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A mobile laser scanning (MLS) system allows direct collection of accurate 3D point information in
unprecedented detail at highway speeds and at less than traditional survey costs, which serves the fast
growing demands of transportation-related road surveying including road surface geometry and road
environment. As one type of road feature in traffic management systems, road markings on paved road-
ways have important functions in providing guidance and information to drivers and pedestrians. This
paper presents a stepwise procedure to recognize road markings from MLS point clouds. To improve com-
putational efficiency, we first propose a curb-based method for road surface extraction. This method first
partitions the raw MLS data into a set of profiles according to vehicle trajectory data, and then extracts
small height jumps caused by curbs in the profiles via slope and elevation-difference thresholds. Next,
points belonging to the extracted road surface are interpolated into a geo-referenced intensity image
using an extended inverse-distance-weighted (IDW) approach. Finally, we dynamically segment the
geo-referenced intensity image into road-marking candidates with multiple thresholds that correspond
to different ranges determined by point-density appropriate normality. A morphological closing opera-
tion with a linear structuring element is finally used to refine the road-marking candidates by removing
noise and improving completeness. This road-marking extraction algorithm is comprehensively dis-
cussed in the analysis of parameter sensitivity and overall performance. An experimental study per-
formed on a set of road markings with ground-truth shows that the proposed algorithm provides a
promising solution to the road-marking extraction from MLS data.

Crown Copyright � 2013 Published by Elsevier B.V. All rights reserved.
1. Introduction

Increasing rates of population and urbanization have led to a
growing demand for transportation services. Consequently, these
services require tools that can provide up-to-date information
about road maintenance, pavement conditions, utility manage-
ment, street fixture upgrades, safety analyses, and traffic-noise lev-
els. The significance of this information in planning, building, and
maintaining road infrastructure has stimulated an increase in
numerous specialized software for road asset inventory (McCarthy
et al., 2007). Efficient and inexpensive techniques for data acquisi-
tion in the field of remote sensing have been gaining popularity in
road extraction and recognition of street-scene objects.
Road markings on paved roadways, as critical features in traffic
management systems, have important functions in providing guid-
ance and information to drivers and pedestrians. For example, dri-
ver-assistance systems require reliable environmental perception
to improve traffic safety by informing motorists and preventing
accidents. Along with pavement condition and road topography,
the visibility of road markings is a key element in accidents where
the road itself is the cause. Especially, in highly populated urban
environments, high accident rates are caused by the absence of
clearly-presented road signals (Carnaby, 2005). In order to main-
tain high technical standards for perfect visibility, highway main-
tenance departments need a practical system that can also
monitor road markings.

Many studies have developed to identify road markings from
digital images and videos (Charbonnier et al., 1997; Li et al.,
1997; Rebut et al., 2004; McCall and Trivedi, 2006; Li et al.,
2007; Wang et al., 2009; Kheyrollahi and Breckon, 2010; Danescu
and Nedevschi, 2010). When it comes to road-marking detection
from either digital photographs or videos, precise geometrical
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information is limited by the following environmental factors: (1)
shape and type of road markings, such as solid continuous lines, ar-
rows, and words; (2) the road surface material, such as light pave-
ment, dark pavement, or a combination of different pavements; (3)
weather conditions, and the time of day that has the greatest im-
pact on the visibility of the road surface, (4) complex shadowing
from trees and moving vehicles (McCall and Trivedi, 2006).
Although work on road-marking detection from digital photo-
graphs and videos has been pursued for years, fully automated
road-marking extraction has remained a challenge.

Compared to photogrammetry, laser scanning as an active re-
mote sensing technology captures highly accurate point clouds
with high point density in a relatively short time (Haala et al.,
2008; Chehata et al., 2009; Ussyshkin, 2009). Typically, MLS tech-
nology is ideally suited for corridor mapping due to its ‘‘drive-by’’
data acquisition pattern that fully captures the road environment,
including road geometry and road markings. This technology col-
lects accurate 3D geospatial data with unprecedented detail at
highway speeds and at less than traditional survey costs. In the
transportation discipline, MLS is safer than other means of data
collection and does not require road closures and traffic disruption,
thereby reducing the overall risk of the project. More recently, a
number of MLS systems have been appearing in the market due
to the advancement of laser scanning-related component technol-
ogies (e.g. scanning, imaging, and positioning devices) (Graham,
2010). Although there are numerous companies and research
groups offering their data-processing services and solutions con-
cerned with road asset inventory, management, and maintenance
(Gordon, 2010), MLS software and automated algorithms for
extracting road features are still relatively slow compared to the
advancement of MLS hardware (Yang et al., 2013).

