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approach to investigation of landslides in Zagros Mountains, Iran
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of Civil Engineering, Ryerson University, Toronto, Canada

ABSTRACT
This paper presents an approach to stream length-gradient index analysis 
to identify tectonic signatures. The graded profile of the Dez River in Zagros 
Mountains, Iran, indicates that the area has been tectonically disturbed, and 
it triggers landslide hazards. The high-gradient index shows that a steeper 
gradient could be potentially a signature for landslides identification. The 
digital surface models acquired by airborne LiDAR were used in this study 
to generate the HRDEM. Our result shows a great potential for improving 
landslide investigations by implementing stream length-gradient index 
derived from the HRDEM in conjunction with the landslide inventories data-
set in the GIS environment. We also identified a correlation between the 
stream length-gradient index and the graded topographic profile with slopes 
and landslides. This empirical approach was verified by geodata analytics and 
landslide inventories data-set in conjunction with field observations. This 
study has identified the locations of high-gradient indices with susceptible 
to landslides.

Background and introduction

In the Zagros Mountains, the mechanism of landslides are complex in geological-geomorphological 
activities. These activities have created an immature and rugged landscape that impose various natural 
hazards. A high slope can influence the stability of the region, particularly, with high tectonic activities. 
Also, the presence of active faults influences occurrence of landslides. Sometimes earthquakes are 
triggering landslides in this region. Thus, finding a logical relationship between slopes and tectonic 
geomorphologic signatures such as stream length-gradient index and graded topographic profile can 
suggest landslide susceptible areas. Moreover, the high rainfall and erosion in some rock types such 
as marls, calcareous and silt are the major concerns in the Zagros Mountains for instability. We have 
experienced catastrophic landslides to low magnitude of landslides in the form of rock falls, rock 
slides, debris flows and complex in the Zagros Mountains. Sometimes, a high density of lineaments 
and faults are controlling landslides in the region (Pirasteh, Safari, Pradhan and Attarzadeh, 2010). 
Thus, tectonic geomorphologic signatures are playing a significant role in landslide assessments.

Landslides are the movement of a mass of rock, debris or earth down an unstable slope (Highland 
et al.2008; Farrokhnia et al. 2011; Seefelder et al. 2016; Pirasteh & Li in press). Definition of the 
landslide is diverse and reflects the complex nature of various disciplines, such as geology and 
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geomorphology (Ali et al. 2003a, 2003b; Ali & Pirasteh 2004). We consider landslides as a general 
term, and it is used to describe the downslope movement of soil and rock under the effects of gravity 
(Cruden 1991).

Landslide hazards can be investigated qualitatively or quantitatively. Many efforts have been made 
to investigate the causes and mechanisms of landslides using remote sensing data, GIS-driven tech-
niques and statistical models (Carrara et al. 1991; Montgomery & Dietrich 1994; Guzzetti et al. 1999, 
2012; Zhou et al. 2003; Yilmaz & Yildirim 2006; Ardizzone et al. (2007; and Schulz 2007; Yalcin 2008; 
Abellán et al. 2010; Derron & Jaboyedoff 2010; Yilmaz 2010; Goetz et al. 2011; Pirasteh, Pradhan, Rizvi 
2011; Pirasteh, Pradhan, Safari 2011; Schicker & Moon 2012; Cavalli et al. 2013; Zare et al. 2013; Guan 
et al. 2014; Jebur et al. 2014; Lee et al. 2014; Su et al. 2015; Youssef et al. 2015; Ciampalini et al. 2016). 
Very few studies (Bull 2007; Hamdouni et al. 2010; Catani et al. 2013) have noted the role of tectonic 
geomorphology such as stream length-gradient index in landslide investigations. They suggested that 
the stream length-gradient index in river segments with higher landslide frequencies is associated 
with the slope instability and lithology in active tectonics structures.

