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U-Net Based Road Area Guidance for Crosswalks Detection from Remote
Sensing Images

Extraction des routes potentielles au moyen du mod�ele U-Net pour la
d�etection des passages pi�etonniers �a partir d’images de t�el�ed�etection

Ziyi Chena, Ruixiang Luoa,c, Jonathan Lib , Jixiang Dua, and Cheng Wangc

aDepartment of Computer Science and Technology, Fujian Key Laboratory of Big Data Intelligence and Security, Xiamen Key
Laboratory of Computer Vision and Pattern Recognition, Huaqiao University, Xiamen, Fujian, China; bDepartment of Geography and
Environmental Management, University of Waterloo, Waterloo, ON, N2L 3G1, Canada; cSchool of Information Science and Engineering,
Xiamen University, Xiamen, Fujian, China

ABSTRACT
Due to the wide distribution of crosswalks over the road nets, the finding of impaired cross-
walk marks is usually long-time delayed, which may put crosswalk pedestrians into danger.
To reduce the repairing cost and improve the finding speed of damaged crosswalks, this
paper uses remote sensing images to automatically detect crosswalks. The detection results
can be used for further examination of crosswalks. However, the detection of crosswalks
from remote sensing images suffers from serious interferes of many other kinds of ground
targets. Besides, there are rare openly available datasets for the research of crosswalk detec-
tion from remote sensing images. To conquer the above problems, this study provides an
openly available dataset for the research of crosswalk detection. To improve the robustness,
we propose a crosswalk detection framework which uses a U-Net based road area guidance.
First, we use CNN models to detect crosswalks. Then, we use U-Net to extract potential road
areas. Third, we propose a mixture classification strategy which combines the detection con-
fidence and potential road area guidance for final crosswalk detection. Experimental results
show that the road area guidance for crosswalks’ detection is effective and can improve the
detection performance.

RÉSUMÉ

En raison de la grande dispersion des passages pour pi�etons sur les routes, la d�ecouverte
de marques de passage pour pi�etons alt�er�ees est g�en�eralement indument retard�ee, ce qui
peut mettre les pi�etons en danger. Pour r�eduire le coût de r�eparation et acc�el�erer la
recherche des passages pi�etons endommag�es, cette �etude utilise des images de
t�el�ed�etection pour les d�etecter automatiquement. Les r�esultats de cette d�etection peuvent
être utilis�es pour un examen plus approfondi des passages. Cependant, la d�etection des
passages pour pi�etons �a partir d’images de t�el�ed�etection souffre de graves interf�erences de
nombreux autres types de cibles au sol. En outre, il existe de rares ensembles d’images
librement disponibles pour la recherche de d�etection des passages pour pi�etons. Pour sur-
monter les probl�emes ci-dessus, notre �etude fournit un ensemble de donn�ees de
t�el�ed�etection librement disponible. Pour am�eliorer la robustesse, cet �etude propose un
cadre de d�etection des passages pour pi�etons utilisant un guide des zones routi�eres bas�e
sur U-Net. Tout d’abord, nous utilisons des mod�eles CNN pour d�etecter les passages.
Ensuite, nous utilisons le mod�ele U-Net pour extraire des zones routi�eres potentielles.
Troisi�emement, nous proposons une strat�egie de classification des m�elanges qui combine la
confiance de d�etection et le guide des routes potentielles pour la d�etection finale des pas-
sages pour pi�etons. Les r�esultats exp�erimentaux montrent que l’extraction des routes poten-
tielles pour la d�etection des passages pour pi�etons est efficace et peut am�eliorer les
performances de d�etection.
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Introduction

Crosswalks play an important role in guaranteeing
traffic safety and governing traffic order. Owing to
erosion and material aging, crosswalks become worn
continuously. Discovering and repairing the damage
and aging situations of crosswalks in time are import-
ant to keep crosswalk pedestrians safe. Traditionally,
the discovering of damaged and aging crosswalks need
a large amount of examination works by human
labors, which is inefficient and costly as crosswalks
are widely distributed over all the road nets.

Using remote sensing images to automatically rec-
ognize and locate the impaired crosswalks is great
meaningful and economical. Before recognizing the
impaired crosswalks, it needs to detect the crosswalks
firstly. However, due to the complex backgrounds, the
detection of crosswalks from remote sensing images is
still a challenging task. Especially, the ground has a
large amount of similar interferes, which resulting in
wrong detections and un-robustness. As shown in
Figure 1, when using YoloV3 (Redmon and Farhadi
2018), it occurs a wrong detection which is rather
similar to crosswalks beside a building. We find that

the main reason is the lack of road guidance
information.

Another crying need for crosswalk marking detec-
tion from remote sensing images is a suitable large
and well-labeled dataset. As far as we know, there are
rare well labeled, and publicly open datasets which
focus on crosswalk marking detection from remote
sensing images.

To solve the above problems, this paper provides a
well labeled and publicly open dataset for crosswalk
marking detection from high-resolution optical remote
sensing images. Besides, to utilize the road guidance
information and improve the detection accuracy, this
paper proposes a crosswalks detection method based
on Convolutional Neural Network (CNN) models and
road guidance information. Firstly, we train CNN
models to detect crosswalks. Secondly, we train a U-
Net for potential road area extraction. Thirdly, we
propose a mixture classification strategy which com-
bines detection confidence and potential road area
information guidance to detect crosswalks from
remote sensing images. Due to the guidance of poten-
tial road areas, our detection framework performs

Figure 1. CNN model based detection of crosswalks in a satellite image. An obvious detection error occurs in an area which is
similar to crosswalks in front of a building.
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better than other compared state-of-the-art CNN
detection models, including Faster R-CNN (Ren et al.
2017), YoloV3 (Redmon and Farhadi 2018) and
YoloV3 based on DenseNet (Huang et al. 2017).
Besides, this paper provides a well labeled and pub-
licly open dataset for crosswalk marking detection
from high-resolution optical remote sensing images.