Road markings are highly retro-reflective surfaces painted on
roads; reflectance of the target in the form of intensity can be used
to identify road markings (Chen et al., 2009). Based on intensity
differences between road surfaces and pavement markings, Toth
et al. (2008) extracted road markings as the ground control for
quality assessment (QA) or quality control (QC) of the image data.
Smadja et al. (2010) applied a simple threshold to intensity data for
extracting road markings. Yang et al. (2012) outlined solid-edge-
line and broken-lane-line markings by first applying an interpola-
tion method to MLS points, then segmenting the geo-referenced
feature image using intensity and elevation-difference informa-
tion. Finally, road markings were estimated by integrating their
semantic knowledge (e.g., shape, size). However, as most of these
algorithms have applied a global threshold-based segmentation
to the intensity data of MLS point clouds, more noise is introduced,
making this method less effective in extracting road-markings.
Intensity data highly depend on ranges from the scanner to objects,
the incidence angles of laser pulses, and the material properties of
road surfaces. Thus, intensity data need to be normalized prior to
segmentation. Jaakkola et al. (2008) modeled road markings from
the intensity data acquired from an FGI Roamer MLS system. The
method was composed of (1) radiometric correction and segmen-
tation of the intensity data, (2) performing morphological opera-
tions to obtain a set of segments, and (3) classifying those
segments as crosswalks and other lines regarding their properties.
However, the algorithm can only be used with parking space lines
and zebra crossings. The radiometric calibration fitted a second-or-
der curve that was performed between the peaks on both sides of
the scanning centre. Chen et al. (2009) located road-marking can-
didates using adaptive thresholding, where thresholds were invari-
ant to absolute values of laser beam returns, and extracted road
markings with Hough transform clustering, followed by a refine-
ment step with trajectory constraint and geometry check. The
use of the Hough transformation for road-marking extraction is
weakened by specifying the number of road markings to be
detected, which is a limiting factor for complex types of road mark-
ings such as hatching and words. Vosselman (2009) introduced
distance-dependent intensity normalization and connected com-
ponent analysis for identifying road markings. Although several
types of road markings are identified, a close view of a bicycle
marking shows that the extracted markings are incomplete with
distinguishable noise. The pre-defined shapes used for fitting to
the road-marking segments are considered to be the cause.

Aside from road markings, other high-reflective urban elements
(e.g. traffic signs, retro-reflectors, tree, and grass) and their distor-
tion effects (e.g. saturation and blooming) may have a negative ef-
fect on road-marking extraction. Some measures, such as height
information and shape criteria, need to be taken into consideration
to refine the extracted road markings (Yang et al., 2012). As road
markings are painted on the road surfaces, we propose a scheme
that first identifies road surfaces from MLS data and then extracts
road markings from the identified road data. With this scheme, the
extraction of road markings is limited on road areas without inter-
ruption from other intensity-distortion causing objects.

The objective of this paper is to develop a recognition frame-
work for road markings used in a mobile mapping system, and to
analyze its performance on a variety of road-marking types se-
lected from RIEGL VMX-450 MLS data. Section 2 describes study
areas and data acquired from the RIEGL VMX-450 MLS system.
Our method, presented in Section 3, aims to extract road markings.
The method starts with a curb-based road extraction that separates
road from non-road points by detecting height jumps caused by
curbs on a set of profiles based on the vehicle trajectory data. These
profiles provide an effective strategy for extracting road surfaces
from a large volume of MLS data. After that, the classified road
points are interpolated into a geo-referenced intensity image. Next,
to reduce noise, a point-density-dependent multi-threshold seg-
mentation method is applied to the geo-referenced intensity image
for identifying road markings using a morphological operation. The
conducted tests are described and analyzed in Section 4. Conclu-
sions are presented in Section 5.
2. Test MLS data

The survey area is within Xiamen Island (longitude
118�0400400E, latitude 24�2604600N), a part of the City of Xiamen,
which is a major city on the southeast coast of China. The data
were acquired on 23 April 2012 by a RIEGL VMX-450 MLS system,
which was smoothly integrated with two RIEGL VQ-450 scanners
with laser pulse repetition rates (PRR) up to 550 kHz, an IMU/GNSS
unit, a wheel-mounted Distance Measurement Indictor (DMI), and
four high-resolution cameras. This integrated set of the VMX-450
MLS system was mounted on the roof of a vehicle travelling at
an average speed of 50 km/h. The two RIEGL VQ-450 laser scanners
were symmetrically configured on the left and right sides, pointing
toward the rear of the vehicle at a heading angle of approximately
145�. Such a configuration is called the ‘‘Butterfly’’ or ‘‘X’’ configu-
ration pattern. The full specification of RIEGL VQ-450 can be found
at the RIEGL website (RIEGL, 2013). Note that the field of view of
RIEGL VQ-450 is 360�, also termed as a ‘‘full circle’’ owing to the
motorized mirror scanning mechanism. Thus, the scanned data of
two scanners form a slant grid-like pattern.

The specification of the RIEGL VMX-450 MLS claims that the
system can achieve a maximum effective measurement rate of
1.1 million point’s per second and a scan speed of 400 lines per sec-
ond. In this paper, point density stands for the number of MLS
points/m2 and sharply drops perpendicular to the line of travel.
For example, with a speed of 50 km/h, close to the scanning center,
the point density is as high as 4000–7000 points/m2, and is about
1600 points/m2 on the pavement 20 m away from the scanning



Fig. 1. Study areas and MLS data: (a) Survey route in Xiamen, China, (b) Huandao dataset and (c) ICEC dataset.
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center. Roughly, the average point density on the road is about
3300 points/m2. We sectioned two datasets from the whole survey.
The first Huandao dataset has 8.4 million points in the road length
of 105 m. The second ICEC dataset contains 5.4 million points cov-
ering the road length of 63 m, as shown in Fig. 1.
1 For interpretation of color in Figs. 3 and 4, the reader is referred to the web
version of this article.
3. Method

To provide useful information for traffic management systems,
our road-marking extraction method attempts to identify road
markings from MLS point clouds. The road-marking extraction
method can be seen as a stepwise procedure of interpreting MLS
data. The method mainly includes the following three steps:

(1) Curb-based road extraction: the raw MLS data are parti-
tioned, based on the vehicle trajectory data, into blocks
and their corresponding profiles, by which pseudo scan-lines
are formed to detect small height jumps caused by road
curbs.

