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Tree Classification in Complex Forest Point
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Abstract— Recently, the classification of tree species using
3-D point clouds has drawn wide attention in surveys and
forestry investigations. This letter proposes a new voxel-based
deep learning method to classify tree species in 3-D point clouds
collected from complex forest scenes. The proposed method
includes three steps: 1) individual tree extraction based on the
density of the point clouds; 2) low-level feature representation
through voxel-based rasterization; and 3) classification of tree
species by a deep learning model. Two data sets of 3-D forest point
clouds acquired by terrestrial laser scanning systems are used to
evaluate the proposed method. The method achieves an average
classification accuracy of 93.1% and 95.6% on the two data sets.
Furthermore, in comparative experiments, the proposed method
exhibits performance superior to that of the other 3-D tree species
classification methods.

Index Terms— Deep learning, point clouds, rasterization,
terrestrial laser scanning (TLS), tree species classification.

I. INTRODUCTION

TREE species classification in forests has become increas-
ingly important for forestry investigation, forestry plan-

ning, environmental protection, and statistics pertaining to
forest resources [1]. Every year, governments and companies
conduct forestry investigations, which consume a large amount
of manpower and financial resources.

Terrestrial laser scanning (TLS) systems efficiently collect
3-D point cloud data from the surroundings with highly
detailed representation of objects. The data are used in surveys,
map drawings, and object measurements. This technology has
the potential to reduce manpower consumption in forestry
investigations. In this letter, we focus on the classification of
tree species in plantation forests using 3-D point clouds.
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Recently, much work [2]–[7] has been done on individual
tree extraction and classification of tree species from light
detection and ranging (LiDAR) data. In [2]–[4], TLS was used;
in [5]–[7], airborne laser scanning (ALS) was used. ALS sys-
tems obtain only the top structures of the objects. In contrast,
data collected by TLS systems have higher sampling density
and provide richer information.

In terms of an application scenario, most of the exist-
ing methods are aimed at urban areas. Puttonen et al. [8]
proposed a method that uses fused mobile laser scanning
and hyperspectral data to classify trees. Yao and Wei [9]
combined airborne LiDAR data and imagery as features to
detect trees in 3-D. In the case of plantation forests, trees
are close to each other, causing mutual occlusion, and there
is much noise (e.g., lush weeds and stones), which increases
the difficulty in segmentation and classification. In terms of
the classification algorithm, most of the existing methods do
not take into account the rotation invariance of the point
clouds. Li et al. [10] described the tree textures by deriving
several LiDAR features in forests. In [11], a feature extraction
method was proposed to characterize simple indoor objects.
A method using waveform features and a deep learning model
was presented in [12].

To classify trees, this letter presents a novel method, based
on the rasterization and application of a deep learning model
to 3-D point clouds. The method consists of individual tree
extraction, feature extraction, and classification. In the first
stage, individual trees are extracted based on center density,
followed by data preprocessing including ground point
removal, noise removal from occlusion [13], and main direc-
tion adjustment of the tree trunk [14]. In the second stage,
the 3-D point cloud is projected onto 2-D images that contain
the outlines of the trees. Considering the rotation invariance
of the raw data, the projection is repeated every 10° to
increase the richness of the training samples. The projected
images represent the low-level features of the trees. A deep
belief network (DBN) is then introduced to generate high-
level features, which are used by a softmax classifier in the
final classification step.

The framework for tree classification in 3-D scenes pro-
posed in this letter demonstrates excellent performance in
experiments. The rasterization, multiview projection, and deep
learning techniques used in this letter can be extended to the
general classification of 3-D objects.

The rest of this letter is arranged as follows. Section II
gives the details of the proposed method. Section III shows and
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Fig. 1. Processing procedure of individual tree extraction. (a) Raw point
cloud. (b) Density map of the point cloud. (c) Results of tree extraction.

discusses the experimental results. The conclusion is presented
in Section IV.