The main contributions of this paper lie on:

1. This paper proposes a framework to detect cross-
walks, which combines CNN detection models
and road area guidance information.
Experimental results prove the effectiveness of
our method.

2. This paper supplies a well labeled and publicly
open dataset for crosswalk detection from remote
sensing images, filling the gap of lacking study
dataset for crosswalk marking detection from
remote sensing images.

Related work

Object detection from remote sensing images

In 2012, Convolutional Neural Network (CNN)
(Krizhevsky et al. 2012) based on deep learning was
proposed, which became a mainstream method in
computer vision relevant domains owing to its power-
ful feature learning ability, promoting the rapid devel-
opment of computer vision. In 2014, Grishick et al.
proposed Region Convolutional Neural Network (R-
CNN) (Girshick et al. 2014). Since then, object detec-
tion has come into the fast lane of development.
Various models based on R-CNN began to be pro-
posed to improve object detection model’s perform-
ance. These models can be divided into two classes:
one-stage models and two-stage models. Two-stage
object detection models such as Fast R-CNN
(Girshick 2015), Faster R-CNN (Ren et al. 2017),
Mask R-CNN (He et al. 2017) persist in the frame-
work of R-CNN (Girshick et al. 2014), which divides
object detection into two steps: classification and
regression. one-stage models such as Yolo (Redmon
and Farhadi 2018; Redmon et al. 2016; Redmon and
Farhadi 2017; Bochkovskiy et al. 2020), SSD (Liu
2016) proposed an unprecedented method to realize
classification and regression at the same time.

Remote satellite image is recognized as a significant
way to gain geospatial information, which is widely
applied in many research areas about computer vision.
There are several surveys showing great progress in
object detection from remote sensing images (Cheng
and Han 2016; Ke Li 2020). However, when

researchers use remote satellite images to realize
object detection, they find there appear various prob-
lems such as the low resolution of target objects and
arbitrary orientations. In order to improve models’
performance, researchers have proposed many meth-
ods to deal with those problems in object detection
from remote sensing images (Zhang et al. 2018;
Cheng et al. 2019; Wang et al. 2019; Li et al. 2018;
Zhou et al. 2021; Liu et al. 2017; Li et al. 2019; Chen
et al. 2020; Zhang et al. 2019; Yao et al. 2019; He
et al. 2016; Dong et al. 2020; Chen et al. 2020).

In order to enable models to be rotation-variant,
Zhang et al proposed an end-to-end model called
Rotated Region Proposal Networks(R2PN) (Zhang
et al. 2018) to generate multi-orientated proposals in
ship detection applications. Their model could make
the inclined ship region proposals more accurate.
Chen et al proposed a method to learn Fisher discrim-
inative and rotation-invariant CNN models, which
were applied to objects detection from optical remote
sensing images, to improve the models’
performance(Cheng et al. 2019). They also proposed
new object functions to address the problems about
class diversity and between-class similarity. Wang et al
proposed a model based on CNN network for object
detection from remote sensing images (Wang et al.
2019), the model could use CNN’s multi-layers to pre-
dict different size objects and use the four-point
marking method to generate multi-angle Region
Proposals. Li et al proposed a novel framework
including a local-contextual feature fusion network
and region proposal network for object detection
from remote sensing images (Li et al. 2018). In their
model, they designed a double-channel feature fusion
network which can learn contextual and local proper-
ties from independent pathways, the final result dem-
onstrated their method is valid. Liu et al (Liu et al.
2017) introduced RR-CNN (rotated region based
CNN) for ship detection from remote sensing images.
Based on CNN, they proposed three new components
to strengthen model’s performance in their frame-
work, including a multi-task method for non-maximal
suppression (NMS) between different classes, a rotated
bounding box regression model, and a rotated region
of interest (RRoI) pooling layer.

In order to address the complex background infor-
mation. Li et al presented a cascade region proposal
network with soft-decision non-maximal suppression
to improve the network structure, which presented a
good performance for airport detection from remote
sensing images (Li et al. 2019). The structure used
skip-layer feature fusion and hard example mining

CANADIAN JOURNAL OF REMOTE SENSING 3



methods to improve the model’s performance. Chen
et al. presented a multi-scale spatial and channel-wise
attention (MSCA) mechanism for object detection
from remote sensing images (Chen et al. 2020).
MSCA not only paid its attention to the foreground
but also generated an attention distribution map that
combines multi-scale information. The distribution
map was applied to the feature map of the deep net-
work. The most significant point of the module is that
it can be embedded into any object detection and
improve models’ efficiency.

In order to realize multi-scale object detection,
Zhang et al introduced MS-FF net (Multi-Scale
Feature Fusion Network) for object detection from
VHR optical remote sensing images (Zhang et al.
2019). There is an additional multi-scale feature fusion
layer to fuze the information between detail and
semantic features in the MS-FF net. Therefore, it can
detect both large and small objects, improving the
model’s performance. Yan et al introduced a novel
Multi-scale Detection Network (MSDN) for object
detection from remote sensing images (Yao et al.
2019). The network presented a dilated bottleneck
structure to enlarge the receptive field and to improve
the regression ability of multi-scale objects with the
resolution of deep features maintaining.

Except for dealing with these problems, some
researchers devoted themselves to optimizing models’
structure. Dong et al proposed a novel high spatial
resolution remote sensing images object detection
method which uses suitable scale feature (Dong et al.
2020). Scale of feature area is determined by compil-
ing statistics for the scale range of objects in remote
sensing images. Cao et al proposed a method to insert
deformable layers into the pre-trained networks and
fine-tune new networks for object detection from
VHR optical images (Cao et al. 2019). Evaluation
showed that the one with deformable convolution has
better performance. Wei et al introduced a shadow
processing algorithm with double threshold random
sampling to conduct data preprocessing in remote
sensing images (Wei and Zhang 2019). Evaluation
showed that the shadow processing algorithm can
make object detection models achieve better
performance.