One of remote sensing techniques that have been undergoing rapid developments for landslides 
investigations is Light Detection And Ranging (LiDAR). LiDAR can provide high-resolution point 
clouds of the topography and has demonstrated a great potential for monitoring landslide or rockfall 
displacements (McKean & Roering 2004; Ardizzone et al. 2007; Teza et al. 2007; Abellán et al. 2010). 
Also, much scholarly research in different aspects of image processing (Rau et al. 2011; Li et al. 2015a, 
2015b; Pirasteh et al. 2015; Su et al. 2015) and natural hazards such as landslides can be found from 
Wu and Sidle (1995); Pack (1995); Pack et al. (1998); McKean and Roering (2003); Pack and Tarboton 
(2004); McKean and Roering (2004); Watts (2004); Schulz (2004); Van Den Eeckhaut et al. (2005); Su 
and Bork (2006); Glenn et al. (2006); Safaiee et al. (2010); Pradhan and Pirasteh (2010); Spaete et al. 
(2011); Schicker and Moon (2012); Guzzetti et al. (2012); Choi et al. (2012); Solaimani et al. (2013). 
An overview of the different applications of LiDAR techniques for landslide investigations was given 
in Jaboyedoff et al. (2012). They presented how LiDAR-derived HRDEMs can be used to investigate 
landslide hazards, including detection and characterisation of mass movements, modelling, hazard 
assessment and susceptibility mapping.

Nevertheless, most of the existing landslide studies in the Zagros Mountains have not been pre-
sented well due to the lack of detailed surface information in the region. They used aerial photographs, 
satellite images and DEM derived from topographic maps by using various statistical and determin-
istic approaches (Roberts 2008; Rajabi et al. 2011).Thus, this becomes a motivation to utilize the new 
LiDAR-derived HRDEMs to investigate landslides in this region.

This study attempts to take an advantage of the LiDAR-derived HRDEMs to improve the investi-
gation of landslide hazards by assessing strem length-gradient index and graded topographic profile 
in the Zagros Mountains, southwest Iran (Figure 1). This study contributesthe visual interpretation 
and tectonic geomorphology of geodata analytics in the ArcGIS 10.4 version software by utilising 
LiDAR-HRDEM. The objective of this research is to investigate the stream length-gradient index 
and graded topographic profile of the Dez River in conjunction with the landslide inventory data-
set and field observations. We have presented how landslides are associating with various tectonic 
geomorphology, faults, folds and stream length-gradient index. We used the detailed information and 
the lineament map to improve landslide investigations. The point cloud data was used to extract the 
DEM derivatives in the GIS environment. We have digtally drawn the Dez River profile and deter-
mined the susceptibility of landslide hazards by using visual interpretation and empirical method. 
The performance of this study was validated by the existing landslide inventory data-set and several 
field observations.

Study area, geological and tectonic setting

The study area is situated in the Zagros Fold Belt (ZFB) of the southwest of Iran (Figure 1). It is 
bounded by Longitude 47° 58′ 10.42″–49° 18′ 50.63″ E and Latitude 32° 21′ 40.94″–34° 29′ 10″ N. 
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Geologically, the study area consists of various lithological units. It ranges from Cretaceous age at 
the Sanandaj Sirjan Zone (SSZ) contact in the north-east (i.e. dominated by calcareous strata), and 
subrecent and recent age in the Zagros Structural Belt (ZSB) in the southern part of the study area. A 
generalized stratigraphic column (Figure 2) and the geological map (Figure 3) for the Zagros Simple 
Folded Belt are showing Cretaceous through Miocene strata grouped into four units according to 
relative resistance to erosion. Also, Figure 3 depicts spatial distribution of landslides inventory on the 
geological map of the study area in the GIS environment. The area is mostly dominated by calcareous 
Cretaceous dolomite, limestone, shale and marls in the north and evaporites (such as gypsum) and 
highly cemented conglomerate of the Pliocene Bakhtiari Formation in the south. The closure of the 
Zagros Basin during Cretaceous–Miocene time has generated diverse styles of folding and faulting. 
These structures, especially in the ZFB exhibit tight, NW-SE trending folds with closely spaced fracture 
systems interpret how it accelerates potential of landslide hazards occurrence. These types of geo-
logical settings have facilitated severe erosion (Figure 4) and the formation of rugged and immature 
topography and a closed drainage system.