(2) Geo-referenced intensity image generation: the segmented
road points are interpolated into a geo-referenced intensity
image via an extended IDW method that combines local-
and-global intensity data.

(3) Road-marking extraction: the geo-referenced intensity
image is segmented by a point-density-dependent multi-
threshold segmentation method to recognize road markings
refined by morphological closing operations.

The rest of this section describes our method step by step. Sec-
tion 3.1 elaborates on the extraction of road surfaces. Section 3.2
details the generation of geo-referenced intensity images. Sec-
tion 3.3 gives road-marking extraction operations.

3.1. Curb-based road extraction

Curbs function to separate road surfaces from roadsides in an
urban environment. Curb height generally ranges from 10 cm to
20 cm, depending upon a specific country’s street design and con-
struction manuals. Based on the assumption that curbs are bound-
aries of road surfaces, we present a curb-based method for
extracting road surfaces.

We use the vehicle precise trajectory data to section the raw
MLS data into a set of blocks Blocki(i = 0, 1, . . .N) at an interval
(Rg), as shown in Fig. 2(a). The RIEGL MLS system, when collecting
laser scanning data, records the vehicle trajectory data along the
direction in which the vehicle is moving. Within each Blocki, a cor-
responding profile profilei is transversely sectioned with a certain
width (Sg), as shown in Fig. 2(a). Fig. 2(b) shows a sample of the
raw MLS data. The blue lines represent profiling locations. For
the RIEGL MLS system used in this study, the vehicle frame is de-
fined as the right-handed orthogonal coordinate system with its
origin at an arbitrary, user-defined point. The orientation of the
vehicle frame is fixed so that the x-axis is towards the front of
the vehicle, the y-axis is towards the right of the vehicle and the
z-axis is towards the bottom of the vehicle.

These profile images demonstrate that the curbs, vertical or
nearly vertical to the road surface, are sharp height jumps; there-
fore, we attempt to estimate curb corners via slope and eleva-
tion-difference thresholds to separate road from non-road points.
To this end, each profile is first gridded to form a pseudo scan-line
with a grid width of Sp that mainly depends on point density of
MLS data. Second, a sampling is implemented for each grid cell
to select a principal point, as shown in Fig. 3(a). To determine
the principal point within a grid cell, we use a Quick Sort algorithm
to sort all the points within the grid cell according to their eleva-
tions. Starting from the lowest point, we calculate the elevation
differences DLj(j = 1, 2, 3, ..., N) between two consecutive points
and group them into different layers. N is the number of the points
in a grid cell. The two consecutive points are labelled into the same
layer if and only if the elevation difference lies below a pre-defined
threshold, that is, DLj < LT. Otherwise, a new layer is created to sep-
arate the two points. Usually we keep LT = 5 cm. Assume that
points belonging to a road surface are within the lowest layer, prin-
cipal points within each grid are determined by selecting the point
with the highest elevation in the lowest layer. Using this scheme,
most outliers such as tree points covering the road surface can
be removed. The red1 circles shown in Fig. 3(a) represent the prin-
cipal points selected from grid cells. These extracted points are then
re-organized into a pseudo scan-line which maintains road points
and critical road features with fewer disruptive noises, as shown in
Fig. 3(b).

In this study, our detection algorithm for curb corners is based
on both slope and elevation-difference evaluation and imple-
mented at the scanning center in two opposing ways. We mathe-
matically define the slope between two consecutive points in a
generated pseudo scan-line and the elevation difference of a point
relative to its neighborhood in the scan-line. We use these two cri-



Fig. 2. An illustration of sectioning MLS data: (a) profiling illustration and (b) a sample of MLS data and its trajectory data.

Fig. 3. A sample of a profile of MLS data: (a) a profile gridding for find the principal
points and (b) a pseudo scan line.
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teria to detect whether or not a point is a curb corner. First, slopes
at the border of pavement and roadway are usually larger than
those of continuous points on the roadway. Second, pavement
points have larger elevations than road points in the neighborhood.
The slope criterion detects non-road points such as cars and curbs.
Then the elevation-difference criterion detects the curbs from the
non-road points. Street design and construction manuals in many
countries state that curb height ranges between 10 cm and
25 cm. We thus mathematically define these two observations as:

8pi :
if ðSslope > ST & ðGmin 6 Gi 6 GmaxÞ curb candidate

otherwise; non-curb point

�
ð1Þ

where Sslope denotes the slope of two consecutive points. ST is a gi-
ven slope threshold. Gi denotes the elevation-difference of a point
and its neighbor. Gmin and Gmax are the minimum and maximum
thresholds. This definition can be described as follows: for any point
pi in the pseudo scan-line, if the slope Sslope is larger than ST, as well
as elevation-difference Gi at its vicinity is within the range of [Gmin,
Gmax], the point pi is labeled as a curb candidate; otherwise, pi will
be labeled as a non-curb point. As the survey vehicle moves along
the road, with a priori knowledge of the road, we select curb candi-
dates closest to the scanning center as curb corners. After identify-
ing all curb corners from the profiles, we employ a B-Spline fitting
algorithm to generate two smooth road edges, and finally separate
road from non-road points.

