nth transform
matrix that translates Pn

f to the world coordinate system{
P1

w = P1
f

Pn
w = Pn−1

w + Tn∗Pn
f .

(9)

Let Pn
f e be edge points, and Pn

f p be planar points in Pn
f .

Let Pn
we be edge points, and Pn

wp be planar points in the world
coordinate system. The goal of mapping is to obtain Pn

w

Pn
we = Pn−1

we + Tn∗Pn
f e (10)

Pn
wp = Pn−1

wp + Tn∗Pn
f p. (11)

After being transformed to the world coordinate system, for
each point, Pi , in Pn

f e/Pn
f p , five edges/planar points closest to

that point are found in Pn−1
we /Pn−1

wp . If the five points are in
the same line or on the same plane, compute the distance,

TABLE I

CALIBRATION ERRORS OF TWO SCENES

di
e/di

p, from Pi to the line/plane. Tk (k is the frame number)
is computed recursively as follows:⎧⎪⎪⎨

⎪⎪⎩
di

e = Dist
(

Pi , Pk
f e, Tk, Pk−1

we

)
di

p = Dist
(

Pi , Pk
f p, Tk, Pk−1

wp

)
Tk = arg minTk

(∑
|Pk

f e
di

e + ∑∣∣Pk
f p

∣∣ di
e

) (12)

where Dist(·) is the function to compute the distance between
point Pi and its corresponding line or plane. During this
projection, each di

e or di
p is recalculated for each iteration of

Tk . The initial value of Tk can be set as Tk−1 or computed
by linear interpolation. Finally, Pn

w is achieved when the
transformation from T1 to Tn is obtained.

C. Loop Closure and Map Optimization

Loop closures are detected based on the Euclidean distance
between the origins of two frames in the world coordinate
system. For a certain period, if the timestamp interval of the
two frames exceeds a given threshold (set at 20 s in this
letter) and their spatial distance is less than a given threshold
(3 m for indoor and 5 m for outdoor scenes in this letter),
a possible closed loop is detected. For each frame of these
two frames, a point cloud is first generated by registering
its consecutive frames. Next, a Generalized-ICP [13] method
registers these two point clouds to obtain a transformation,
�T , and a registration error, ε. Then, a candidate loop closure
will be labeled as true if ε is less than a given threshold. If true,
�T along with its associated frame number will be used as the
input to the map optimization process. Finally, regarding the
accumulated mapping error, a G2O framework [14] optimizes
the transformation from T1 to Tn after all loop closures are
detected. Finally, the 3-D map Pn

W is refreshed to obtain a
consistent map.

IV. EXPERIMENTAL RESULTS

A. Calibration Experiments

A marker-based method was used for error analysis of the
proposed calibration method. The average distances between
the corresponding center points of the marker and the total
least mean square error were calculated (see Table I). For each
scene, ten groups of points were selected on the floor and
walls, respectively. Results indicate that our method achieves
good calibration accuracy. We observed that smaller error is
calculated for the indoor scene, regarding the smaller error of
manual point selection in the indoor scene with closer range.
Along with 3-D mapping, the proposed calibration method
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Fig. 2. Mapping results of a multifloor building scene. (a) Trajectory and
map built by our method. Black circle: starting location. (b) Close look of
the stairway in (a).

acquires a colored point cloud not only for a single scene but
also a large-scale scene.

B. 3-D Mapping Experiments

1) Backpacked System for Indoor Scenes: Our mapping
method was first tested on a multifloor building scene. Point
cloud data and camera images of a five-floor building exte-
rior were collected by carrying our backpacked system and
walking along the corridors and staircases. We started from
the left side of the fifth floor, walked to the nearest stairway,
and went down to the first floor. There is no closed loop in
this run. The length of the longest corridor is about 120 m.
The overall run of the trajectory is about 500 m. The detailed
map in Fig. 2 indicates that our algorithm performs well. The
time cost of our method is about 0.67 s/frame.

Our mapping method was also tested on an under-
ground parking garage scene with an approximate size of
200 × 50 m2. The mapping result of this scene is shown
in Fig. 3. The overall run of the trajectory is about 330 m.
Because of the particular design for car parking, the walls
are straight and parallel, which makes the scene appear to be
a narrow, long corridor that prevents the laser beams from
reaching the other side of the wall. We started and ended the
run at the same location.