Crosswalk marking detection

Crosswalk detection and location is an interesting and
important study topic, which is useful for automatic
driving (Danilo et al. 2016), keeping pedestrian safe
and road guidance (Ahmetovic et al. 2017) etc. Most

existing researches pay their attention to crosswalk
detection from street view (Berriel et al. 2017;
Christodoulou 2019; T€umen and Ergen 2020) or based
on mobile scanning data (Guan et al. 2014; Guan
et al. 2014). Berriel et al. used deep learning approach
for street view crosswalk classification (Berriel et al.
2017). They used crowdsourcing labeling data to train
their model. The experiments proved that the crowd-
sourcing labeling data is useful. T€umen et al. using
VggNet, AlexNet, and LeNet to detect crosswalks
from the view of drivers and obtained good perform-
ance (T€umen and Ergen 2020). Guan et al. used
Mobile Laser Scanning data for road marking detec-
tion and achieved good results(Guan et al. 2014).
There are a few studies focused on crosswalk detec-
tion from the view of remote sensing images
(Ahmetovic et al. 2017; Berriel et al. 2017; Prakash
et al. 2015), which is most related to our work. Berriel
et al. proposed a deep learning based classification
method from satellite images (Berriel et al. 2017).
They used a crowdsourcing system to enable the auto-
matic acquisition and annotation of a large-scale satel-
lite image database for crosswalks. Then they used the
large-scale dataset to train a model to classify whether
the image contains crosswalks and achieved good clas-
sification results. Prakash et al. proposed a road-fol-
lowing framework for the detection of crosswalk
markings from satellite images (Prakash et al. 2015).
In their method, they used the road map provided by
Open Street Map as crosswalk detection guidance.
Based on the road map, they used three steps to
detect crosswalks in their crosswalk detection frame-
work. Experiments showed that their method can
obtain satisfactory detection results over a large detec-
tion area. Crosswalk detection dataset of remote sens-
ing images is also lack of attention although it is an
important road marking detection target from remote
sensing images. Publicly open and accessible crosswalk
detection datasets are rather few. The open-source
project “OSM-Crosswalk-Detection: Deep learning
based image recognition”1 and the Swiss
OpenStreetMap Association with MapRoulette chal-
lenge2 are two datasets of crosswalk detection from
remote sensing images. However, the above datasets
rely on crowdsourcing labeling and other map sour-
ces. Another point is that, OSM is essentially a classi-
fication dataset as it only can be used for judging
whether if an image contains crosswalks. A direct,
large enough, and standard crosswalk dataset with
good labels is still an urgent requirement.

1https://github.com/geometalab/OSM-Crosswalk-Detection.
2http://sosm.ch/missing-crosswalks-a-maproulette-challenge/.
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Method

In this section, we show the framework of our method
firstly. Then, we introduce the object detection CNN
models and the road extraction U-Net model used in
our approach. Finally, we illustrate the detailed real-
izations of our method and the analysis about the
key parameters.

Framework

As shown in Figure 2, we firstly segment a rather
large remote sensing image into small pieces and label
crosswalks’ locations. Then, with the labeled images,
we select a bunch of images as training images to
train CNN-based crosswalk detection models. Third,
we also label the road areas manually of training
images, with which we train a U-Net model to auto-
matically extract potential road areas in test images.
Fourth, when testing, we propose a mixture classifica-
tion strategy which combines the potential road area
guidance and the crosswalk detection confidence to
detect the crosswalks.

Faster R-CNN, YoloV3, and DenseNet models

In this part, we give a brief introduction to the CNN
models we used. Table 1 shows the detailed network
structure of YoloV3 (Redmon and Farhadi 2018) used
in our method. In YoloV3, the convolution consists of
Conv2D Batch Norm, Leaky-ReLu in order, and
Residual block proposed in ResNet (He et al. 2016).
The output shape is S�S�(3�(5þ 1)), where S repre-
sents the input image’s height and width, 3 presents
the number of predicted boxes. In the second bracket,

one position represents the class number, other five
positions contain the predictions’ coordination
and confidence.

In YoloV3, it uses a clustering algorithm to deter-
mine prior anchors’ size. Then it updates the calcu-
lated method on regressive boxes, which makes
predicted boxes’ centers lock in their cells.

bx ¼ o txð Þ þ cx
by ¼ o tyð Þ þ cy, (1)

bw ¼ pwe
tw

bh ¼ phe
th

where bx, by, bw, and bh represent the box’s center
coordinates and its width and height, cx and cy repre-
sent the offset from the top left corner of the images,
pw and ph represent the prior boxes’ height and width,
r represents sigmoid function, tx, ty, tw, and th are
learned during training time.

What’s more, YoloV3 realizes multi-scale object
detection, which yields multi-scale features in convo-
lutional layer and fuses them in predicted phase to
make multi-scale objects can be detected.

In our method, we keep loss function of YoloV3 is
same with the original, which is composed by coord-
inate loss, classification loss and confidence loss:

Loss ¼ Losscoordinate þ Lossclassification þ Lossconfidence

Losscoordinate ¼ kcoor
Xs2
i¼0

XB
j¼0

1obji, j

�
bx � b̂x
� �2

þ by � b̂y
� �2

þ bw � b̂w
� �2

þ bh � b̂h
� �2�

Figure 2. The framework of our method.
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Lossclassification ¼
Xs2
i¼0

XB
j¼0

1obji, j

�
� log pcð Þ

þ
Xn
i¼1

BCEð̂ci, ciÞ
�

Lossconfidence ¼ kcoor
Xs2
i¼0

XB
j¼0

1noobji, j

�
� logð1� pcÞ

�
(2)

BCE ĉi, cið Þ ¼ �ĉi � log cið Þ � 1� ĉið Þ � log 1� cið Þ,
where S is the grid size, s2 represents 13�13, 26�26
and 52�52 in size. B is the number of anchor boxes.
1obji, j means the existence of objects, if the anchor con-
tains an object, its value is 1, otherwise its value is 0.
1obji, j means the absence of objects, if the anchor
doesn’t contain object its value is 1, or its value is 0.
bx, by, bw and bh represent the box’s center coordi-
nates and its width and height. b̂x, b̂y, b̂w and b̂h

represent the Ground-Truth’s center coordinates and
its width and height.