3.2. Generation of geo-referenced Intensity Images

After extracting road points from the MLS data, we rasterize the
road points of interest into a geo-referenced intensity image, in
which the grey value of a pixel is interpolated from its nearest
neighbours using IDW interpolation. Although interpolation may
cause a loss in accuracy, it is computationally efficient for process-
ing a substantially large volume of MLS data using established
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image processing algorithms. We extend the IDW interpolation
stated in Yang et al. (2012) to generate a geo-referenced intensity
image. The image resolution (rg) is determined by point density,
similar to the grid width (Sp) in Section 3.1.

As a variant of Yang et al. (2012), there are two rules for gener-
ating a geo-referenced intensity image:

Rule 1: a point with higher reflectivity has a greater weight;
Rule 2: a point farther away from the central point has a smaller
weight.

According to the two rules, the grey value of a grid cell is calcu-
lated by:

GI
ij ¼

Xnij

k¼1

Wij
kIij

k

 !, Xnij

k¼1

Wij
k

 !
Wij

k ¼ aWD
k;ij þ bWI

k;ij

aþ b ¼ 1:0

(
; ð2Þ

where Wij
k is the weight of the k-th point within the grid cell (i, j), Iij

k

is the reflectivity of the k-th point, and nij is the total number of data
points within the grid cell (i, j). a and b are the weight coefficients,
WI

k;ij and WD
k;ij are the weights representing Rules 1 and 2, respec-

tively. The two weights are calculated by the following Eqs. (3)
and (4):

WD
k;ij ¼

1
r2

g

2þ r2
g

1þ D2
k;ij

� 2

 !
; ð3Þ
Fig. 4. Point-density-dependent multi-threshold segmentation: (a) the first road data sa
sliced for the first data sample, (c) second road data sample and (d) statistical analysis of
where D2
k;ij ¼ ðxpk;ij

� xpo;ij
Þ2 þ ðypk;ij

� ypo;ij
Þ2, (xpk;ij

; ypk;ij
) are the coordi-

nates of the k-th point within the grid cell (i, j), (xpo;ij
; ypo;ij

) are the
coordinates of the central point within the grid cell (i, j), Dk,ij is
the distance between points (xpk;ij

; ypk;ij
) and (xpo;ij

; ypo;ij
). Eq. (3) de-

fines the range of the weight WD
k;ij within [0,1]. The weight

WD
k;ij ¼ 1 when Dk,ij = 0, that is, point (xpk;ij

; ypk;ij
) is at the central

point (xpo;ij
; ypo;ij

) of the grid cell, indicating point (xpk;ij
; ypk;ij

) has
the greatest contribution to the weight WD

k;ij. On the contrary, the
weight WD

k;ij ¼ 0 when Dk; ij ¼ rg=
ffiffiffi
2
p

(a half of the diagonal of the
grid cell), that is, point (xpk;ij

; ypk;ij
) is far most from point (xpo;ij

;

ypo;ij
), indicating point (xpk;ij

; ypk;ij
) barely contributes to the weight

WD
k;ij.

WI
k;ij ¼WI1

k;ij �W
I2
k;ij ð4Þ
WI1
k;ij ¼ 1

gij
max�gij

minð Þ2
1þ gij

max�gij
minð Þ2

1þ LL
k;ijð Þ

2 � 1
� �

WI2
k;ij ¼ 1

ðImax�IminÞ2
1þðImax�IminÞ2

1þðLG
k;ijÞ

2 � 1
� �

IL
k;ij ¼ Ipk ;ij � gij

min

IG
k;ij ¼ Ipk ;ij � Imin

8>>>>>>>>><
>>>>>>>>>:

;

where Iij
k is the intensity value of the k-th point, WI1

k;ij and WI2
k;ij are

the weights for the local and global information, gij
max and gij

min are
the local maximal and minimal intensities within the grid (i, j), Imax
mple, (b) statistical analysis of point density determines the number of bins to be
point density determines the number of bins to be sliced for the second data sample.
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and Imin are the global maximal and minimal intensities of the en-
tire road points, and IL

k;ij and IG
k;ij are the local and global intensity dif-

ferences, respectively. Unlike the distance weight WD
k;ij; the intensity

weight WI
k;ij is divided into the following two parts: a local weight

WI1
k;ij and a global weight WI2

k;ij in order to equalize the calculated
pixel values of the geo-referenced intensity image. Similar to histo-
gram equalization, a method in image processing for contrast
adjustment using the image’s histogram, we aim to increase the
global contrast of the geo-referenced intensity image by combining
the local weight WI1

k;ij with the global weight WI2
k;ij. Through this

adjustment, intensities can be consistently distributed on the
histogram.
3.3. Road-marking extraction

On the generated geo-referenced intensity image, a threshold-
based segmentation is normally carried out to obtain road mark-
ings. However, although the proposed equalization strategy less-
ens the intensity imbalance caused by point-density differences,
the intensity values of road markings are less consistent as they
gradually fades from the scanning center to its two sides, as shown
in Fig. 4(a). This variation is due to the reflected intensity values
that depend on (1) the scanning range from the laser sensor to
the target, (2) the incidence angle of the laser beam, and (3) mate-
rial properties of the target. Spontaneously, we propose a point-
density-dependent multi-threshold segmentation method consid-
ering variations of scanning distance. Within different ranges of
the scanning distances, local optimal segmentation thresholds
are adaptively estimated.

