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URBAN THEMATIC MAPPING BY INTEGRATING
LIDAR POINT CLOUD WITH COLOUR IMAGERY

Haiyan Guan and Jonathan Li, University of Waterloo, Waterloo, Ontario
Michael A. Chapman, Ryerson University, Toronto, Ontario

This paper presents an effective approach to integrating airborne lidar data and colour imagery acquired
simultaneously for urban mapping. Texture and height information extracted from lidar point cloud is inte-
grated with spectral channels of aerial imagery into an image segmentation process. Then, the segmented
polygons are integrated with the extracted geometric features (height information between first- and last-
return, eigenvalue-based local variation and filtered height data) and spectral features (line segments) into
a supervised classifier. The results for two different urban areas in Toronto, Canada, demonstrated that a
satisfactory overall accuracy of 84.96% and Kappa of 0.76 were achieved in Scene I, while a building detec-
tion rate of 92.11%, comission error of 2.10% and omission error of 9.25% were obtained in Scene II. 

1. Introduction

Today, most airborne laser scanning or light
detection and ranging (lidar) systems can collect
point cloud data by a laser scanner and image data
by a digital camera, simultaneously. Higher the-
matic mapping accuracy of complex urban areas
becomes achievable when both types of data are
used. Airborne lidar can directly collect a digital
surface model (DSM) of an urban area. Unlike a
digital terrain model (DTM), the DSM is a geomet-
ric description of both terrain surface and objects
located on and above this surface like buildings and
trees. Lidar-derived dense DSMs have been shown
to be useful in building detection, which is a classi-
fication task that separates buildings from other
objects such as natural and man-made surfaces
(lawn, roads) and vegetation (trees). Since a com-
mon standard property of most buildings is that
they are off-terrain points, standard filtering algo-
rithms first can be used to identify off-terrain lidar
points. Existing methods for urban scene classifica-
tion using lidar point clouds data alone include
hierarchical Bayesian nets [Brunn and Weidner

1998], morphological filtering using sloped kernels
[Vosselman 2000], and using specified features
(e.g., height data, Laplace filtered height data, and
maximum slope) [Mass 1999]. Fusing lidar point
cloud with the digital imagery is promising to
improve urban scene classification accuracy
[Haala et al. 1998; Haala and Walter 1999; Zeng et
al. 2002; Rottensteiner et al. 2003; Collins et al.
2004; Charaniya et al. 2004; Hu and Tao 2005;
Walter 2005; Rottensteiner et al. 2005; Brattberg
and Tolt 2008; Huang et al. 2008; Chehata et al.
2009; Awrangjeb et al. 2010; Germaine and Hung
2010]. Besides multispectral imagery, colour
infrared (CIR) imagery has also been used to per-
form a pixel-based land-use classification [Haala
and Brenner 1999; Bartels and Wei 2006].

Traditional pixel-based classification approach-
es only use spectral information which is inadequate
for classifying high-resolution multispectral images
in urban environments, because each pixel is indi-
vidually classified as a certain group, which results
in more noise, and classified urban land-cover coars-
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Cet article présente une approche efficace à l’intégration des données lidar aéroporté et de l’imagerie en
couleur acquises simultanément pour la cartographie des zones urbaines. L’information sur la texture et la
hauteur extraite à partir d’un nuage de points lidar est intégrée aux canaux spectraux de l’imagerie aérienne
lors d’un processus de segmentation de l’image. Ensuite, les polygones segmentés sont intégrés aux éléments
géométriques extraits (information sur la hauteur entre le premier et le dernier retour de signal, la variation
locale basée sur la valeur propre et les données filtrées sur la hauteur) et les éléments spectraux (segments
linéaires) dans un classificateur supervisé. Les résultats pour deux zones urbaines différentes de la ville de
Toronto au Canada démontrent une précision globale satisfaisante de 84,96 % et un coefficient Kappa de 0,76
dans la scène I, ainsi qu’un taux de détection des bâtiments de 92,11 %, un taux d’erreurs de commission de
2,10 % et un taux d’erreurs d’omission de 9,25 % dans la scène II.