In southwest Iran, the movement of the Arabian plate has been approximately NNE. It is resulting 
in closure, obduction and subduction of the Neo-Tethys beneath of the Iranian plate from about the 
Late Cretaceous onwards. Also, it formed roughly NW–SE trending Zagros fold mountains from about 
the Miocene onwards. However, the details of the collision are complex and have been accounted by 
some different models. While the detail of the sub-surface structural geology may be unresolved, the 
scenario at the surface using a HRDEM (Figure 5) and field checks (Figure 6) are relatively clear in 
this research. Development of folds in the ZSB is from the north-east to the south-west at the rate of 

Figure 1. The study area is showing the Airborne LiDAR-derived DEM. ZFB: Zagros Folded Belt. HZ: High Zagros. MZT: Main Zagros 
Thrust. SSZ: Sanandaj Sirjan Zone.
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30 mm/yr (Berberian 1995), with a maximum fold crest uplift the rate of 1 cm/yr. Once fold growth 
has ceased, the landscape remains subject to uniform uplift at rate of 1 mm/yr due to crustal thickening 
at depth. Uplifting and folding are the two most important factors that are accelerating landslides in 
time. As the uplift is continuing, the drainage networks are adjusting and controlling the structure 
and lithology. Thus, it influences landslides in some parts of the area where the lineament density 
and slope are high.

Tectonic force is an impulsive event that occurs at the beginning of the geomorphic cycle and further 
influences landslides. Subsequently, geomorphic processes attack and degrade the topography and 
susceptibility of the landslide hazards. Since tectonic activities in the area has started during the Triassic 
and Late Cretaceous periods, the oldest geomorphic features have formed in the Zagros Mountains 
and resulted in the rugged topography. The effects of tectonic activities in the Zagros Mountains are 
more than those of sedimentation and the rate of erosion. Therefore, erosion may not have a signif-
icant contribution to changes in topography, landscape uplifting and landslides. The zone of rapid 
rock uplift had a steeper gradient, higher relief and higher gradient indices than the gentle topography 
zone (Burbank & Anderson 2001; Kirby & Whipple 2012). To emphasize the stream length-gradient 

Figure 2. Generalized stratigraphic column of the study area (after Ali & Pirasteh 2004).
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index as one of the tectonic geomorphologic signatures on the landslide hazards recognition, we have 
compiled lineaments density map with the stream gradients of the Dez River profile derived from the 
HRDEMs (Figure 5). Nevertheless, a visual interpretation and geodata of stream length-gradient index 
analysis on the LiDAR-DEMs have contributed considerably to the investigation of landslides, and can 
deliver an improved method for the landslide susceptibility mapping. Now, the following section is 
describing the methodology of how HRDEM processed and stream-gradient indices are determined.

Methodology

Data characteristic and acquisition

In spatial analysis measurements, the HRDEM, slope, stream profile and river network of the ZSB 
were considered. The HRDEM of the ZSB is the most useful representation of terrain in the GIS for 
spatial analysis. An HRDEM is the raster representation, in which each grid cell records the elevation 
of the earth’s surface, and reflects a view of terrain as a field of elevation values.

In this study, the acquisition of point cloud data over the ZSB was completed using a Leica 
ALS80-UP airborne LiDAR system on July 16, 2015. The data are in the digital form with x, y and z. 
The airborne LiDAR data-set consists first pulse returns. The fly altitude was 4200 m above ground 
with laser scanning swath width of 5000 m. The laser scan Field of View (FOV) set up for max 75o. 
This was up to 70 Hz (FOV dependent) scan rate and 24–25 kHz laser pulse rate, and 3 at 45 kHz laser 
returns for less than 30 cm RMSE absolute X, Y, Z positional accuracy. Airborne LiDAR specifications 
are depicted in Table 1. The approximate vertical tolerances were 0.05 m with average point density 
point of 0.8 points/m2.

Figure 3. (A) New landslides identified in the Zagros Mountains and overlaid on the geological map of the study area in ZSB, Iran. 
(B) Landslide inventory data-set overlaid on the Dez River Basin.
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Figure 4. The field photo is showing landslides due to erosion in the Zagros Mountains.