Due to the variation of the vehicle trajectory data, the MLS data
are processed block by block. As mentioned in Section 3.1, each
block Blocki has a corresponding profile profilei. From profilei, we
statistically analyze its point density, as green bars shown in
Fig. 4(b) and (d). Note that the point density approximates normal-
ity. Thus, a Gaussian normal distribution (red line) can be fitted to
obtain two estimated parameters: mean l and standard deviation
r. Inspired by the ‘‘68-95-99.7’’ rule of a normal distribution that
says about 68% of values within one standard deviation r away
from the mean, about 95% of the values within two standard devi-
ations, and about 99.7% within three standard deviations, we as-
sume that intensity variation follows this rule. Thus, with the
three-sigma rule, we define the corresponding range to vertically
section data into a number of bins, on each of which we calculate
an optimal threshold for segmentation.

First, according to the vehicle trajectory data and the estimated
road width (W) from the extracted road data, we calculate the
width of the right side (WR) and the width of the left side (WL) of
the vehicle trajectory data. Next, the range (r) for one sigma of
the fitted Gaussian normal distribution function is calculated by
the estimated mean l and standard deviation r. Finally, the num-
ber of the bins is calculated as:

Nr ¼ INTðWR=rÞ þ 1
Nl ¼ INTðWL=rÞ þ 1 ð5Þ

As a result, we obtain Ns (Ns = Nr + Nl) bins. The number of bins
varies with the vehicle trajectory data. For example, there would
be six bins if the vehicle was driving close to the centre lane of
the road (see Fig. 4(a) and (b)), and five bins if the vehicle was driv-
ing along the left lane of the road (see Fig. 4(c) and (d)). With the
vehicle trajectory data, the fitted normal distribution of the point
density can be used to determine how many bins can be sliced.

In each bin Bi(i = 1, 2, . . ., (Nr + Nl)), we segment potential road
markings by the Otsu’s method, proposed by Otsu (1979), which
is widely implemented as the default approach to image threshold-
ing. The Otsu’s method assumes that an image, which is to be
divided, contains two classes: C1 and C2, which represents fore-
ground (e.g. road markings) and background, respectively. The
method then calculates their cumulative probabilities and mean
levels, respectively. As a result, the Otsu’s method can select an
optimal threshold (t) that maximizes the between-class variance
based on the discriminant analysis.

As a consequence, according to the vehicle trajectory data, we
dynamically obtain multiple locally-optimal thresholds for seg-
mentation. In spite of using multi-threshold segmentation, the ex-
tracted road markings still contain noise and are incomplete. By
acknowledging the form and the structure of the road markings,
we use a morphological operation to remove noise and extract
complete road markings. The morphological operations rely only
on the relative ordering of pixel values, rather than on their numer-
ical values, and therefore are better suited to process binary
images. The morphological operation used is closing, that is, dila-
tion followed by erosion. We employ a dilation operation to re-
move noises and fill out holes in the extracted road markings.
Subsequently, an erosion operation is used to shrink the image
from both the inner and outer boundaries of the road markings.

The morphological techniques probe the road markings with a
small shape or template called a structuring element; the structur-
ing element is a small binary image, that is, a small matrix of pix-
els. The structuring element is related to the size (T), origin, and
shape. The structuring element examples include square, cross, dia-
mond, horizontal and vertical shaped. A common practice is to
have odd dimensions of the structuring matrix and the origin de-
fined as the centre of the matrix. Although there are many types
of road markings such as crosswalks, characters, words, symbols,
and arrows, most of them are linearly shaped. To simplify convolu-
tion, we use a horizontally linear shaped structuring element to di-
late and erode the road markings. The linear structure with length l
and direction h is denoted by Klineh(l). The direction h is determined
by the vehicle trajectory data, that is, the direction in which the
vehicle is moving. A range of length l from 3 to 11 is used to deter-
mine Klineh(l) for the road markings. In this study, we choose l = 3
pixels.

4. Results and discussions

To assess the performance of our road-marking extraction algo-
rithm, we selected the following two sites from two surveys: Hua-
ndao and ICEC, respectively. Fig. 5 shows a close-up view of the
Huandao and ICEC datasets. The displayed sections are typical ur-
ban areas, which represent the datasets that contain tall trees, low
vegetation, poles, buildings, and some moving objects. It can be
noted that the datasets have a variety of road markings, including
longitudinal markings, transverse markings, object markings, and
special markings. The longitudinal markings, provided for separat-
ing traffic flow in the same direction, can be broken, solid, or dou-
ble solid. The transverse markings, marked across the direction of
traffic, include stop line markings, pedestrian crossings, and direc-
tion arrows. The special markings, such as word messages, use
characters to guide, regulate, or warn the road users.

4.1. Curb-based road extraction

Several parameters and their values used in the extraction of
road surfaces are listed in Table 1. In this study, we chose
Rg = 3.0 m in order to section the MLS data into a number of blocks.
However, if a road has sharp bends, curves, or turns, we reduce
Rg = 1.0 m in order to collect more curb corners for preserving road
features. The trajectory data directly reflect all possible road curves
by calculating the directions of GPS positions at two consecutive
GPS times, and therefore determining the value of Rg. Since there
are no sharp turns and curves on the roads, we chose Rg = 3.0 m



Fig. 5. A close view of a sample of raw MLS data, (a) Huangdao and (b) ICEC datasets.