G
eo

m
at

ic
a 

D
ow

nl
oa

de
d 

fr
om

 p
ub

s.
ci

g-
ac

sg
.c

a 
by

 U
ni

ve
rs

ity
 o

f 
W

at
er

lo
o 

on
 1

1/
29

/1
2

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



G  E  O  M  A  T  I  C  A

er than the size of objects of interest [Lu et al. 2010].
Spatial dimensions such as distance, neighborhood,
and texture are crucial to enhance the classification
performance, which attracts a great attention on the
studies of object-oriented classification methods. It
has been conclusively proven that the object-ori-
ented classification method is better than pixel-based
classification approaches [Thomas et al. 2003; Lu et
al. 2010; Blaschke 2010].

Traditional aerial imagery can provide an abun-
dant amount of structure, intensity, colors, and tex-
ture information. However, it is difficult to recognize
objects from aerial imagery due to the complexity of
image interpretation. Thus, the complementary
informational content of lidar point clouds and aeri-
al imagery contribute to urban object classification.
Based on a combination of lidar point cloud and aer-
ial image data, several researchers proposed a num-
ber of methods for classification. Haala and Walter
[1999] integrated the height information of an addi-
tional channel, together with the spectral channels
into a pixel-based classification scheme. Gamba and
Houshmand [2002] even combined lidar data, aerial
imagery with SAR for land cover extraction, DTM
and 3D shapes of buildings. Hodgson et al. [2003]
pointed out that the rule-based segment classifier
produced a slightly superior product than pixel-
based classifier for mapping urban parcel impervi-
ousness using lidar data and color aerial photogra-
phy. Charaniya et al. [2004] described a supervised
classification technique that classify lidar data into
four classes-road, meadow, building and tree-by
combining height texture, multi-return information
and spectral feature of aerial images. Brennan and
Webster [2006] presented a rule-based object-orient-
ed classification approach to classifying surfaces
derived from DSM, intensity, multiple returns, and
normalized height [Tiede et al. 2008]. They applied
to one-level-representation (OLR) concept for auto-
mated tree crown delineation in high-resolution dig-
ital camera imagery. A segmentation algorithm was
used to create an initial set of image regions that are
characterized by homogenous spectral information
and height information. Then, these regions were
treated independently to perform domain-specific
class modeling using Cognition Network Language
(CNL). Zhou and Troy [2008] presented an object-
oriented approach for analyzing and characterizing
the urban landscape structure at the parcel level for
the Baltimore area in the United States. Additional
spatial datasets including property parcel boundaries
and building footprints were used to both facilitate
object segmentation and obtain greater classification
accuracy. Aubrecht et al. [2008] analyzed land-cover
and urban function types on the basis of their relative
heights and integrated socioeconomic data. By

means of spatial disaggregation, raster population
data is distributed to potential residential buildings.
Germaine and Hung [2010] proposed a two-step
classification method to delineate impervious sur-
face in an urban area using lidar data to refine a base
classification result of multispectral imagery. Their
experiment showed that the use of lidar data could
improve the overall accuracy by 3%. Therefore, the
implementation of lidar significantly enhances the
classification of optical imagery both in terms of
accuracy as well as automation.

A review of current literature indicates that
spectral information acquired by a remote sensor
may not be sufficient to derive accurate information.
Lidar point clouds may assist in achieving more
accurate land-cover classification of remotely sensed
imagery. Rottensteiner et al. [2007] demonstrated
that the classification accuracy of a small residential
area can be improved by 20% when fusing airborne
lidar point cloud with multispectral imagery. 

The advantage of the object-oriented approach
is the ability to use multiple segmentation methods
that are based on spatial and spectral properties of
lidar point clouds and color image data, respective-
ly. In a typical data fusion and classification
method, a set of features is extracted from the two
data sources and a number of class hypotheses are
defined. Then, classification features, according to
certain classification rules, are combined to form a
feature space to decide to which of classes object
belongs [Li and Guan 2010]. In the following sec-
tion, we detail the proposed method of urban land-
use classification using the spectral information
from aerial imagery and spatial information from
airborne lidar point clouds. Then results obtained
from two urban scenes and classification accuracy
assessment are reported and discussed. Finally,
conclusions are drawn in the last section.