Figure 5. The Dez River and structural features on the DEM of the study area.



GEOCARTO INTERNATIONAL﻿    7

Processing of airborne LiDAR data

The point clouds with 3D coordinates of x, y and z from airborne LiDAR were used to generate the 
HRDEM. Since the most parts of the Zagros Mountains are covered by vegetation, the first step in 
our method is to remove the vegetation points from the raw point clouds that include terrain surface 
and vegetation. A semi-automated method was used to remove the noise and classify the objects 
allowed us to detect and interpret particular objects in the study area. Then the HRDEM is applied 
for further tectonic geomorphologic analysis, visual interpretation and landslide investigations. We 
extracted the bare-earth (i.e. segregating objects such as trees from the surface and extracting the 
terrain surface only).

The pre-processing technique has been applied to the LiDAR data to achieve the certain level of 
quality data before it is used for tectonic geomorphology analysis, visual interpretation and landslide 
investigations. This process has a direct impact on the quality of the DEM, visual interpretation, geodata 
analytics of stream length-gradient index and landslide investigations. During last decades, various 
solutions and algorithms for the classification of the LiDAR data were published (Glenn et al. 2006; 
Ardizzone et al. 2007; Derron & Jaboyedoff 2010; Spaete et al. 2011; Guan et al. 2014; Su et al. 2015; 
Ciampalini et al. 2016). The method was based on the surface interpolation (Pfeifer et al. 1998). The 
DEM was calculated based on the entire point set by adapting the influence of the individual input 
points. We used Hierarchical Robust Filtering (HRF) method and River Tool software to develop the 
HRDEM of the Zagros mountains. HRF method is originally designed for laser data in the vegetated 
and rugged topography areas such as the ZSB. This algorithm is embedded in the SCOP++ software. 

Figure 6. Field photo shows the development of folds and faults. (See Figure 1 for photo’s location).

Table 1. Airborne LiDAR system specifications (After Cline et al. 2001).

Measuring frequency 24–25 kH
Max. Operating altitude above ground 4200 m
Scanning frequency 70 Hz
Scanning angle 75o max
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The HRF involves four processing steps, including (1) thinning out, (2) filtering, (3) interpolating and 
(4) sorting out. In the raster-based thinning out step, a grid is laid over the complete data and one 
point is selected for each cell. In the filtering step, a DEM is computed based on a weighting function 
(Pfeifer et al. 1998), which is used to provide a low to high computational weighting for each cell. 
The weight function has a half of its maximum value (h is the half–width value) at h above g. These 
values determine the steepness of the weight function at a particular point. The cut off refers to ‘t’ in 
the right tail the weight function (Figure 7). As for the interpolation, the DEM is derived from the 
current data-set by interpolation approach without differentiating data points. As for the sort out step, 
we define the distance from the calculated DEM by data points and three iterations. The classifying 
step has completed the filtering procedure. The major extension of the sort out step was to classify 
step. After HRF, the DEM was ready to use in the GIS environment for geodata of tectonic geomor-
phology analysis and visual interpretation to identify susceptible landslide prone areas. It was done 
based on the empirical approach in conjunction with the updated landslide inventory data-set and 
field observations.

Determining of stream length-gradient index in GIS

Tectonic activities have formed different geomorphic features on the Earth’s surface. These features 
are signatures and insights to understand the tectonic activities of the Zagros Mountains. Sometimes 
landslides are influenced by tectonic activities and triggered by earthquakes. These signatures have 
shown that they can be good indicators to recognize landslides in an active tectonic region. There 
are various factors such as slope and lithology that cause a landslide. A high stream length-gradient 
index and a step-like graded profile can be found in high slopes and scarps with low resistance rock 
type such as sandstone, limestone and marls of Aghajari Formation, and evaporites of the Pliocene 
Bakhtiari Formation (i.e. ZFB). Thus, we can establish a logic interpretation of the correlation between 
stream length-gradient index and topographic graded profile with the slope and resistance of rock 
type for landslide recognitions.