Table 1
Parameters in the curb-based road surface extraction.

Name Definition Value

Sg The width of a profile �0.25 m, determined by data experiments
Rg The length of a block data 1.0–3.0 m, automatically decided by the trajectory data
Sp The grid size of a pseudo scan line 0.05 m, related to the point density
Gmin The minimum height difference of the curb 0.08 m, a prior knowledge
Gmax The maximum height difference of the curb 0.3 m, a prior knowledge

Fig. 6. The results of road extraction based on curbs: (a) Huangdao and (b) ICEC datasets.

Table 2
Parameters in the road marking extraction.

Stage Name Definition Value

The generation of the geo-referenced intensity image a Distance weight 0.5
b Intensity weight 0.5
rg Image resolution To be decided

The extraction of the road markings Ns Number of bins Automatically determined by the point density
Ti Segmentation thresholds Automatically determined by the Otsu’s method
l Structuring element size To be decided
h Structuring element direction Automatically determined by the trajectory data
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in this study. As a result, the ICEC and Huandao datasets are com-
prised of 35 and 21 blocks, respectively. Each profile is sliced from
each block. Correspondingly, with a profile width Sg of 0.25 m,
there are 35 profiles for the ICEC dataset, and 21 profiles for the
Huandao dataset, respectively. Through experimentation, a profile
is segmented into a set of grids, with each grid containing about 40
points and having a grid width Sp of 0.05 m. Finally the profile is
converted into a pseudo scan line using the principal points esti-
mated from the grid cells by a Quick Sort Algorithm. Prior knowl-
edge of curbs allowed us to keep the curb height range between
0.08 m and 0.3 m.
Using these pre-defined thresholds, the curb corners are ex-
tracted from the profiles and fitted into two smooth edges of the
roads using the cubic B-Spline fitting method. Fig. 6 shows the sep-
arated results of road from non-road points with our curb-based
road extraction method. The close-up views in the white rectangles
demonstrate that the road surfaces are accurately extracted.

4.2. Extraction of road markings

From the generation of the geo-referenced intensity image to
the extraction of the road markings, there are several parameters



Fig. 7. Different geo-referenced intensity images under different a and b with the grid size of 0.04: (a) Huandao and (b) ICEC.
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involved, as detailed in Table 2. Among these parameters, the num-
ber of bins is determined by the point density, and the segmenta-
tion thresholds (Ti) are automatically calculated by the Otsu’s
method; the direction (h) of the linear structuring element depends
on the trajectory data.

4.2.1. Generation of geo-referenced intensity Images
The weight coefficients a and b are used to control the contribu-

tions of both the distance and intensity to the grey value of a grid
cell during implementation of the extended IDW interpolation. We
tested the following different groups of weight coefficients a and b:
(0.0,1.0), (0.2,0.8), (0.4,0.6), (0.6,0.4), (0.8,0.2), and (1.0,0.0), and
then, as shown in Fig. 7, generated six geo-referenced intensity
images, respectively, ranging from A1 to A6. For example, the com-
parative results of B1 (Image A1 minus Image A2) and C1 (Image
A5 minus Image A6) show that both the intensity and distance
information contribute to the grey values of the geo-referenced
intensity image. In Fig. 8, Images A2 to A5 (see row 1) and Images
B1 to B4 (see row 2) demonstrate that the quality of the geo-refer-
enced intensity images is relatively stable when the weight coeffi-
cient a changes from 0.2 to 0.8, and the weight coefficient b from
0.8 to 0.2, accordingly. To investigate the changes among the
geo-referenced intensity images, a pixel-level difference (Ppld =P

Gi/Nchange) was used to describe the difference between two
images (Yang et al., 2013), where

P
Gi denotes the sum of grey val-

ues of the changed pixels, and Nchange is the number of the changed
pixels. The pixel-level-difference tables in Fig. 7(a) and (b) confirm
that there is no improvement or change among the four images
(A2, A3, A4, A5) with weight coefficients a and b as (0.2,0.8),
(0.4,0.6), (0.6,0.4), (0.8,0.2). As a result, in the following experi-
ments, we apply the weight coefficients a and b of (0.5,0.5) to
the road points for generating geo-referenced intensity images.

In Eq. (4), the intensity weight WI
k;ij includes the following two

parts: WI1
k;ij and WI2

k;ij for the local and global information, respec-
tively. The global weight WI2

k;ij functions as an equalizer that
stretches the grey values of the geo-referenced intensity image
for contrast adjustment, thus allowing for areas of lower contrasts
to gain higher contrasts. Fig. 8 shows a comparison of images with
and without the global weights (images A2 and a2). Image A2–a2 is
the result of image A2 minus image a2, indicating that the use of
the global weight increases intensity contrast. The vertical profiles
B and B0 also confirm that the contrast between the background
and foreground in image A2 are greater than those in image a2.
Through this global adjustment, the intensities can be better dis-
tributed for road-marking extraction.
4.2.2. Point-density-dependent multi-threshold segmentation
To test the performance of the multi-threshold segmentation,

comparisons were made with fixed thresholds on the eight road-
marking images selected from two datasets. Table 3 summarizes
road-marking types on the eight images; each road-marking image
includes two or three types of road markings. To the best of our
knowledge, currently there is no dataset that is designed for



Fig. 8. Intensity equalization with and without global information: (a) Huandao and (b) ICEC.