II. METHODS

First, we introduce the method for individual tree extraction
in Section II-A, and then describe the preprocessing for
individual tree point clouds in Section II-B. Voxel-based ras-
terization and deep learning-based classification are presented
in Sections II-C and II-D, respectively.

A. Individual Tree Extraction

The observation that a tree trunk usually has the largest
point density in a horizontal projection image can be used to
determine the position of the trunk.

First, the forest point cloud is divided into grid blocks, and
according to its x and y coordinates, each 3-D point in the
point cloud is assigned to a grid block. Then, all the points are
projected onto the horizontal plane, and the point density is
calculated by counting the number of points in each grid block.
Blocks with high densities are preserved by setting a threshold,
and the central points of those blocks are considered the
candidate tree centers. The neighborhood with radius r on the
horizontal plane for each candidate tree center is considered
the scope of the tree. The value of r is determined by the
average distance between one tree and other trees. Finally,
the individual tree is extracted by backprojecting the points
in the neighborhood of the tree center onto the original point
cloud. Fig. 1, which shows the raw point cloud, density map
of the point cloud, and tree extraction results, illustrates the
procedure for individual tree extraction.

B. Preprocessing for Individual Tree Point Cloud

Because of the complexity of the forest environment,
an individual tree point cloud must be preprocessed, which
mainly includes two steps.

Step 1—Noise Removal: Noise includes the ground points
and points of branches and leaves of other trees. Voxel-
based upward-growing filtering [15] is used to remove ground
points. This method partitions point cloud data into an octree
structure with a voxel size. For each voxel, the octree struc-
ture expands to its nine neighboring upward voxels; then,
the growing scheme expands until it reaches the top boundary.
If the elevation of the top voxel is lower than the predefined
threshold, the cluster of these voxels is referred to as the
ground, and the points in these voxels are removed from the
tree point cloud. Distance-based clustering is used to remove
the noise generated by the branches and leaves of other trees.

Fig. 2. Preprocessing for individual tree point cloud. (a) Ground point
removal. (b) Noise removal. (c) Trunk direction adjustment.

First, a K -d tree is constructed for an individual tree point
cloud; then, the vertex point of the K -d tree is regarded
as the starting point. If the distance between the starting
point and the next point is less than the threshold, the two
points are considered to be of the same class and marked.
The starting point is changed when the previous point is
traversed. The class with the greatest number of points is
deemed to be the tree; the other classes are removed as noise.
Fig. 2(a) and (b) shows the results of ground point removal
and noise removal, respectively.

Step 2—Main Direction Adjustment of the Tree Trunk:
As the slope of the forest ground changes considerably, many
tree trunks, after extraction, are not perpendicular to the coor-
dinate system. The variety of tree directions may negatively
affect the classification results; thus, it is necessary to adjust
the main direction of the trunk so that it is perpendicular to the
xy plane. The longest straight line in the tree is fit by searching
the tree points; according to the angle between the fit line and
the xy plane, the original tree point cloud is rotated so that it
is vertical. The process is shown in Fig. 2(c).

C. Voxel-Based Rasterization

After individual tree extracting and preprocessing, to gen-
erate low-level features, the 3-D point cloud of an individual
tree is projected onto 2-D images. The 3-D trees are projected
at a specific angle of rotation, similar to taking photographs
from different positions. Because the direction of the trunk
has been adjusted, to obtain a projection image, we fix the
z-axis of the tree coordinates and rotate the xy plane around the
z-axis at a specific angle α. The coordinates are estimated as
follows:

x ′ = x ∗ cosα − y ∗ sinα

y ′ = x ∗ sinα + y ∗ cosα

z′ = z (1)

where x ′, y ′, z′ are the transformed coordinates, x , y, z are
the original coordinates, and α is the angle of rotation.

The rasterization method divides the grid blocks in the
sample space, which is followed by counting of the number
of points in each grid, then performing grid accumulation in
the xz plane along the y-axis, and finally obtaining a picture
similar to a gray image. As shown in Fig. 3, the original tree is
in the red dashed box, and the results of the profile projection
per 30° rotation are shown in the blue dashed box.
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Fig. 3. Rasterization and projection of individual tree.