We extract the stream length-gradient index and topographic graded profile of the ZFB. The 
HRDEM was used in the RiverTools 3.0, by which the river profiles, networks and stream length-gra-
dient index are extracted for landslide investigations. The Dez River profile (Figure 8) was extracted 
from the HRDEM to represent the relationships between topography, slope and tectonic geomorphic 
features on the landslide assessments. This process was done by using channel profile function from 
Tools menu in the shaded relief windows of the Rivertools software. Then the stream length-gradient 
index (SL) was calculated.

The stream length-gradient index is a signature sensitive to analyse the reach scale variability of 
tectonic function, rock resistance and topography that have associated with landslides process. The 
Dez River which flows over the rocks and soils in the Zagros Mountains tend to attain equilibrium 

Figure 7. The weighting function (after Pfeifer et al. 1998).
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with distinct longitudinal profiles and hydraulic geometries (Bull 2007). We applied geospatial anal-
ysis on the stream length-gradient index in the GIS environment. By employing visual interpretation 
techniques, we estimate the relative tectonic activity in a river basin (Dar et al. 2014) that influences 
potential to landslides phenomena.

The stream length-gradient index (SL) is approximated by SL = ΔH∕ΔL × L where L is the total 
river length from the midpoint of the chosen reach whose index is calculated, to the highest point on 
the channel. ΔH/ΔL is channel slope or gradient of the reach in which ΔH is a change in elevation 
for a particular channel of the reach with respect to ΔL which represents the length of the reach. To 
calculate the stream length-gradient, we used the Dez River profile from Chalanchoolan police station 
near to Brojerd city (Figure 1) which is in contact of Sanandaj-Sirjan Zone (SSZ), Hight Zagros (HZ) 
and Zagros Fold Belt (ZFB). Figure 8 shows the Dez River step-like graded profile with a total stream 
length of about165 km. The profile shows the high tectonic activity and landslide susceptible areas. 
The HZ topographic profile almost does not appear closely spaced folds and faults whereas in the 
ZFB due to the high tectonic activity, we experienced moderate to high potential of the susceptible 
landslide areas.

In the next step, the literature of tectonics and structural features of the study area such as structural 
map and lineament density map (James & Wynd 1965; Alavi 1994; Pirasteh et al. 2009; Safari et al. 
2009; Pirasteh, Pradhan, Safari 2011, Pirasteh, Pradhan, Rizvi 2011; Rizvi et al. 2012) have been com-
piled and overlaid on the HR-DEM in the GIS software. The visualisation process in conjunction with 
landslide inventory data-set and image interpretation techniques of the HRDEM enhanced expression 
of the stream length-gradient index to recognize tectonic signatures for investigation of landslides.

The final stage of the process was to extract the Dez River network. It was done by using the river 
network function in the RiverTools 3.0 software. The morphometric parameters were converted to 
the ArcGIS format, in which the stream length-gradient index map was generated (see Figure 9). 
The step-like river profile of the study area has predicted to approach a graded profile. It indicates 
that the area has been tectonically disturbed and has associated with a high probability of landslides. 
The stream length-gradient index was deduced in each part of the profile (Figure 8). The stream 
length-gradient index map of the study area shows the tectonic zones in the ZSB and landslide prone 
areas (see Figure 8 to pinpoint the susceptible landslide areas). The high-gradient index on the map 
indicates the susceptible landslide areas.

Performance assessment

One of the fundamental steps in our approach for landslide recognition process is validation. In this 
study, the authentic process was applied to the reliability of the previous landslides inventory map, 

Figure 8. The Dez River step-like graded profile with about165 km is showing landslide (LS) susceptible areas.
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geospatial locations of landslide data and parameters involve the landslide susceptibility prediction 
model used by the Geological Survey of Iran and the National Geoscience Database of Iran. The 
validity of thematic GIS layers was obtained through ground truth observations with the help of 
Global Positioning System (GPS). This method determined the performance of the output informa-
tion derived from the geodata analytics ofstream length-gradient index and visual interpretation of 
the LiDAR-derived HRDEMs. We assess that the proposed approach has improved the method of 
landslide investigations to support landslides susceptibility mapping. Moreover, the performance of 
detected landslide susceptible areas (Figures 8 and 9) are validated based on the empirical study and 
a field observation. An example of Shahbazan susceptible landslide visualisation has been pinpointed 
on the map (Figure 9).

