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Abstract 

Detecting oil spill from open sea based on Synthetic Aperture Radar (SAR) image is a very important 
work. One of key issues is to distinguish oil spill from “look-alike”. There are many existing methods 
to tackle this issue including supervised and semi-supervised learning. Recent years have witnessed a 
surge of interest in hypergraph-based transductive classification. This paper proposes combinative 
hypergraph learning (CHL) to distinguish oil spill from “look-alike”. CHL captures the similarity 
between two samples in the same category by adding sparse hypergraph learning to conventional 
hypergraph learning. Experimental results have demonstrated the effectiveness of CHL in comparison 
to the state-of-the-art methods and showed that our proposed method is promising. 
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1. INTRODUCTION 

Pollution resulting from oil spills in open sea and coastal waters is a major threat to ocean ecosystems. 
Detection and continuous monitoring of oil spills are important components of law enforcement efforts 
to minimize the impact that oil polluting events have on the ecosystem [1]. Previous studies have 
shown that Synthetic Aperture Radar (SAR) is effective in the detection and classification of oil spills. 
Oil spills appear as dark spots in SAR images [2]. However, similar dark spots (“look-alikes”), 
resulting in misidentification, may arise from a range of unrelated meteorological and oceanographic 
phenomena. To distinguish oil spills from “look-alikes” is definitely a key issue in oil spill detection. 
This process is the final stage of general oil spill detection and it is based on given dark spots feature.  

In recent years, there are several classifiers used for distinguishing oil spills from “look-alikes” 
including: Bayesian classification scheme by combining prior knowledge [3-5], Linear discriminant 
analysis approach based on Mahalanobis distance [6], Multiple linear regression [7], Artificial neural 
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network approach [8,9] and Support vector machine [10]. Especially, Xu et al. [11] compared and 
analyzed the performance of seven classifiers - bagging, bundling, boosting, Penalized linear 
discriminant analysis, Generalized additive model, Support vector machine and Artificial neural 
network. 

 Currently, there is widespread interest in the development of transductive learning. Because 
transductive learning explores not only labelled data but also unlabelled data, and it achieves better 
performance than methods that learn classifiers based only on labelled data. Its success is based on one 
of the following two assumptions: cluster and manifold assumptions. The cluster assumption supposes 
that the decision boundary should not cross high-density regions, whereas the manifold assumption 
means that each  
class lies on an independent manifold. Graph-based learning is one of the transductive learning 
methods. The graph-based learning [12-19] achieves promising performance among existing 
transductive learning methods. Its development goes through two stages: simple-graph learning and 
hypergraph learning. This type of learning is built on a graph, in which vertices are samples and edge 
weights indicate the similarity between two samples. However, the simple-graph learning methods 
consider only the pairwise relationship between two samples, and it ignores the relationship in a higher 
order. Hypergraph learning aims to get the relationship among several samples in a higher order. Unlike 
a simple graph that has an edge between two vertices, a set of vertices is connected by a hyperedge in a 
hypergraph, and each hyperedge is assigned a weight.  

However, these hypergraph-based methods focus only on proximity relation for distance. There is some 
other high-order relationship, such as linear relationship. Wei et al. proposed combinative hypergraph 
learning by taking into account the clustering assumption that the similar points in feature space are 
more likely belong to the same category [19]. This algorithm defines the similarity by two assumptions 
- distance-similarity and linear-similarity. The distance-similarity is that the points derived from a 
category are located close to each other. The linear-similarity is that a data point can more likely to be 
represented linearly by the data points nearby who are belong to the same category with this data point. 
Inspired by the two assumptions, the following two kinds of hypergraph was constructed on a data set, 
one is conventional hypergraph which is based on the distance-similarity, the other one is sparse 
hypergraph which is based on linear-similarity and derived from the thinking in [20-21]. We use this 
algorithm to learning oil spill from “look-alike” and the experiments results show that it is effective.   