Table 2 shows the detailed network structure of
Faster R-CNN (Ren et al. 2017). In Faster R-CNN, the
convolution consists of Conv2D and ReLu. The out-
put of the region proposal has 2 vectors: 26�26�18 is
used to evaluate the classification, 26�26�36 is the
coordinates of boxes. Because we add the class
“crosswalk” on VGG16 directly, the final output vec-
tor’s length is 22.

The greatest difference between Faster R-CNN and
Fast R-CNN is that Faster R-CNN is not used Select
Research to merge super-pixel based on low-level fea-
tures anymore and replaces it with Region Proposal
Network (RPN) which can predict region proposals
efficiently. RPN can generate k anchors whose sizes
are not exactly same to detect objects in various scales
in each sliding position. Through adjusting the
anchors in each sliding position make us know the

Table 1. The detailed network structure of YoloV3.
YoloV3

Layer num Type Filters Stride Output size

1 Convolution 3�3�32 1 416�416�32
2 Convolution 3�3�64 2 208�208�64
3 Residual block 1�1�32 1 208�208�64

3�3�64
4 Convolution 3�3�128 2 104�104�128
5 2�Residual block 1�1�64 1 104�104�128

3�3�128
6 Convolution 3�3�256 2 52�52�256
7 8�Residual block 1�1�128 1 52�52�256

3�3�256
8 Convolution 3�3�512 2 26�26�512
9 8�Residual block 1�1�256 1 26�26�512

3�3�512
10 Convolution 3�3�1024 2 13�13�1024
11 4�Residual block 1�1�512 1 13�13�1024

3�3�1024
12 Convolutional set 1�1�512 1 13�13�512

3�3�1024
1�1�512
3�3�1024
1�1�512

13-1 Convolution 3�3�512 1 13�13�512
13-2 Convolutional 1�1�18 1 13�13�18
14 Upsampling layer 12 2�2 26�26�512
15 Concatenate 14 with layer 9 26�26�1024
16 Convolution set 1�1�256 1 26�26�256

3�3�512
1�1�256
3�3�512
1�1�256

17-1 Convolution 3�3�256 1 26�26�256
17-2 Convolutional 1�1�18 1 26�26�18
18 Upsampling layer 16 2�2 52�52�256
19 Concatenate 18 with layer 7 52�52�512
20 Convolution set 1�1�128 1 52�52�128

3�3�256
1�1�128
3�3�256
1�1�128

21-1 Convolutional 3�3�128 1 52�52�128
21-2 Conv2d 1�1�18 1 52�52�18
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possibility of objects and the coordination of boxes.
An advantage of this way is that it can extremely save
time in the region proposal step and increase the
number of detective objects in an image.

In the training stage, in order to make the model
more efficient, authors chose parameter initialization
based on the 0-mean standard normal distribution.

f xð Þ ¼ 1ffiffiffiffiffi
2p

p exp
�x2
2 (3)

In order to make predicted boxes closer to ground-
truth, several parameters are adopted to calculate
regressive loss:

tx ¼ x � xa
wa

, ty ¼ y� ya
ha

tw ¼ log
w
wa

	 

, th ¼ log

h
ha

	 

(4)

t�x ¼ x� � xa
wa

, t�y ¼
y� � ya
ha

t�w ¼ log
w�

wa

	 

, t�h ¼ log

h�

ha

	 


where w, h, x, and y represent the box’s width and
height and its center coordinates, and x, xa, x� are
variables for predicted box, anchor box and ground-
truth box respectively. tx, ty, tw, and th are the weight
value needed to be calculated.

In our method, we keep loss function of Faster R-
CNN is the same with the original, which is com-
posed by classification loss and regression loss:

L pi, tið Þ ¼ 1
Ncls

X
i

Lcls pi, p
�
i

� �þ k
1

Nreg

X
i

p�i Lreg ti, t
�
i

� �

Lcls pi, p
�
i

� � ¼ �log½pip�i þ ð1� piÞð1� p�i Þ� ð5Þ

Lreg ti, t
�
i

� � ¼ Smooth L1 ti � t�i
� � ¼ 0:5 � x2 xj j < 1

xj j � 0:5 otherwise,

(

where pi is the possibility of predicted classification in
i-th anchor, p�i is the label of i-th anchor, if the i-th
anchor is a positive sample, p�i ¼ 1, or p�i ¼ 0. ti is the
parameterized coordinates of predicted Bounding box
of i-th anchor, t�i is the parameterized coordinates of
Ground Truth of i-th anchor. Ncls is the size of mini-
batch. Nreg is the number of anchors.

With the epochs going by, the boxes predict by
Faster R-CNN fit ground-truth slightly and output the
boxes whose size is similar to the ground-truth boxes.

Table 3 shows the detailed network structure of
DenseNet-121 used in our method. In DenseNet,
Dense Block is a fully-connected construction, the
Convolution layer is composed by BatchNorm-
ReLu-Conv.