Fig. 4. Structure of DBN model. (a) RBM layers. (b) Fully connected layers.

D. Classification Using Deep Learning

Recently, deep learning techniques have been shown to be
superior to other algorithms in image processing, especially in
the field of target classification [16], [17]. Most of the deep
learning models require a huge number of training samples.
However, in the case of a forest, there is an insufficient number
of samples. In this letter, we choose the DBN model [18],
which achieves better convergence with a small-scale sample.
Compared with other deep networks, DBN has a special step in
model training: restricted Boltzmann machine (RBM) greedy
layer-wise pretraining. The benefit is that the parameter initial-
ization of the network is not random, but, in advance, adjusts
the network parameters in a state that converges relatively
easily.

The DBN model includes RBM and fully connected layers.
As shown in Fig. 4, a DBN model consists of a three-
layer RBM [see Fig. 4(a)] and three fully connected layers
[see Fig. 4(b)]. Denote v ∈ [0, 1]n as the visible units
representing the rasterization feature of a tree, where n is
the number of visible units. Denote h ∈ {0, 1}m as the
hidden units, where m is the number of hidden units in the

hidden layers. The energy function of an RBM layer is defined
as follows:

E(v, h; θ) = −
n∑

i=1

m∑
j=1

Wij vi h j −
n∑

i=1

aivi −
m∑

j=1

b j h j (2)

where θ = {Wij , ai , b j } are the model parameters; vi is the
i th element of v; h j is the j th element of h; Wij is the weight
coefficient between the visible unit i and the hidden unit j ;
ai and b j are the weight coefficients between the network
and offset units, respectively. The activation function over the
visible and hidden units is expressed as follows:

P(h j = 1 | v) = g

(
n∑

i=1

Wij vi + b j

)
(3)

P(vi = 1|h) = g

⎛
⎝ m∑

j=1

Wij hi + ci

⎞
⎠ (4)

where g(x) = 1/(1 + e−x) is the logistic function.
The solution process for training model is divided into two

stages: solution of the RBM and solution of the fully connected
layers.

1) Stage One: The training tree samples are projected onto
multiview images as input, and a greedy layer-wise
pretraining [19] method is used to initialize the RBM
parameters Wi and bi , i = 1, 2, 3, with input images
[see Fig. 4(a)]. Then, a combination of Gibbs sampling
and the contrast divergence method are used to adjust
the values of the units.

2) Stage Two: This step uses the RBM parameters to
initialize the fully connected layers [see Fig. 4(b)]. Also,
this stage permits the network parameters to forward
communication, and then uses a stochastic gradient
descent to adjust the parameters.

To classify the tree species, a softmax layer is added at the
top of network, which is defined as follows:

P(y = c) = exp
(∑

d wid xd
)

∑
j exp

(∑
d w j d xd

) (5)

where c is a predicted label, wid and w j d are the weights, and
xd are the units of the last layer.

In the training stage, pretreated trees are rasterized into
multiview images, and a DBN model is trained (see the red
dashed box in Fig. 5). The number of projection planes is
decided by the angle of rotation at every turn, and the angle
setting is discussed in Section III. In the test stage (see the
green dashed box in Fig. 5), after rasterizing each pretreated
tree into images, each projection image is taken as input to
obtain the results of the deep model, and finally voted accord-
ing to the results of all the projection images from the same
tree. Each image that participates in the vote uses the same
weight and confirms the tree species by obtaining the class
that won most of the votes, defined as follows:

Class(tree) = arg
c j

max(sum
i

(yi = c j )) (6)

where c j stands for tree species with the j th class, and yi

stands for the i th projection image.
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Fig. 5. Workflow of the proposed method. The training process is in the red dashed box, and the test process is in the green dashed box.

Fig. 6. Four tree species in data set 1.