The rest of this paper is organized as follows. Section II describes the combinative hypergraph 
learning. And section III shows experiments on practical image datasets. We draw the conclusions in 
section IV.  

2. HYPERGRAPH LEARNING 

This section introduces conventional hypergraph learning and sparse hypergraph learning 
respectively firstly, and shows combinative hypergraph learning theory in the following.   
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Given c categories of images including m training data points (x1, y1), …, (xm, ym), and n testing data
points (xm+1, 0), …, (xm+n, 0), where R ,1d

i i m n∈ ≤ ≤ +x  is sampled from the input space; 
T[0, ,1, ,0] R ,1c

i i m= ∈ ≤ ≤L Ly ，is the label vector of xi, where the g-th component is 1 if xi 
belongs to the g-th category, otherwise, 0; and 0 is a vector with c components of zero.

The hypergraph, H=(x, ε ), is formed by the vertex set, x, and the hyperedge set, ε , An incidence
matrix, A, whose size is |x|×| ε |, denotes the hypergraph with the following elements:
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where jε denotes the j-th element of the hyperedge set . The distance between two data points is
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φ  , γ  and ω  denote diagonal matrices of vertex degrees, hyperedge degrees and hyperedge 

weights, respectively. iφ  denotes the entry (i, i) of matrix φ , iω  and iγ  have similar meanings.

Then, the initial weight, iω , is
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Based on A, the i-th vertex degree, iφ , is
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and the i-th hyperedge degree, iγ , is 
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In this paper, we adopt the regularization framework proposed in [17], i.e. 
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where (1/2) 1 T (1/2)− − −= −L I φ A γ ωA φ ; l is the number of hyperedges; diag(ω ) is the diagonal 
vector of ω , i.e., ( ω 1, ω 2, …, ω l); c is the number of classes; F is a matrix,

( )
1( , , ) m n c

c
+ ×= ∈ℜF Lf f , ηf  is the confidence of the labelling for the data belonging to the

2.1 Conventional hypergraph learning 
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thη  category; λ >0  and μ >0 are two trade-off parameters to balance the empirical loss, the 

weight and the regularization; Y =( y1, y2,…, ym, 0,…, 0)T , Y ( )m n c+ ×∈ℜ , ηY  is the thη column of 
Y . The third term is introduced to avoid a degenerate solution caused by the former two terms existing 
only in the regularization. Here we add two constraints, one to fix the summation of the weights 

1
1l

jj=
=∑ ω  and one to avoid negative weight 0j ≥ω .  

Because the classifier function is not jointly convex with respect to F and ω , we solve one variable 
by fixing another variable.  

First we initialize ω  with (3), so the solution of F becomes 

 
(1/2) 1 T (1/2)

1( )
1 1

λ
λ λ

− − −
−= −

+ +
φ Aγ ωA φF I Y .                    (7) 

Then we update the weights, ω , with an iterative coordinate descent method. Based on the coordinate 
descent method, an iterative process alternately updates the labels and the weights. 

  In the next iteration, we calculate the new F with new ω . The iteration ceases at a given state. After 
obtaining F, we set the g-th class to the i-th data point if the g-th component is the maximum in the i-th 
row of F. A more detailed solution of (6) appears in [19]. 

2.2 Sparse hypergraph learning 

Sparse hypergraph learning is similar to conventional hypergraph learning. Therefore, this section will 
show only the difference between sparse hypergraph learning and spectral hypergraph learning to avoid 
repetition. It is the hyperedge construction and the hyperedge weight definition which will be 
introduced after the introduction of sparse representation in this section.   

This paper solves the sparse representation problem based on 1l  minimization. 