In DenseNet, it adds residual blocks in the net-
work. Adding residual blocks in the network acceler-
ates the training speed and improves the model’s
performance. The mathematic expression on residual
blocks is:

F xð Þ ¼ H xð Þ � x (6)

where H xð Þ represents the output of a residual block
and x represents the input of a residual block. F xð Þ
represents the residual.

Besides, DenseNet adopts a fully connected struc-
ture to recognize all previous output as present input
in a dense block. The dense residual blocks not only
try their best to preserve feature information but also

Table 2. The detailed network structure of Faster R-CNN.
Faster R-CNN

Layer num Type Filters Stride Output size

1 Convolution�2 3�3�64 1 416�416�64
2 Max pooling 2�2 2 208�208�64
3 Convolution�2 3�3�128 1 208�208�128
4 Max pooling 2�2 2 104�104�128
5 Convolution�3 3�3�256 1 104�104�256
6 Max pooling 2�2 2 52�52�256
7 Convolution�3 3�3�512 1 52�52�256
8 Max pooling 2�2 2 26�26�256
9 Convolution�3 3�3�512 1 26�26�512
10 Conv2d 3�3�512 1 26�26�512
11-1 Conv2d 1�1�18 1 26�26�18
11-2 Conv2d 1�1�36 1 26�26�36
12-1 Concatenate 11-1

with 11-2
26�26�54

12-2 ROI pooling 49�49
13 Fully connection 4096�1
14 ReLu 4096�1
15 Fully connection

for regression
22�4

Fully connection
for classification

22�1

Table 3. The detailed network structure of DenseNet-121.
DenseNet-121

Layer num Type Filters Stride Output size

1 Convolution 7�7�64 2 208�208
2 Max pooling 3�3 2 104�104
3 Dense block 1� 1 conv

3� 3 conv

� �
� 6

1 104�104

4 Transitional layer 1�1�64 conv 1 104�104
2�2 average pool 2 52�52

5 Dense block 1� 1 conv
3� 3 conv

� �
� 12

1 52�52

6 Transitional layer 1�1�64 conv 1 52�52
2�2 average pool 2 26�26

7 Dense block 1� 1 conv
3� 3 conv

� �
� 24

1 52�52

8 Transitional layer 1�1�64 conv 1 26�26
2�2 average pool 2 13�13

9 Dense block 1� 1 conv
3� 3 conv

� �
� 16

1 13�13
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decreases the number of feature parameters, which
strengthens the models’ performance on classification.
The mathematic expression on dense blocks is:

xl ¼ Hl ½x0::: xl�1�ð Þ (7)

where Hl() represents the function to fuze previous
layers’ output, and xi represents the i-th layer.

When training YoloV3 based on DenseNet, we
used the same loss function with YoloV3. Therefore,
we don’t mention loss function in this sec-
tion anymore.

Road area extraction based on U-Net

In this part, we give a brief introduction about U-Net
(Ronneberger et al. 2015) used in our approach for
road area extraction.

In U-Net, the U-shape structure and skip-connec-
tion are the impressive points of the model. During
down-sampling, U-Net continuously encodes four
times and makes final feature images smaller 16 times
than original images. Symmetrically, it will decode
feature images four times by fuzing previous feature

images, the final feature images will have the same
size as the original images.

U-Net adopts the skip-connection structure to
concatenate deep and swallow layer information. Skip-
connection structure not only improves U-Net’s per-
formance but also provides many detailed features for
later steps to image segmentation.

When training our U-Net model, we chose Binary
Cross-Entropy (BCE) as loss function:

BCE xð Þ ¼
PC

i¼1 BCEðxÞi
C

¼ �PC
i¼1½yi log fi xð Þ þ ð1� yiÞlogð1� fi xð ÞÞ�

C
,

(8)

where C is the number of categories. yi is the i-th
truth label, and fi xð Þ is the predicted result on the
input x.

Table 4 shows the detailed network structure of U-
Net used in our experiments. In the training stage, we
need to adjust image size from 416�416 to 256�256 to
train. In order to ensure U-Net will not be sensitive

Table 4. The detailed network structure of U-Net.
U-Net

Layer num Type Filters Stride Output

1 Conv2d 3�3�64 1 256�256�64
2 Conv2d 3�3�64 1 256�256�64
3 Max pooling 2�2 128�128�64
4 Conv2d 3�3�128 1 128�128�128
5 Conv2d 3�3�128 1 128�128�128
6 Max pooling 2�2 64�64�128
7 Conv2d 3�3�256 1 64�64�256
8 Conv2d 3�3�256 1 64�64�256
9 Max pooling 2�2 32�32�256
10 Conv2d 3�3�512 1 32�32�512
11 Conv2d 3�3�512 1 32�32�512
12 Max pooling 2�2 16�16�512
13 Conv2d 3�3�1024 1 16�16�1024
14 Conv2d 3�3�1024 1 16�16�1024
15 Upsampling layer 14 2�2 32�32�1024
16 Conv2d 2�2�512 1 32�32�512
17 Concatenate layer 16 with layer 11 32�32�1024
18 Conv2d 3�3�512 1 32�32�512
19 Conv2d 3�3�512 1 32�32�512
20 Upsampling layer 19 2�2 64�64�512
21 Conv2d 2�2�256 1 64�64�256
22 Concatenate layer 21 with layer 8 64�64�512
23 Conv2d 3�3�256 1 64�64�256
24 Conv2d 3�3�256 1 64�64�256
25 Upsampling layer 24 2�2 128�128�256
26 Conv2d 2�2�128 1 128�128�128
27 Concatenate layer 26 with layer 5 128�128�256
28 Conv2d 3�3�128 1 128�128�128
29 Conv2d 3�3�128 1 128�128�128
30 Upsampling 2�2 256�256�128
31 Conv2d 2�2�64 1 256�256�64
32 Concatenate layer 31 with layer 2 256�256�128
33 Conv2d 3�3�64 1 256�256�64
34 Conv2d 3�3�64 1 256�256�64
35 Conv2d 3�3�2 1 256�256�2
36 Conv2d with Sigmoid 1�1�1 1 256�256�1
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to images’ size adjustment. Therefore, we utilize the
same method in training and evaluating models.