Two state-of-the-art methods, LOAM and Lightweight and
Ground-Optimized (LeGO)-LOAM [15], were compared with
our methods by measuring the gap between the starting and
ending points. Fig. 3(a) shows four trajectories. The red and
blue trajectories are generated by our method with and without
loop closure, respectively. The black and green trajectories
are generated by LOAM and LeGO-LOAM, respectively. The
black, blue, green, and red trajectories have cumulative drifts
of about 4.1, 2.2, 0.7, and 0.1 m, respectively. The dramatic
drop of the cumulative drift demonstrates the performance of
our mapping method. The time costs of our method without
and with loop closure are about 0.70 and 0.75 s/frame,
respectively.

Fig. 3. Mapping results of a parking garage scene. (a) Trajectories from
different methods. Black circle: starting location. (b) Close look of a map
built by our method without loop closure. (c) Close look of a map built by
our method with loop closure. (d) Map built by our method with loop closure.
(e) Example colored map result.

Fig. 3(e) shows the colored map result for the underground
parking garage. The insufficient and inconsistent lighting situ-
ation results in inconsistent color distribution of the calibration
results.

The averaged relative accuracies of the above building and
parking garage scenes are about 0.17% and 0.23%, respec-
tively. For the building scene, four pairs of reference points
for each floor were selected to calculate accuracy. For the
parking garage, 11 pairs of reference points, from both pillars
and road markings, were selected to calculate the accuracy. For
both building and garage scenes, ten planes were selected to
calculate local precisions. The average vertical and planimetric
precisions of the building are 2.79 and 2.70 cm, respectively.
The average vertical and planimetric precisions of the parking
garage are 3.66 and 2.07 cm, respectively.

2) Outdoor Scene Tests: The proposed calibration and map-
ping methods were also tested on a car-mounted multisensor
system, consisting of a Velodyne HDL-32E LiDAR sensor and
a Velodyne VLP-16 LiDAR sensor for 3-D data acquisition,
and four fisheye lens cameras. The Velodyne HDL-32E LiDAR
sensor has a typical accuracy range of 2 cm. The driving speed
during the test is about 25–35 km/h.

A part of Haiyun campus of Xiamen University was selected
as an outdoor mapping test scene. The data collecting run
contain two closed loops. The overall run of the trajectory
is about 650 m. As shown in Fig. 4, we started from the
point “0” location and ended at the point “1.” The order
of the data acquisition run is 0-1-2-3-4-2-3-1. In Fig. 4(a),
the trajectories in red and blue are generated by our method
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Fig. 4. Mapping results of an outdoor scene. (a) Trajectories of different
methods. The number “0” is the starting location. (b) Red trajectory generated
by our method with loop closure. (c) Close look of the orange block in (b).

Fig. 5. Colored map results of Haiyun Campus.

with and without loop closure, respectively. The trajectories in
black and green are generated by LOAM and LeGO-LOAM,
respectively. The trajectories in blue and red are generated
by our methods with and without loop closure, respectively.
At point “2” and point “3,” the cumulative drifts generated by
our method without loop closure are about 4.5 and 1.2 m,
respectively. LOAM achieved similar results to ours. The
cumulative drifts generated by LeGO-LOAM at these two
points are about 3.0 and 2.2 m, respectively. The cumulative
drifts of our method (red trajectory) dropped to less than
0.12 m after loop closure. Moreover, a crossroad [Fig. 4(c)],
which we went through twice, presents clean data with very
small misregistration.

Ten planes in the map were selected to calculate the local
vertical and planimetric precisions. The vertical and plani-
metric precisions are about 1.77 and 2.45 cm, respectively.

The time costs of our method without and with loop closure
are about 0.74 and 0.82 s/frame, respectively.

Fig. 5 shows the 3-D colored map results for the Haiyun
Campus of Xiamen University. The overall run of the trajec-
tory is about 1200 m. The results show that the calibrated
sensors are well fused for the outdoor scene. Considering the
low-cost commercial cameras used in the system, the limited
image resolution and large image distortion result in small
misregistration and incompleteness of the colored point clouds.