Given a vector x in Rd, which can be represented in a basis of d vectors 1{ R }n d
i i=∈ς , where 

include . Set a matrix 1 2[ , , , ]d=Σ Lς ς ς  and we can rewrite x as 

1

d

i i
i

w
=

= =∑ Σx wς                                 (8) 

Where T
1 2[ , , , ] .d= w w wLw  Both x and w represent the same data point, one in the space 

domain and the other in the ∑ domain. Our object is to find a sparse representation of x in a properly 
chosen basis ∑, namely, w must have as few nonzero components as possible. According to [22], such a 
sparse representation can be obtained by solving the optimization problem 
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0
min subject to = Σw       x w ,                        (9) 

where 
0

w  is the 0l  norm of w, i.e. the number of nonzero entries. However, such an optimization 

problem is in general non-convex and NP-hard. According to [20, 21], we can replace the non-convex 

optimization in (9) by the following convex 1l  optimization formulation, 

1
min subject to = Σw       x w .                       (10) 

Now, consider all data points in a dataset, 1 2[ , , , ]n=x Lx x x  Each data point, xi, has a sparse 

representation wi. By setting the i-th element of wi, (wi)i=0, the optimization formulation can be rewrote 
as 

T
1

1

min subject to
n

i i i
i=

=∑ xw       x w .                  (11)  

  Assume that, the data set x is drawn from a union of c independent linear subspaces, namely that the 
data set include c categories of object. According to [21], we can obtain block sparse solutions with the 
nonzero block corresponding to points in the same subspace if the aforementioned assumption holds. 
We can recover a block sparse representation of a new data point as a linear combination of the points 
in the same subspace. This means that a data point xi and the data points which index is corresponding 
to nonzero entry of wi are derived from the same category.  

  We now show how to define a hyperedge and its weight which are different from spectral hypergraph 
construction. For discrimination, we use Asp, distsp and Fsp to replace incidence matrix A, distance 
between two data points dist and classifier function F showed on above section respectively. We define 
Asp as 

      sp

1,   if    
1,  if   |( ) |>0 ( , )
0,   otherwise    

i j

i j
i j

=⎧
⎪= ⎨
⎪
⎩

A w ,                       (12) 

where |( ) |i jw  denotes the absolute of j-th entry of wi, and distsp as  

     spdist ( , ) | ( ) |i j i j=x x w .                          (13) 

  The following processing is the same as conventional hypergraph learning. Here, we take Fsp as the 
solution of the sparse hypergraph learning. 

Proc. of SPIE Vol. 9901  99010Z-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 09/06/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



 

 

2.3 Combinative hypergraph learning 

   We obtain two confidences of the labelling, F and Fsp, for conventional hypergraph learning and 
sparse hypergraph learning aforementioned. We define F* as 

        

sp

2sp

2
1

* * (1 *)

 *=arg min (1 )

subject to [0,1]

m

i i i
iα

α α

α α α

α
=

= + −

+ − −

∈

∑

F F F

F F y .                  (14) 

It means that, here, we combine linearly only the results of the two hypergraph learning with the 
weights a* and 1-a*. We can get a* by minimizing the loss of classification contribution value to truth 
classification value with only the labelled data point. The minimized function is easy to be solved since 
there is only one variable. After obtaining F*, we set the g-th class to the i-th data point if the g-th 
component is the maximum in the i-th row of F*. 

  For this strategy, we learn the confidence of the labelling independent for the two hypergraph-based 
learning. Then, we combine only the two confidence of the labelling linearly with optimal weights.  

3 EXPERIMENTS 

We performed experiments for oil spill dataset, we compared our method with general classification 
algorithms including k-nearest neighbor (k-NN), decision tree (C4.5); naïve bayes (NB); neural 
network (NN); support vector machine (SVM); AdaBoost; transductive support vector machine 
(TSVM) [12]; hypergraph Learning (HL) [17]; sparse Hypergraph Learning (SHL) [20] and 
semi-supervised discriminant analysis (SDA) [22] classifications. 