Results

Although this study has not explored and discussed the detailed influencing factors of landslides, it 
shows how promising the LiDAR-derived HRDEMs and the stream length-gradient index are for 
landslide investigations in the Zagros Mountains. This study has identified one of the challenges, in 
which the LiDAR-derived HRDEMs were not able to delineate all the landslide boundaries within the 
landslide complexes due to its resolution limitation. However, the LiDAR-derived HRDEMs of the 

Figure 9. The stream length-gradient index map of the study area shows the tectonic zones in the ZSB and landslide prone areas (see 
Figure 8 to pinpoint the susceptible landslide areas). The high-gradient index on the map indicates the susceptible landslide areas.
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study area obtained using available filtering algorithm and the RiverTools 3.0 software have shown 
the considerable improvement in landslide investigations. Moreover, our method has enhanced the 
landslide features that are in harmony with the stream length-gradient index and tectonic geomorphic 
signatures.

This study indicates that there is a direct relationship between slope instability, graded topographic 
profile and active tectonics in the Zagros Mountains as expressed by anomalous SL values on the 
map (Figure 9). Our analysis of the stream length-gradient index in the Dez River with the landslide 
inventory data-set and high landslide frequency, reveals that slope instability is associated with stream 
length-gradient index anomalies. This result corresponds to active tectonics structures in the Zagros 
Mountains with active faults and presence of earthquakes. However, we have exceptions for debris 
flows and rockfalls in conglomerates of Bakhtiyari Formation. This proposed approach is mainly for 
tectonic active region such as Zagros Mountains. Because, we have complex landslides and rock-falls 
that are mainly associated with not only upper fault blocks (where slope angles are increasing) but 
also with scarps and high angle slopes (i.e. sometimes about 90°).

The stream length-gradient index could be applied as an indicator to determine areas susceptible to 
landslides. Thus, it improves the landslides susceptibility mapping. The stream length-gradient index 
(SL) is a quantitative geomorphic parameter and has demonstrated to be a suitable tool for detecting 
stream-profiles related to active tectonics and surface processes such as landslides.

We have identified that after applying filtering and noise removal, the RiverTools software has 
allowed generating a high quality of the HRDEM of the Zagros Mountains. Second derivatives of 
the DEM such as slope, stream profile and drainage network have resulted in improving the visual 
interpretational method and processing data to map the spatial distribution of the SL index in the 
ArcGIS environment. This method uses stream length-gradient index as a tool to identify landslide 
prone areas. Figure 9 shows the landslide prone areas around the stream segments where the extreme 
index values occur.

An increase in stream length-gradient (SL) index values has resulted as a sign of elevated tectonic 
activity and it accelerates the potential for landslides. The study has demonstrated the existence of 
active deformation associated with landslides in the ZSB, as an indicator by steeper gradients in the 
zone of rapid rock uplift. High index values show that the steeper gradient and high tectonic activities 
associated with landslides in some areas that are mainly with thrusting and faulting like Main Zagros 
Thrust, Hoor Thrust, Chamsangar fault, Shahbazan strike-slip fault and Baraftab fault (Figure 5). The 
Dez River profile is indicating that the most active tectonic zone and landslide prone areas fall within 
the Folded Zagros (Figure 8). It interprets that the reduction in the gradient values towards the Dezful 
Embayment has low tectonic activities and landslides probability.

The different formations dominating various type of rocks like limestone and evaporates in the 
Gachsaran Formation, shale of Aghajari Formation, marls of Kashkan Formation, Cretaceous cal-
careous (i.e. contact of the Imbricate Zone and Zagros Fold Belt with Sanandaj-Sirjan Zone) may 
also approach the graded profile of the Dez River and they are associating with landslides. This study 
emphasizes that the ZSB has deformed and developed landslides not only because of the tectonic 
processes and uplift but also because of rugged and immature topography. A river profile of the study 
area is predicted to exhibit a graded profile, indicating that the area has been tectonically disturbed 
slowly, rather than rapidly and mostly occurrence of landslides depends on high tectonic activities.