V. CONCLUSION
An efficient indoor 3-D colored mapping method for

GPS-/GNSS-denied environments using multisensor data was
presented in this letter. In this method, a SLAM-assisted
multisensor calibration method is used to achieve simultaneous
multisensor calibration, and an improved LiDAR-based SLAM
method with loop closure is proposed for mapping. The point
misclassification problem during the feature point extraction
is effectively solved by normalizing the distance during the
smoothness calculation of the feature point. The accumulated
error is eliminated by loop closure and map optimization.
Experimental results show that our method achieves promising
performance in complicated indoor and outdoor scenes.

REFERENCES
[1] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D

mapping: Using kinect-style depth cameras for dense 3D modeling of
indoor environments,” Int. J. Robot. Res., vol. 31, no. 5, pp. 647–663,
Apr. 2012.

[2] M. F. Fallon, H. Johannsson, J. Brookshire, S. Teller, and
J. Leonard, “Sensor fusion for flexible human-portable building-
scale mapping,” in Proc. IEEE/RSJ Int. Conf. (IROS), Oct. 2012,
pp. 4405–4412.

[3] Velodyne Products. Accessed: Mar. 15, 2018. [Online]. Available:
https://www.velodyneLiDAR.com/products.html

[4] J. Zhang and S. Singh, “Low-drift and real-time LiDAR odom-
etry and mapping,” Auton. Robot., vol. 41, no. 2, pp. 401–416,
Feb. 2017.

[5] J. Graeter, W. Alexander, and L. Martin, “LIMO: LiDAR-monocular
visual odometry,” in Proc. IEEE/RSJ Int. Conf. (IROS), Oct. 2018,
pp. 7872–7879.

[6] L. You, Y. Ruichek, and C. Cappelle, “Optimal extrinsic calibration
between a stereoscopic system and a LiDAR,” IEEE Trans. Instrum.
Meas., vol. 62, no. 8, pp. 2258–2269, Aug. 2013.

[7] S. Bileschi, “Fully automatic calibration of LiDAR and video streams
from a vehicle,” in Proc. IEEE 12th Int. Conf. Comput. Vis. Workshops,
(ICCV), Sep. 2009, pp. 1457–1464.

[8] M. Hassanein, A. Moussa, and N. El-Sheimy, “A new automatic system
calibration of multi-cameras and LiDAR sensors,” Int. Arch. Photogram.
Remote Sens. Spatial Inf. Sci., vol. 41, Jul. 2016, pp. 1–6.

[9] C. Wen, S. Pan, C. Wang, and J. Li, “An indoor backpack system for
2-D and 3-D mapping of building interiors,” IEEE Geosci. Remote Sens.
Lett., vol. 13, no. 7, pp. 992–996, Jul. 2016.

[10] Z. Gong, C. Wen, C. Wang, and J. Li, “A target-free automatic
self-calibration approach for multibeam laser scanners,” IEEE Trans.
Instrum. Meas., vol. 67, no. 1, pp. 238–240, Jan. 2018.

[11] D. Scaramuzza, A. Martinelli, and R. Siegwart, “A toolbox for easily
calibrating omnidirectional cameras,” in Proc. IEEE/RSJ Int. Conf.
(IROS), Oct. 2006, pp. 5695–5701.

[12] Riegl VZ 1000. Accessed: Jun. 1, 2017. [Online]. Available:
www.riegl.com/datasheet_vz-1000

[13] A. Segal, D. Haehnel, and S. Thrun, “Generalized-ICP,” Robot., Sci.
Syst., vol. 4, no. 4, p. 435, Jun. 2009.

[14] R. Küemmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“G2o: A general framework for graph optimization,” in Proc. IEEE Intl.
Conf. Robot. Autom., May 2011, pp. 3607–3613.

[15] T. Shan and B. Englot, “LeGO-LOAM: Lightweight and ground-
optimized LiDAR odometry and mapping on variable terrain,” in Proc.
IEEE/RSJ Int. Conf. (IROS), Oct. 2018, pp. 4758–4765.