Mixture classification strategy of our method

Before introducing our method, we illustrate two
thresholds adopted in our method.

a: A threshold to filter out the low confidence
crosswalk detection boxes. If a box’s confidence is
greater or equal than the threshold a, we’ll combine
the road information guidance to judge further.
Otherwise, we will filter it out. Usually, the higher a,
the lower recall rate.

b: A threshold used in judging whether a predicted
box is a crosswalk when combining road guidance
produced by U-Net. We calculate the overlap propor-
tion between potential road areas and the predicted
crosswalk box. If the overlap ratio is greater or equal
than b, we recognize it as a true positive sample.
Otherwise, we will filter it out.

In order to use both detection confidence and road
information guidance, we propose a mixture classifica-
tion strategy. As shown in Figure 3, we first detect
crosswalks using the trained CNN model and extract
potential road areas using the trained U-Net. Then,
we evaluate the confidence of detected crosswalk
boxes. If the confidence is smaller than the threshold
a, the detected box will be dropped. Otherwise, we
compute the overlap proportion of detected boxes and
with extracted road areas. If the overlap proportion is
larger than threshold b, the detected box will be rec-
ognized as a crosswalk. Otherwise, the detected box is
judged as not a crosswalk. Note that, the U-Net might
fail on several images. When the U-Net extracts noth-
ing, we will use a to filter out the samples by boxes’
confidence directly.

Results

Dataset

In our experiment, we train and evaluate our models
on London suburb dataset with a resolution of
0.15 m. The original image is a large image with a
size of 10246� 9542. We use MATLAB to divide the
original image into pieces whose size is 416� 416.
After clipping, we label the crosswalks for each image.
During labeling, we use LabelIMG3 to label crosswalks
in all the images. In order to train U-Net, we also
label the road as white area and label background as
black area for training images.

When we get the original dataset, we find it only
has about 2000 samples. we split the original dataset
into train dataset, validation dataset and test dataset,
the training dataset accounts for 60% of the total
images, the validation dataset accounts for 10% of the
total images, and the test dataset accounts for the
remaining 30%. In order to enlarge our training data-
set, we rotate each training image to generate new
training images, which is a common method in data
augmentation. For each training image, every five-
degree rotation generates one more training image.
After rotation, crosswalks in the new rotated images
need to calculate new coordinates, the calculation
equations are as follows:

X0 ¼ X � Cos hð Þ þ Y � sinðhÞ, (9)

Y 0 ¼ Y � Cos hð Þ � X � sinðhÞ, (10)

where h presents the rotated angle, X and Y represent
the corresponding coordination based on the coordin-
ate of an image center.

Figure 3. Mixture classification strategy of our approach.

3https://pypi.org/project/labelImg/
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After we enlarge the original training dataset, the
new training dataset has about 100,000 samples in
29,664 training images.

Our dataset is publicly open and available at the
website: ftp://154.85.52.76/Crosswalk_dataset_sub/.

Figure 4 shows three couples of the original images
and their corresponding crosswalk labels. The label of
each crosswalk includes the coordinates of a box’s top
left corner and bottom right corner. In our dataset,
the labeling information of each crosswalk is saved in
an XML file. Figure 5 shows an example of the repre-
sentation format of the labeled crosswalks’

coordinates. The crosswalk in the red rectangle of the
left image is the target crosswalk, and the right image
is the corresponding coordinates saved in the
XML file.

Experimental set up

In order to evaluate our method, we first train four
models: YoloV3, Faster R-CNN, YoloV3 based
DenseNet-121, and U-Net. Our experiment runs on
two RTX 2080 Ti GPUs. The training images and

Figure 4. Our crosswalk dataset exhibition. The first row is the original images, and the second row is the corresponding crosswalk
labels which are boxes.

Figure 5. The representation format exhibition of our crosswalks’ labeling coordinates saved in the XML file. The crosswalk in the
red rectangle of the left image is the target crosswalk, and the right image is the corresponding coordinates saved in the XML file.
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labels are same for YoloV3, Faster R-CNN, and
YoloV3 based DenseNet-121.

Before we train models, we must choose appropri-
ate parameters for each model. In YoloV3, we set
batch size as 30, learning rate as 0.0001, epoch as 50.
In YoloV3 based on DenseNet, we set batch size as
18, learning rate as 0.0001, epoch as 50. In Faster R-
CNN, we set batch size as 20, learning rate as 0.001,
iteration as 120000. In U-Net, we set batch size as 10,
learning rate as 0.0001, epoch as 10.

During training phase, Faster R-CNN needs a
VGG-16 (Simonyan and Zisserman 2015) pre-trained
on ImageNet4 for initialization. Other models do not
need pre-trained models for initialization. Therefore,
the training speed on Faster R-CNN is faster than
other object detection models. In order to make full
use of our computing resource, we make each batch
as large as possible, which is set at 20 in our experi-
ments. When training U-Net, we resize the output
size at 416�416, which is same as the output size of
CNN crosswalk detection models. Since our training
dataset is large enough, all of our models are
trained properly.

What’s more, it’s possible for models to overfit in
training. In order to avoid overfitting, we took some
measures in training our models. Firstly, we use data
augmentation to enlarge our training dataset. Then,
we add few other objects in our training dataset.
Finally, we make learning rate decay and use early-
stopping when validation loss decreases obviously dur-
ing training.

After training models, we get loss charts of each
model. We find that all of models’ validation loss are
converged. In YoloV3, YoloV3 based on DenseNet,
we used TensorBoard to record validation loss, each
x-tick represents an epoch. In Faster R-CNN and U-
Net, we output the loss into a text file. We average
every 100 iterations as one x-tick.