2. Methods

Figure 1 illustrates a workflow of the major
components and their subsequent processes in the
object-oriented classification system proposed in
this study. Lidar point clouds with first- and last-
return and a colour ortho-image covering the same
area are used as the input. Spatial registration of lidar
point clouds and aerial imagery is performed as data
preprocessing, which is not discussed in this paper. 

The output of a lidar mapping system is a cloud
of irregularly spaced 3D points which include not
only the bare ground, but also all kinds of objects
(buildings, cars, trees, etc.). Separation of individ-
ual buildings from lidar point clouds is the key to
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an accurate urban land-use classification. Like
buildings, trees are also one of the dominant features
in urban areas. Thus, a new object-oriented super-
vised classification method is proposed to detect
individual buildings and differentiate trees from lidar
point clouds, which is mainly built on image seg-
mentation. The result of this image segmentation is
the creation of a set of image objects defined as indi-
vidual areas with shape and spectral homogeneity
using additional height and texture information from
lidar point clouds. These segmented homogeneous
regions are—recognized as meaningful objects (e.g.,
building, trees and bare ground) that are then ana-
lyzed using the Bayesian classifier. In this study, four
types of features that were used as additional chan-
nels in the classification are (1) the filtered height
data obtained from lidar point clouds using the
adopted progressive triangulated irregular network
(TIN); (2) height difference between first- and last-
returns of the laser pulse; (3) eigenvalue-based local
variation of lidar points by computing dispersion
matrix; (4) line segments extracted from the color
aerial image. These four types of features are com-
prehensively utilized to determine each homoge-
neous region by the Bayesian decision rule as to
which class it belongs. 

2.1 Region-Based Segmentation 
Segmentation, a process of partitioning an image

space into some non-overlapping meaningful
homogeneous regions (polygons) is crucial to the
classification result. Segmentation of color aerial
imagery contributes to the quality of classification
because they can provide more additional informa-
tion than gray level images. On the other hand,
although the detailed spectrum information of color
aerial imagery may lead to an increase of segmenta-
tion difficulty to some extent, it can be lessened based
on the height and textural information from lidar data
as additional channels. The region-based approach,
comparing with edge-based segmentation, works
generally better on noisy images, where borders are
extremely difficult to detect. Watersheds transform, a
region based algorithm, is a powerful tool for image
segmentation. The concept of Watershed and catch-
ment basin are well-known in topography. Image
data can be interpreted as a topographic surface
where the gradient image grey-levels represent the
altitudes [Sonka et al. 2002]. Thus, Watershed trans-
form algorithm can be used to denote a labeling of the
image, such that all points of a given catchment basin
have the same unique label [Roerdink and Meijster

377

Figure 1: A workflow of the proposed object-oriented classification method
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2000]. In this paper, watershed segmentation is used
to generate closed contours for each region in the
original image due to it effectively dividing indi-
vidual catchment basins in a gradient image. 

2.2 Four Classification Features
In this section, four classification features, which

are extracted from both the lidar point cloud and the
aerial image data, are discussed respectively. These
four features are filtered height data, height informa-
tion, local variation calculated from lidar data, and
line segment extracted from the aerial image.

Filtered Height Data 
Before lidar point clouds can be further used, it

has to be preprocessed which filtering is common-
ly used to separate on-terrain points and off-terrain
points [Kraus and Pfeife 1998]. Commonly used
filtering algorithms include morphological filter-
ing, progressive TIN densification, and robust fil-
tering. An extensive overview of different filtering
approaches can be found in [Sithole and Vosselman
2004]. In this study, we adopted the progressive
TIN densification that was firstly proposed by
Axelsson [2000]. This algorithm works well when
modeling surfaces with discontinuities, which is
common in urban areas. 

Eigenvalue-Based Local Variation
An eigenvalue-based local variation of lidar

data is defined as the spatial feature of each point
by calculating a dispersion matrix of its neighbors.
It is another indicator for distinguishing tree points
from the other features. Eigenvalues of a point’s
dispersion matrix can reflect the spatial information
of this point. For each point vj under consideration, its
neighborhood points can be found by the KD-tree. A
3×3 dispersion matrix Sj of point vj is given by:

(1)

where Sj is the dispersion matrix of point vj, n is the
number of neighborhood points of point vj, Pi is the
coordinate (xj, yj, zj) of point vj, N is the total num-
ber of the lidar points, M is the mean matrix of its
neighborhood points.