The systematic stream-gradient map of the ZSB in the GIS environment shows the tectonic correla-
tion and landslides. From the map (Figure 9), it is resulted that the Sanandaj-Sirjan Zone that exhibits 
0 to 0.483 (i.e. SL slope) has low tectonic activity with no landslides visibility. It also reveals that the 
stream length-gradient index in the Zagros Fold Belt exhibits to 6.687. In other words, the area has 
a moderate to higher tectonic activity and have a great potential to landslides. This study shows that 
a low gradient index has a less susceptibility of landslides as compared to the high-gradient index. 
However, these tectonic activities in the Zagros Mountains have generated terraces and different type 
of landslides such as rock fall, flow debris and complex.
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Discussion

LiDAR systems have been reviewed and discussed in Wehr and Lohr (1999) and Baltsavias (1999). A 
clear reference to an updated discussion is commented in Shan and Toth (2008) book. A brief review 
of LiDAR (and other remote sensing techniques) utilized in landslide studies is found in Prokop and 
Panholzer (2009) and SafeLand (2010).

The HRDEM of the study area has allowed detection of more informative landslide features than 
the coarse-resolution (e.g. 20 m or 30 m) DEMs derived from traditional techniques such as aerial 
photographs and topographic maps and other remote sensing techniques.

The challenge is that to get a flight permission from the Iranian authorities and it cannot be a good 
idea to use airborne LiDAR for study landslides and monitoring natural hazards from time to time. 
Moreover, the cost is high, and we cannot use airborne LiDAR at regular basis to monitor before and 
after an event. Thus, it is not possible to study landslides before and after the occurrence or expect 
to practice an early warning system using LiDAR techniques as we think of the future direction of 
landslide investigations in Iran. The area is a dense vegetation area and may obscure the morphology 
of landslides both in the field and in remotely sensed data. LiDAR data has processed to reveal the 
topography beneath vegetation (James et al. 2006). It has proven to be useful in identifying tectonic fault 
scarps, folds and to generate a high quality of the DEM derivatives such as river networks (Haugerud 
& Harding 2001; Haugerud et al. 2003; Sherrod et al. 2004), previously unmapped landslides and 
other geomorphic landforms.

The strength of using airborne LiDAR point cloud data as compared to other techniques is to 
generate the HRDEMs.Still, it becomes a challenge for the users to develop a software tool to detect 
landslides automatically. Our experience showed that it was also a challenging issue in the area (e.g. 
the ZSB) with a very steep terrain and cliffs due to lack of clear shots. Also, geological features, such 
as bedding and layering can sometimes be mistaken for instability as compared to field verification; 
it is always an essential component of the process.

Conclusion and recommendation

Steep hillslope and graded river profile are mostly susceptible for the landslide processes, but it is also 
affected by lithology and structure. Identification of the streams in hillslope with the help of DEM is 
also a difficult task. We recommend researchers to fit some analytical models with the help of existing 
landslide inventory data-set and stream gradient. These models will be different in different geological 
area. Thus, simply with the help of stream gradient alone, we cannot identify the landslide prone areas.

This study concluded that the zone of rapid rock uplift in the ZFB has a steeper gradient, higher 
gradient indices and probably high susceptible zones to landslides. This study derived that the HRDEM 
provided detailed information on the stream-profile metrics and improve landslide investigations. 
The stream-profile and stream length-gradient index map provide high potential insights to support 
susceptibility mapping with the limited resources in a very short time. In particular, our method 
showed a very promising approach to identify landslides in the Zagros Mountains where the method 
has thus far provided the best results. Our method has also showed potential to detect those landslides 
that directly reached the streambeds and whose magnitude and activity are high enough to generate 
stream perturbations in the Zagros Mountains.
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