3.1 Datasets and configurations 

The dataset used in this study is derived from RADARSAT-1 ScanSAR Narrow Beam images 
with a swath of 300 km and a spatial resolution of 50 m, and covers vast Pacific and Atlantic coastal 
areas [11]. The dataset used comprises fourteen features of 412 oil spills and “look-alikes”. There are 
thirty oil spills and 382 “look-alikes.” Fig. 1 shows examples of oil spill and “look-alike”. By visually 
discerning the gray tone difference between the dark-spots and the background, we delineated 
dark-spot boundaries; therefore, we need not introduce dark-spot detection in this letter.  

Given the dark-spots in pixel-format, features must be extracted as input for the classifiers. For 
each of the dark spots, we compute three kinds of features: Physical and textural features, Geometric 
features and Contrast with background. More details about the data and features of dark-spot refer to 
[11].   

To evaluate classifiers on the imbalanced data sets, we use a True Positive Rate (TPR), a True 
Negative Rate (TNR), and overall accuracy. Here, positive denotes oil spill and negative denotes 
“look-alike”. TPR, TNR and Accuracy metric are defined as follows: 
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TP TN TP+TNTPR=   TNR=   Accuracy=
TP+FP TN+FN TP+TN+FP+FN

,     (15) 

where P, N, T and F denote Positive, Negative, True and False, respectively. 

   （a） (b)
Figure 1. The dark spots are the examples of (a) “look-alike” (acquired on Sep. 17, 2013, located at 
50°43′N, 53°25′W),  and (b) oil spill (acquired on Jul. 23, 2009, located at 42°50′N,  56°38′W) . 

Intuitively, TPR and TNR are measure of exactness for actually labeled correctly. The F measure metric 
combines exactness and completeness as a measure of classification effectiveness. We use the TPR and
TNR metrics to illustrate intuitively each method in dealing with an imbalanced training set. We use the 
accuracy to evaluate the performance of each classification method. For all the classification methods,
we independently repeat the experiments twenty times with randomly selected training samples and
show the averaged results by mean Accuracy.  

We carry out the following classifications: (1) k-NN (k=10); (2) SVM with the library, Libsvm, 
written by Chih-Chung Chang and Chih-Jen Lin; (3) NB; (4) NN with the code in Matlab7.14 where 
parameters are set optimally; (5) C4.5; (6) AdaBoost; (7) Semi-supervised Discriminated Analysis
(k=5); (8) Transductive Support Vector Machine (RBF kernel, C-SVC, C = 20); (9) Conventional 
Hypergraph learning (k= 5); (10) Sparse hypergraph learning (k=5); (11) Combinative Hypergraph 
Learning(initialize a to 0.01, iteration step by 0.01). 
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1 KNN 0.16 0.72 0.54 

2 SVM 0.05 0.92 0.64 

3 NB 0.29 0.65 0.53 

4 NN 0.18 0.67 0.52 

5 C4.5 0.27 0.61 0.50 

6 AdaBoosting 0.12 0.76 0.56 

7 SDA 0.10 0.71 0.51 

8 TSVM 0.28 0.69 0.64 

9 HL 0.23 0.66 0.58 

10 SHL 0.05 0.67 0.62 

11 CHL 0.24 0.70 0.65 

Table 1 shows the TPR, TNR and overall accuracy with all methods aforementioned. In term with TPR 
and TNR, we can see that the oil spill and “look-alike” are so similar to each other that they are very
lowly. And the overall accuracy is lowly too. Of course, the experimental results also show that CHL 
achieves best overall accuracy in all methods. And the results demonstrate the effectiveness of the
proposed method. Both SVM and TSVM show a somewhat poorer performance, but, they are very 
close to that of CHL.

4 CONCLUSIONS

In this paper, we proposed combinative hypergraphlearning to distinguish oil spill from “look-alike”. 
Compared with many existing supervised and semi-supervised learning methods, the proposed method 
achieved the best performance with respect to overall accuracy. However, due to the limitation of the
oil spill training data, we didn’t conduct more experiments to further identify the advantages of our
proposed framework. 
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