In this 3×3 dispersion matrix, each point vj has
three eigenvalues. An eigenvalue can be used to rep-
resent the spatial information of a lidar point because
it is a scalar value associated with an eigenvector
which reflects spatial distribution of a lidar point.
Three possibilities are considered: (1) If one of the
three eigenvalues is much larger than the others, its
lidar point is labeled as an “edge” point. (2) If two of

the three eigenvalues are much larger than the other,
its lidar point is labeled as a “plane” point. (3) If the
three eigenvalues are larger than a given threshold,
the lidar point is labeled as a “discrete” point. In gen-
eral, the trees show the property of divergence, while
the ground and buildings exhibit the local planarity.

Height Difference Between First- and
Last-Return

Height difference between first- and last- return
usually differentiates tree features from lidar data.
One of lidar system’s characteristics is the capability
of laser beam to penetrate the trees canopy through a
small opening. The number of returns counts on the
object within the travel path of the laser pulse. Many
commercial lidar systems can measure multiple
returns. Although the laser beam can penetrate the
trees canopy to the ground, the height difference
between first- and last-return alone is unreliable to
distinguish the tree from the lidar point clouds. This
is because the laser beam hitting on the edge of
building also generates two returns. Secondly, if the
density of trees is high, the small-footprint lidar can-
not penetrate the tree’s canopy. It is necessary to
combine other features from lidar data and imagery
to distinguish trees and buildings.

Line Segments
Generally speaking, a typical building consists

of the regular geometric primitives (e.g., lines and
corners of rooftops). Given the fact that geometric
features (e.g., lines of building rooftops) in color aer-
ial imagery are easier to be interpreted than those in
lidar point clouds because the aerial images possess
sharp buildings edges and have a generally higher
horizontal accuracy, the Canny edge detector [Canny
1986] and 2D Hough transform [Sonka et al. 2002]
were used to extract the line segments from the color
aerial image in this study. These line segments were
used as one of the additional channels in an object-
oriented maximum likelihood classifier.

2.3 Supervised Classification

Compared with an unsupervised classification
approach, a supervised classification approach is
preferred by most researchers because it generally
gives more accurate class definitions and higher

accuracy. Given the class wi (i = 1,2…n), where n is
the number of the classes. Classification features
mentioned in previous section, yield a D dimensions
feature space F. So, the probability of a region rep-
resented by its feature vector X(X∈F) belongs to
class wi, is defined by the Bayesian decision rule:378

S j = Pi – M T Pi – M
i = 0

n
j = 0,1,2…N – 1G
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(2)

where P(wi) is the prior probability of class wi. P(X
/ wi) is the conditional probability of class wi has
data X. P(wi / X) is the posterior probability of data
X belonging to class wi. P(X) can be considered as
constant value for class wi. Therefore, Equation 2
can be reduced to:

P(wi / X) = P(X / wi) • P(wi) (3)

where, i =1, 2 and 3, defining three distinctive
classes, named building w1, bare ground w2, tree
w3. The objects that do not belong to these three
classes are labeled as unclassified ones w4. The
prior probabilities of building P(w1), bare ground
P(w2), tree P(w3) and unclassified objects P(w4) are
obtained in accordance with specific training data
set that can represent the typical features of urban
areas, and meet the following equation : 

P(w1) + P(w2) + P(w3) + P(w4) = 1 (4)

The next step is to quantify features before
determining conditional probability of each class.

(1) Filtered height data by adopted progressive TIN
X1(f) is the ratio of on-terrain points to points in
the homogenous region. 1 – X1(f) implies the
percent of off-terrain points in region. 

(2) Bayesian of a lidar point using eigenanalysis
X2(f) is the ratio of “scatter” and “edge” points to
points in the homogenous region. 1 – X2(f) repre-
sents the percent of ‘plane’ points in the region.

(3) Height difference between first- and last-
return X3(f) is the ratio of points where the

height information is over the given threshold,
to the points in the homogenous region. 

(4) Line segments extracted from aerial image X4(f)
are the ratio of the length of line segments near
to the region to the length of region boundary. 