Table 3
types of road markings in the eight road-marking images.

Image
Name

Types of road markings

Marking 1 Arrow markings, solid edgeline and broken laneline markings
Marking 2 Symbol markings, solid edgeline and broken laneline markings
Marking 3 Word markings, solid edgeline and broken laneline markings
Marking 4 Solid edgeline and broken laneline markings
Marking 5 Crosswalk markings
Marking 6 Arrow markings, symbol markings, solid edgeline and laneline

markings
Marking 7 Hatch markings
Marking 8 Hatch markings and solid line markings
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evaluating the performance of road-marking detection and recog-
nition from MLS systems.

We set the weight coefficients as a = 0.5, b = 0.5, and the image
resolution as rg = 0.04 m for generating the geo-referenced inten-
sity image. The eight road-marking examples are shown in Fig. 9.
The second row presents the segmentation results using the opti-
mal single thresholds achieved by the Otsu’s method. This results
in the emergence of noises on one side of every road. In addition,
a part of the road markings are missing on the other side. For
example, the Otsu’s method suggests that the grey value of 60 is
the optimal threshold for Marking 1 to separate the foreground
(road markings) from the background. The segmentation results,
however, show that the lane-marking on the top is barely identi-
fied, although the turn-left-and-straight-ahead and straight-ahead
arrow-markings are almost completely detected. Therefore, it is
difficult to keep a trade-off between correctness and completeness
of road markings using a universal threshold.

Compared to the results in the second row, all results in the
third row indicate that the proposed point-density-dependent
multi-threshold segmentation method provides optimal local
thresholds to identify all road markings correctly and completely,
regardless of road materials and dimensions.
4.2.3. Morphological operation
To explore the impact of structuring element size on road-

marking extraction, we search a range of l (3,5,7,9,11) for the eight
road markings, while keeping a = 0.5, b = 0.5, and rg = 0.04 m.
Fig. 10 displays the road-marking extraction results on the eight
examples with five sizes of horizontal structuring elements. Visual



Fig. 9. A comparison of the point-density-dependent multi-threshold method and the fixed threshold.

Fig. 10. Eight road markings under different sizes of a linear structuring element.
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inspection suggests that there was no significant change for most
road markings when l was increased from 3 to 5. However, along
the road edges, small areas of noise become larger after performing
the morphological closing operation. In addition, the road mark-
ings are gradually dilated with increasing kernel size. Particularly,
the word markings within Marking 3 are severely dilated since l in-
creases from 5 to 11.

By comparing the extracted road markings with the manually
interpreted ground-truth, we quantitatively evaluated the results
of the road markings using the following three measures: com-
pleteness (cpt), correctness (crt), and F-measure. cpt describes
how complete the extracted road markings are, while crt indicates
what percentage of the extracted road markings are valid. The cpt
is expressed as cpt = Cp/Rf and crt is defined as crt = Cp/Ep, where Cp

denotes the number of pixels belonging to the actual road mark-
ings, Rf is the ground-truth collected by the manual interpretation
method, and Ep represents the number of pixels extracted by the
proposed algorithm. F-measure is an overall score, defined as
F ¼ 2� ðcpt�crtÞ

ðcptþcrtÞ .
Fig. 11 shows the measures of road-marking extraction results

on eight images with five different sizes of the structuring kernels.
The results of all eight samples demonstrate that the completeness
index cpt increases when the structuring-kernel size increases
from 3 to 7, while the cpt remains stable when the structuring-ker-
nel size is over 7. The correctness index crt, on the contrary, de-
creases with the increasing size of the structuring kernel.



Fig. 11. Eight road markings with different structuring element sizes, ranging from 3 to 11, (a) completeness, (b) correctness and (c) F measure.
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Particularly, the crt index of Marking 4 quickly declines, followed
by Marking 3 (the word marking). The dilation operation causes
this downward trend. As the structuring kernel increases in size,
the dilation operation not only fills the holes in the road markings,
but also merges small areas of noise into large areas of noise, and
merges noise into the road markings. In our study, with an image
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Fig. 12. The road marking with different image resolution: (a) qualitative assessment and (b) quantitative assessment.
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Fig. 13. directions of the linear structuring element: (a) Huandao and (b) ICEC.

Fig. 14. The final results of road markings overlaid on the geo-referenced intensity images: (a) Huandao and (b) ICEC datasets.

Table 4
Road-marking performance.