Because of early-stopping, YoloV3 stopped after 46
epochs. YoloV3 based on DenseNet stopped after 49
epochs (Figures 6–9).

When giving a test image, we first obtain the pre-
dicted boxes of crosswalks. Then, we extract the
potential road areas in the test image. Based on the
confidence of predicted crosswalks, we drop the pre-
dictions which have lower confidence than the thresh-
old a. Confidence claimed the possibility of objects’
appearance, the formula of confidence is as follow:

IOUtruth
predict ¼

Ground � Truthf g \ fPredictedg
Ground � Truthf g [ fPredictedg (11)

Coincidence ¼ P Objectð Þ � IOUtruth
predict (12)

where P xð Þ represents the possibility. Intersection
Over Union (IOU) is a value to evaluate the propor-
tion of the overlapping area. Next, for each predicted
crosswalk with confidence larger than a, we compute
the IOU between the predicted bounding box and the

Figure 6. The loss charts of YoloV3 model in our method.

Figure 7. The loss charts of YoloV3 base on DenseNet model
in our method.

Figure 8. The loss charts of U-Net model in our method.

4http://www.image-net.org/.
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potential road areas. If the computed IOU value is
larger than the threshold b, then the prediction is rec-
ognized as a crosswalk. Otherwise, we recognize the
prediction as not a crosswalk.

Evaluation criteria

Before showing our results, we introduce the perform-
ance evaluation criteria used in our method.

Detection accuracy
If the IOU of a predicted box is greater or equal than
the threshold which is default as 0.5, we call it True

Positive (TP), otherwise we call it False Positive (FP).
The crosswalks which are lost during detection are
called False Negative (FN). Thus, precision, recall, and
F1-Score are calculated as follows:

Precision ¼ FP
FP þ TP

, (13)

Recall ¼ FP
FP þ FN

, (14)

F1� Score ¼ 2�precision�recall
precisionþ recall

, (15)

In order to consider a models’ accuracy and recall
simultaneously, we can observe the F1-score, which is
a comprehensive performance evaluation criterion for
a model.

mAP (mean average precision)
It is widely adopted in object detection to evaluate a
model’s performance. mAP considers a model’s accur-
acy and recall to illustrate a model’s performance.
However, when calculating mAP, it depends on recall
more than precision. The representation of mAP is as
follows

AP ¼
X

ðrnþ1 � rnÞ � P rnþ1ð Þ, (16)

p rnþ1ð Þ ¼ MAX
m,m�rnþ1

PðmÞ: (17)

Figure 9. The Loss charts of faster R-CNN model in
our method.

Table 5. The experimental results of YoloV3, Faster R-CNN, and YoloV3 based on DenseNet tested on our dataset.
Models Ground-truth b-Value a-Value False positive False negative Recall (%) Accuracy (%) mAP (%) F1-score

YoloV3 871 0.3 0 104 61 93.0 88.62 90.03 0.907563025
0.1 104 61 93.00 88.62 90.03 0.907563025
0.2 71 65 92.54 91.90 89.61 0.922196796
0.3 60 89 89.78 92.87 87.06 0.913018097
0.4 45 128 85.30 94.29 82.88 0.895720313
0.5 35 199 77.15 95.05 75.15 0.851711027
0.6 27 276 66.72 95.66 65.17 0.786108176
0.7 21 379 56.49 95.91 55.49 0.710982659
0.8 13 490 43.74 96.70 43.06 0.602371542
0.9 6 615 29.39 97.71 28.95 0.451897617

FasterR-CNN 871 0.3 0 344 54 93.8 70.37 91.70 0.804133858
0.1 229 55 93.69 78.09 91.61 0.85177453
0.2 137 58 93.34 85.58 91.33 0.89291598
0.3 100 58 93.34 89.05 91.34 0.911434978
0.4 78 57 93.46 91.26 91.46 0.923425978
0.5 66 57 93.46 92.50 91.46 0.929754426
0.6 58 59 93.23 93.33 91.24 0.932797243
0.7 52 60 93.11 93.97 91.14 0.935409458
0.8 43 61 93.00 94.96 91.03 0.939675174
0.9 37 63 92.77 95.62 90.81 0.941724942

DenseNetþ YoloV3 871 0.3 0 68 81 90.70 92.07 88.95 0.913823019
0.1 68 81 90.70 92.07 88.95 0.913823019
0.2 44 99 88.63 94.61 87.02 0.915234143
0.3 33 127 85.42 95.75 83.86 0.902912621
0.4 26 162 81.40 96.46 80.09 0.882938979
0.5 22 227 73.94 96.70 72.88 0.837996096
0.6 15 296 66.02 97.46 65.17 0.787132101
0.7 9 346 60.28 98.31 59.56 0.747330961
0.8 6 425 51.21 98.67 50.55 0.674225246
0.9 6 550 36.85 98.17 36.36 0.535893155

The b value is fixed at 0.3 and theachanges ranging from 0 to 0.9.
The results with bold format represent the best results at the corresponding evaluations.
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Experimental results

Analysis about a-value
In this section, we analyze the influence of threshold
a. We fix the b value at 0.3 and change the a ranging
from 0 to 0.9. Table 5 shows the detailed experimental
results tested on our dataset. Figure 10 shows the
influences of a on models’ F1-Score for three models.
From Table 5, we can see that the F1-scores increase
when increasing the threshold of a for YoloV3 and
Faster R-CNN. For YoloV3 based on DenseNet, the
best a is 0.3.

Analysis about b-value
In this section, we analyze the influence of b for
YoloV3, Faster R-CNN, and YoloV3 based on
DenseNet tested on our dataset. During the experi-
ment, we fix the a at 0.3. Then, we change the b rang-
ing from 0 to 0.9. Table 6 shows the experimental
results. Figure 11 shows the F1-scores about the
experiments for the three models.