The conditional probability of classis wi ascer-
tained by the choices of the weighs (m1, m2, m3, m4)
to features (X1 (f), X2 (f), X3 (f), X4 (f)):

For each region, we can get three class values
{d1(X), d2(X), d3(X)} according to Equation 3. The
maximum of three results is di(X) = max {d1(X),
d2(X), d3(X)}, which labels the region to the class it
belongs. If d1(X) ≈ d2(X) ≈ d3(X), the region is then
temporarily labeled as an unclassified class.

3. Results and Discussion
The lidar point cloud data covering two different

urban areas (Scenes I and II) in the City of Toronto,
Ontario, acquired by Optech ALTM 3100 system
were used in this study. The lidar dataset consists of
the first and last returns of the laser beam. The true
colour image data used were taken by an onboard
4k × 4k digital camera simultaneously. Two different
scenes covered by the same dataset were selected to
evaluate the performance of the proposed object-
oriented classification approach.

Figure 2 shows Scene I, in which (a) shows a
raster DSM, containing a total of 105,298 points,
which was interpolated with both the first and the

379

(a) (b)
Figure 2 Scene I: (a) DSM, (b) Colour aerial image.

P wi ⁄ X = P X ⁄ wi • P wi
P X

P(X / Wi) = m1 x X1(f) + m x X2(f) + m3 x X3(f) + m4 x X4(f) (5)
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last pulse returns by the bi-linear interpolation
method. The width and height of the grid equals to
the ground sample distance (GSD) of the aerial
image (0.5 m). The elevation of the study area
ranges from 150.00 m to 178.11 m. Besides build-
ings, several clusters of trees located along the
street; (b) shows a true color aerial image that was
re-sampled to 0.5 m ground pixel. The majority of
buildings that appear in the colour image are with
gable roofs or hip roofs.

In this paper, classification accuracy relies heav-
ily on the quality of segmentation. Although the
abundant spectral information from aerial imagery is
beneficial to classification procedure, it increases the
difficulty of segmentation, because there is much
spectral confusion between-class and spectral varia-
tion within-class. For example, the roof material of a
building along a road sometimes is similar to the
roads; dead trees and cars adjacent to a building have
similar spectral characteristics to buildings. If the
materials used on buildings and grounds were simi-

lar, they might be partitioned into a homogenous
region. The quality of segmentation cannot be guar-
anteed from the range image when it is used alone.
For instance, if a tree is close to a building, it is very
difficult to segment one from another. The texture
and height information obtained from the lidar data
as additional channels can improve the quality of
colour image segmentation. 

Figure 3(a) shows filtered height data overlaid
on the color aerial image. A close visual inspection
shows that off-terrain points have been removed
very well. The threshold of the iterative distance is
usually below the height of car, and it gradually
decreases with the increase of iterative times.
Figure 3(b) shows the result of segmentation by
fusing lidar point clouds and the aerial image.
Figure 3(c) represents the local variation results of
lidar point clouds by eigenanalysis. As shown in
Figure 3(c) regions with abundant vegetation are
described to have ‘discrete’ and ‘edge’ characteris-
tics whereas regions with many buildings are said
to have as ‘plane’ characteristics.

Some parameters for supervised object-oriented
classification need to be pre-determined. First, the
parameters of prior probabilities can be derived from
the typical training set. The most important parame-
ters in the study are the choices of weights to features.
The best way to choose weights is self-adaptive to
features of each homogenous region. Since features
(X1(f), X2(f), X3(f), X4(f)) have already been normal-
ized, the weights used for each feature is its value: 

m1 = Xi(f) / (X1(f) + X2(f) + X3(f) + X4(f)) i = 1,2,3,4
(6)

For each homogeneous region, the weights can
change depending on the features in the region. For
example, if the values of four features are {0.8, 0.8,
0.2, 0.1} in a region, the correspondent weights are
{0.42, 0.42, 0.1, 0.06} respectively. Figure 3(d)
shows the results of classification. By visual
inspection with the aerial image, a few buildings
cannot be differentiated from the trees, owing to
trees with a large crown covering the major part of
buildings. Spectral characteristics of some trees are
similar to the material of buildings covered, and
whose heights almost are near to that of these
buildings. Therefore, these trees and buildings can-
not be segmented correctly, which leads to the
occurrence of classification errors.