Sample cpt crt F-measure

Huandao Samp 1 0.98 0.82 0.89
Samp 2 0.91 0.86 0.88
All 0.94 0.83 0.88

ICEC Samp 3 0.98 0.84 0.90
All 0.97 0.82 0.90

Average 0.96 0.83 0.89
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resolution of rg = 0.04 m, the best size of the structuring kernel was
obtained at l = 3.
4.2.4. Impact of image resolution on our algorithm
Since road markings, under different image resolutions, can be

presented with different details, the image resolution is one of
the very critical parameters for extracting road markings. To eval-
uate the sensitivity of the image resolution relative to the perfor-
mance of our road-marking extraction algorithm, we tested one
block data with a range of rg (0.04 m, 0.05 m, 0.06 m, 0.07 m,
0.08 m, 0.09 m, and 0.10 m) while keeping a = 0.5, b = 0.5.
Fig. 12(a) shows the extracted road-markings on seven images
with different image resolutions. The first column shows that de-
tails of the arrow-and-lane marking are inversely proportional to
the image resolutions. The second column displays the X-profile
data of the arrow-and-lane markings. The horizontal axis repre-
sents the widths of the arrow-and-lane-marking image; the verti-
cal axis represents the intensity values of pixels along the X-
profiles. Note that the intensity values vary from one image to
the other with the image resolution. The extracted road markings
are shown in the third column. Visual inspection suggests that
the shapes of the arrow-and-lane markings are preserved almost
completely for seven test cases.

To assess our road-marking algorithm, a comparative analysis
was completed. The calculated crt, cpt and F-measure indices are
shown in Fig. 12(b). For all the cases, the crt values are greater than
0.74, the cpt values are higher than 0.94, and the F-measure values
range from 0.84 to 0.9. Note that there are slight changes in these
three measure indices when the image resolution increases from
0.04 m to 0.05 m. However, the crt, cpt and F-measure values slowly
decrease when the image resolution is greater than 0.05 m. Thus,
we selected the image resolution of either 0.04 m or 0.05 m as
the most applicable values to generate the geo-referenced inten-
sity images from the RIEGL MLS data.
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4.2.5. Overall performance
Two tests were conducted on the Huandao and ICEC datasets to

assess the overall performance of our algorithm. According to the
sensitivity analysis, we kept Rg = 3.0 m, Sp = 0.05 m, Sg = 0.2 m,
Gmin = 0.08 m, and Gmax = 0.3 m for the curb-based road extraction.
Since there are no sharp turns or curves of the roads in two cases,
we kept Rg = 3.0 m. With Rg = 3.0 m, the Huandao and ICEC datasets
have 35 and 21 blocks and profiles, respectively. Afterwards, we
kept a = 0.5, b = 0.5, and rg = 0.04 to generate geo-referenced inten-
sity images from the extracted road points.

In each block, we employed the point-density-dependent seg-
mentation method to automatically obtain multiple thresholds
for segmenting possible road markings. For all blocks, the size of
the structuring element l was 3, while h was calculated by the tra-
jectory data. To simplify the task, we provided a fixed value for
each block via the trajectory data. Fig. 13 shows the values of h
for 35 blocks and 21 blocks of Huandao and ICEC datasets, respec-
tively. After segmenting with multiple thresholds, the morpholog-
ical closing operation was used to fill up the holes and remove the
noise in the segmented road markings. Fig. 14 shows the extracted
road markings overlaid on the geo-referenced intensity image. To
evaluate our road-marking extraction algorithm, three samples
were selected from two datasets as follows: samples 1 and 2 from
the Huandao dataset, and sample 3 from the ICEC dataset. The
close-up views show that our method produces complete road
markings with less noise. The statistical results listed in Table 4
display that the average cpt, crt, and F-measure values are 0.96,
0.83, and 0.89, respectively. In addition, the values of the three
measures are quite stable for all samples, indicating that our
road-marking method is robust to different types of road markings.
4.3. Computational complexity

Through the use of a 3.30 GHz Intel(R) Core(TM) i3-2120 CPU,
the running time of the proposed method for processing the 8.4-
million-point Huandao and 5.4-million-point ICEC datasets are
about 1.11 and 0.89 s, respectively. The total running time does
not include the data preparation time, which is the time of section-
ing the raw data into a number of blocks and profiles. The reason is
that the processing time of the data preparation is highly depen-
dent on the reading-and-writing speed of the hard disk due to fre-
quent data-interaction operations. In our algorithm, all road
marking extracting operations are performed on the geo-refer-
enced intensity images, indicating that no data indexing structures
need to be built for data querying and searching. Furthermore, the
computation and processing time can be reduced if the stand-alone
operation is replaced by a distributed processing system under a
virtualization environment. Therefore, the integration of the pro-
posed road-marking processing algorithm and the affordable hard-
ware is a promising solution to computational efficiency of MLS
data.
5. Conclusion

This paper proposed a road-marking extraction algorithm using
MLS data, which consists of (1) the curb-based extraction of road
surfaces, (2) the generation of geo-referenced intensity images
with a histogram equalization-like strategy, and (3) the extraction
of road markings using the point-density-dependent multi-thresh-
old segmentation and morphological closing operation.

The two datasets collected by the RIEGL VMX-450 MLS system
were used in this paper to validate our road-marking extraction
method. The two test datasets cover a total of around 168 m of
roadway that contain several types of road markings. The experi-
mental results demonstrated that our method is able to extract
road markings with a completeness of 0.96, a correctness of 0.83,
and an F-measure of 0.89. Our method for extracting road markings
in large volumes of MLS datasets is effective since (1) no data
indexing structures are built for searching and querying, (2) the ex-
tracted road surface serves prior knowledge that facilitates the
road-marking processing and improves the correctness of road
markings, (3) a combination of local and global intensity weights
contributes to the generation of a 2D geo-referenced intensity im-
age, and (4) dynamic thresholds determined by point density over-
comes inconsistent intensity values caused by incidence angle of
laser pulses and range of the scanner center to the illuminated road
surface.
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