From Table 6, we can see that the performance is
not continuously improved when b increases.

Table 6. The experimental results of YoloV3, Faster R-CNN, and YoloV3 based on DenseNet were tested on our dataset.
Models Ground-truth a-value b-Value False positive False negative Recall (%) Accuracy (%) mAP (%) F1-score

YoloV3 871 0.3 0 70 84 90.36 91.83 87.04 0.91087963
0.1 61 87 90.01 92.78 87.27 0.913752914
0.2 60 88 89.90 92.88 87.18 0.913652275
0.3 60 89 89.78 92.87 87.06 0.913018097
0.4 59 90 89.67 92.98 86.97 0.912916423
0.5 59 93 89.32 92.95 86.62 0.911007026
0.6 56 93 89.32 93.29 86.84 0.912609971
0.7 55 96 88.98 93.37 86.59 0.911228689
0.8 51 102 88.29 93.78 85.93 0.909520993
0.9 51 109 87.49 93.73 85.19 0.904988124

FasterR-CNN 871 0.3 0 142 47 94.60 85.30 91.67 0.897114861
0.1 103 54 93.80 88.80 91.75 0.912339475
0.2 101 54 93.80 89.00 91.81 0.913359419
0.3 100 58 93.34 89.05 91.34 0.911434978
0.4 98 59 93.23 89.23 91.23 0.911847277
0.5 98 60 93.11 89.22 91.12 0.911235955
0.6 96 62 92.88 89.39 90.89 0.911036036
0.7 96 69 92.08 89.31 90.10 0.906726964
0.8 92 77 91.16 89.62 89.29 0.903813318
0.9 90 86 90.13 89.71 88.25 0.899198167

DenseNetþ YoloV3 871 0.3 0 38 125 85.65 95.15 84.02 0.901510574
0.1 32 126 85.53 95.88 84.08 0.904126214
0.2 32 126 85.53 95.88 84.08 0.904126214
0.3 33 127 85.42 95.75 83.96 0.902912621
0.4 33 128 85.30 95.75 83.84 0.902246509
0.5 33 129 85.19 95.74 83.73 0.901579587
0.6 33 130 85.07 95.74 83.76 0.900911854
0.7 31 132 84.85 95.97 83.55 0.900670323
0.8 30 134 84.62 96.09 83.32 0.8998779
0.9 29 145 83.35 96.16 82.09 0.89298893

The a value is fixed at 0.3 and the b changes ranging from 0 to 0.9.
The results with bold format represent the best results at the corresponding evaluations.

Figure 10. The influences of a on F1-Scores for three models.

Figure 11. The influences of b on F1-Scores for three models.
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A suitable b selection is important to our method.
Besides, we find that we cannot impose strong limita-
tions of the road information guidance for the final
recognition. Otherwise, many true crosswalks will be
recognized as false negatives. The reason may be that
the road extraction by U-Net fails in several road area
extractions.

Comparison with the original three CNN models
From the above analysis, we finally select the parame-
ters a¼ 0.3 and b¼ 0.1 for YoloV3, a¼ 0.3 and
b¼ 0.2 for Faster R-CNN and a¼ 0.2 and b¼ 0.3 for
YoloV3 based on DenseNet respectively. Table 7
shows the comparison results tested on our dataset
among YoloV3, Faster R-CNN, YoloV3 based on
DenseNet and road guidance combined with the
above three CNN models respectively. From Table 7,
we can observe that when combined with road guid-
ance, the YoloV3, Faster R-CNN, and DenseNet based
Yolov3 can improve their F1-score performance by
about 1.6, 15.3, and 0.4%, respectively. The experi-
mental results prove that the road guidance informa-
tion is useful for crosswalk detection from remote
sensing images.

Figure 12 shows the effectiveness of U-Net on our
dataset. Row 1 and 3 show the original pictures, row
2 and 4 show the extraction results by U-Net. Owing
to the effectiveness of road potential areas extraction
by U-Net, the road information guidance for cross-
walk detection presents satisfactory improvements in
our experiments.

When only using YoloV3, Faster R-CNN, or
YoloV3 Based on DenseNet, the F1-scores in the
experiment are 0.8976, 0.7600, and 0.9109, respect-
ively. As a contrast, when combing the above three
models with potential road area guidance, the F1-
scores are improved to 0.9137, 0.9133, and 0.9152,
respectively. Through this experiment, it convincingly
proves that the Mixture Classification Strategy
is effective.

Conclusion

In this paper, we proposed a road information guid-
ance based crosswalk detection method from remote
sensing images. We first used CNN models to detect
crosswalks. In our method, we used YoloV3, Faster R-
CNN and DenseNet based YoloV3 for detection.
Then, we dropped detections with low confidence.
Third, we used U-Net to extract potential road areas.
Based on road area guidance, we further dropped
detections which were not located on road areas. ToTa
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test our method, we made a crosswalk detection data-
set from remote sensing images. The dataset was pub-
licly accessible. We tested the original YoloV3, Faster
R-CNN and DenseNet based YoloV3 on our dataset.
We also tested the YoloV3, Faster R-CNN, and
DenseNet based YoloV3 combined with road informa-
tion guidance respectively. The experimental results
proved that combing with road information guidance,
the YoloV3, Faster R-CNN, and DenseNet based
YoloV3 can improve F1-scores’ performance about
1.6, 15.3, and 0.4%, respectively. The experimental
results proved the effectiveness of our method.

In our future study, several aspects of potential
improvements are going to be tried in our work.
Firstly, we will change our method into an end-to-end
training framework. Secondly, we will combine more
models with our method to improve efficiency.
Thirdly, we will try to rotate the predicted boxes and
ground truth, making the predicted boxes closer
to crosswalks.
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