Figure 4 shows Scene II, in which (a) shows a
raster DSM, containing a total of 166,495 points,
which was interpolated using the same method as
that covering the first study site; (b) shows the true
color aerial image that was re-sampled to 0.5 m
ground pixel.380

(a) (b)

(c) (d)
Figure 3: Results of Scene I: (a) filtered height data, (b) segmentation result
by fusing aerial image with height and texture information from lidar point
clouds, (c) local variation by eigenanalysis, and (d) results of object-oriented
classification.
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Figure 5(a) shows the results of segmentation by
fusing lidar point clouds and an aerial image. Figure
5(b) represents the height information of first- and
last-return. Figure 5(c) illustrates the filtered height
data of the adopted progressive TIN method, in where
white pixels represent off-terrain objects, while black
ones represent on-terrain objects. A visual inspection
indicates that all off-terrain points are separated from
lidar point clouds and on-terrain features are retained
quite well. Figure 5(d) indicates the spatial local
variation by eigenanalysis. As shown in Figure 5(d),
building regions are basically exhibiting “plane”
features, and tree regions are exhibiting “discrete” and
“edge” features. However, a few tree regions consist
of “plane” features because of its high density; Figure
5(e) shows the line segments extracted by using the
Canny edge detector and 2D Hough transform.

381

Figure 5: Results of Scene II: (a) segmentation result by fusing aerial image with height and texture information
from lidar point clouds; (b) height information between first- and last-return; (c) filtered lidar data by adopted
progressive TIN; (d) local variation by eigenanalysis; (e) line segments extracted by the Canny edge detector and
2D Hough Transform; and (f) the results of our classification method.

(a)

(e)

(b)

(f)

(c)

(d)

(a) (b)
Figure 4: Scene II: (a) DSM; and (b) Colour aerial image.
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Parameters of prior probabilities for supervised
object-oriented classification are equal to those of
Scene I. That is, the prior probabilities of building
P(w1), bare ground P(w2), tree, P(w3) and unclassi-
fied objects P(w4) are 0.4, 0.35, 0.2, and 0.05,
respectively. Through self-adaptive weight computa-
tion, the weights used for buildings, grounds and
trees are (0.12, 0.33, 0.16, 0.39), (0.34, 0.39, 0.23,
0.06), and (0.29, 0.32, 0.30, 0.09), respectively. As
shown in Figure 5(f), the classification result of
Scene II is satisfactory. 

To evaluate the overall performance of our
classification method, we utilized Definiens
Professional Earth commercial software (also
called eCognition) to produce the reference data for
comparing with the classified results pixel-by-
pixel. One of the most common methods of
expressing classification accuracy is the prepara-
tion of a classification error matrix (confusion
matrix). An error matrix is an effective way to

assess accuracy in that it compares the relationship
between known reference data and the correspon-
ding results of the classification [Congalton 1991].
It is a square matrix E of N×N elements, where N is
number of classes. The element Eij is the number of
points known to belong to class i and classified as
belonging to class j. Thus, the elements on the lead-
ing diagonal Eij correspond to correctly classified
points, whereas the off-diagonal elements corre-
spond to erroneous classifications (i.e., the com-
mission and omission errors). From the confusion
matrix, the user’s (UA), producer’s (PA), and over-
all accuracy (OA) [Story and Congalton 1986] and
kappa coefficient [Congalton et al. 1983;
Congalton and Green 2009] can be calculated. 

Table 1 summarizes the confusion matrix of
Scene I. The overall accuracy obtained is 84.96%.
The classes “bare ground” and “building” demon-
strate higher accuracy. Although “tree” has specific
spectral characteristics (height and spatial informa-
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Table 1: Confusion matrix of Scene I.

Table 2: Classification error of buildings in Scene II.