III. RESULTS

We used two data sets to evaluate our proposed method.
Data set 1 was collected by the RIEGL VZ-1000 sys-
tem (120 lines and 300 000 points per second) in Jiangle,
China. The data set includes the following four tree
species (see Fig. 6): C1: Castanopsis eyrei, C2: Cunninghamia
lanceolata, C3: Pinus massoniana, and C4: Phyllostachys
pubescens. Data set 2, which was collected by the
RIEGL VMX-450 system (400 lines and 1.1 million points
per second) in Xiamen, China, has also been used in [12].
The data set consists of the following eight tree species
(see Fig. 8): T1: Elaeocarpus apiculatus mast, T2: sago Cycas,
T3: Trachycarpus fortunei, T4: Roystonea regia, T5: Bischofia
polycarpa, T6: Delonix regia, T7: Euonymus japonicus, and
T8: Mangifera indica.

A. Tree Classification

For data set 1, 340 tree samples (12 240 projection images
if we rotate 10° each time) were used to train the DBN model.
At the test stage, 248 tree samples (8928 projection images)
were used to evaluate the method. All the trees were extracted
from six forest point clouds. The area of each forest sample is
about one hectare. In Table I, the results of the classification
of the tree species are illustrated by providing a confusion
matrix. The overall accuracy of the tree classification is 93.1%;

TABLE I

OVERALL RESULTS OF TREE SPECIES CLASSIFICATION

ACCURACY BY USING CONFUSION MATRIX

the kappa coefficient is 0.9. The producer’s accuracies and the
user’s accuracies for all test samples are greater than 90%.
The similarities between C2 and C3 cause the main error in
the classification.

The parameter values used in the experiments are as follows.
For extracting an individual tree, we set the block size at 0.2 m.
In the preprocessing step, we set the threshold at 3000 to
remove the ground points and set the clustering distance at
0.4 m when eliminating the noise. As for the rasterization,
we fixed the projection area at 3 m × 15 m, so that it would
contain most of the information of the trees, and set the voxel
size at 3 cm, generating images of 100 × 500 pixels.

Our method has rasterized trees in both the training and
testing stages. Therefore, we discuss the impact that the
number of projection images has on the experimental results
in these two stages. In the training stage, we set the number
of projection images from 1 to 72 by changing the rotation
angle of the rasterization. Fig. 7(a) shows the effect that
different numbers of projection images have on the accuracy.
The richer the information about a sample as the number
of projection images increases, the higher is the accuracy
rate. Also, as shown in Fig. 7(a), the increase in accuracy
slows when the number of projections reaches a certain
quantity. However, more projection images would influence
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Fig. 7. Accuracy at different number of projection images. (a) Variation
curve in the training stage. (b) Variation curve in the testing stage.

Fig. 8. Eight tree species in data set 2.

TABLE II

COMPARATIVE RESULTS OF CLASSIFICATION ACCURACY

the efficiency in model training. Therefore, we chose 36 as
the number of projections in training to balance the accuracy
and efficiency. Fig. 7(b) shows how accuracy is affected by
the different number of projection images used to vote in
the testing stage. The more the images participating in the
voting, the higher is the accuracy. However, efficiency must
also be considered. Finally, in testing, 36 projection images
are used.

B. Comparison

We used data set 2 (see Fig. 8), which was also used in
[12], to perform comparative experiments. Table II exhibits
the results of the comparison. We used the projection images
of trees as low-level features, which contain more original
information about the trees and are easier for the deep model
to learn than the waveform features in [12]. Therefore, for
accuracy and the kappa coefficient, our method achieves values
of 95.6% and 0.9%, respectively, which are higher than the
values achieved by the method proposed in [12].

IV. CONCLUSION

In this letter, we proposed a novel rasterization-based
method for the classification of tree species from TLS point
clouds of complex forest scenes. Our method consists of
individual tree extraction and noise removal, representing
tree features by voxel-based rasterization and classifying
tree species with a DBN model. Experiments show that high

accuracy is achieved on both data sets. Rasterization is a
powerful expression of 3-D object information. In the future,
we will continue to consider more effective ways to express
3-D objects.
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