Reference

Class Building Bare ground Tree Unclassified Σ UA

Building 21169 2016 2318 37 25540 82.88%

Bare ground 4015 53016 3083 672 60786 87.21%

Tree 1097 1894 14052 91 17134 82.01%

Unclassified 56 477 79 1226 1838 66.71%

Σ 26337 57403 19532 2026 105298

PA 80.37% 92.35% 71.94% 60.51%

Overall accuracy = (21169+53016+14052+1226)/105298 = 84.96%

Kappa coefficient = 75.68
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Building Objected-oriented classification

reference Building Real Omission Omission Commission Commission

points(#) points(#) building points(#) error (%) points(#) error (%)

points(#)

24137 22410 21904 2233 9.25 506 2.10
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tion) that makes it easily distinguishable from
“building” and “bare ground”, many trees are still
misclassified as “bare ground” due to their smaller
height values, or as “building” due to their higher
canopy density and their surroundings which con-
sists of mainly buildings. Thus, it is inevitable that
there are some classification errors in reference
data; even these errors were carefully removed
manually from the classification results obtained
using eCognition. Besides the errors of the refer-
ence data, the use of high-difference, as one of clas-
sification features, is another factor leading to the
classification errors between buildings and trees.
Full waveform digitalization techniques have been
developed to detect trees, including tree types and
structures. Also, it is useful for delivering the infor-
mation on low vegetation that is hard to detect in
the discrete pulse system owing to the finite length
of laser pulses.

In addition, the partial classification errors are
caused by shadow-effects. Although shadow-effect
usually is used to extract geospatial information, it
also brings problems on the extraction of geometric
and semantic information from remotely sensed
data, particularly in the urban areas. Due to the pres-
ence of shadow-effect, it is difficult to accurately
judge shadowing areas, especially near to high-rise
buildings, which leads to the increase of the classifi-
cation errors. However, lidar, on the other hand, can
be used as one of solutions to shadow-effect correc-
tion by considering building heights, the sun eleva-
tion angle and azimuth [Sohn and Yun 2008]. 

Classification accuracy of the tree reference data
generated using eCognition may be unreliable due to
the complexity of landscape, especially characteris-
tics of spectrum diversity and dispersion of spatial
information. However, buildings are easier to identi-
fy and have more reliable classification accuracy as
reference data. Therefore, in order to avoid and elim-
inate negative influence of reference data errors,
classification accuracy of Scene II can be analyzed
by comparison of building classification. In this
study, accuracy analyses include two aspects: the
number of the detected individual buildings and the
number of the detected building rooftop points.
There are 38 individual buildings in Scene II, while
we detected 35 individual buildings. That is, the ratio
of building detection is 92.11%. As shown in Table
2, omission error, the ratio of the building points
misclassified as the non-building points to the clas-
sified building points, is (24137-
21904)/24137=2.10%; commission error, the ratio of
the number of the non-building points that are mis-
labeled as the building points to the classified build-
ing points, is (22410-21904)/24137=9.25%. 

Conclusions

In this work, we develop a region-based classi-
fication method on the use of the fusing airborne
lidar point cloud and colour aerial imagery. Since it
is difficult to segment solely from, either aerial
imagery or lidar point clouds, geometric information
extracted from lidar point clouds as additional bands
is incorporated with traditional spectral information
to improve segmentation quality. Likewise, each
segmented homogenous region is identified by
comprehensively analyzing multiple features,
including height difference, eigenvalue-based local
variation, filtered height data and line segments.

The classification results of Scene I demonstrate
that our method can successfully classify several
dominant features in the urban areas. The overall
accuracy and kappa statistics of Scene I classifica-
tion are 84.96% and 0.76, respectively. The “build-
ing” and “bare ground” classes have 80.37% and
92.3% in the producer’s accuracy, while 82.88% and
87.21% in the user’s accuracy, respectively. To
eliminate the influence of the reference data errors,
only buildings were used as reference data to eval-
uate the classification accuracy in Scene II. Our
classification results show that the building omission
and commission errors are 2.10% and 9.25%. 

In the future work, we will improve the classi-
fication automation by adaptively selecting classi-
fication parameters involved, and we will make use
of the radiomtrically corrected intensity informa-
tion to decrease classification errors of trees.
Particularly, those trees are close to or overlapping
with buildings. The development of the full wave-
form analysis methods provides another way to
effectively highlight vegetation. Therefore,
although multiple features can be extracted from
laser scanning data and imagery, it is necessary to
further research how to combine these features to
improve the classification accuracy.
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