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ABSTRACT 

 

This paper presents a novel approach for extracting street 

lighting poles directly from MLS point clouds. The approach 

includes four stages: 1) elevation filtering to remove ground 

points, 2) Euclidean distance clustering to cluster points, 3) 

voxel-based normalized cut (Ncut) segmentation to separate 

overlapping objects, and 4) statistical analysis of geometric 

properties to extract 3D street lighting poles. A Dataset 

acquired by a RIEGL VMX-450 MLS system are tested 

with the proposed approach. The results demonstrate the 

efficiency and reliability of the proposed approach to extract 

3D street lighting poles. 

 

Index Terms— Lighting pole extraction, mobile laser 

scanning, point clouds. 

 

1. INTRODUCTION 

 

In Global Status Report on Road Safety 2013, the UN 

World Health Organization (WHO) indicates that, 

worldwide, the total number of road traffic deaths remains 

unacceptably high at 1.24 million per year [1]. To reduce the 

number of deaths, transportation departments need to 

implement more effective road safety policies. In these 

polices, detection and maintenance of road infrastructure on 

a regular basis plays an important role. As one of road 

infrastructure, street lighting poles, which can be found 

everywhere on the roads, are usually used to furnish 

illumination for assisting the pedestrians and drivers at night. 

On the other hand, poles serve as holders for other objects 

such as advertising boards, traffic lights, and traffic signs. 

Cost-effectively monitoring and managing street lighting 

poles are essential to enhance road safety. Identifying poles 

is very important and will make the detection of the attached 

objects easier. Usually rounded and long, poles are made of 

different materials and they have different heights and radii. 

However, in the same scene, the type of poles is usually 

identical.  

The average density of the point clouds collected by a 

mobile laser scanning (MLS) system can reach up to 4000 

points/m
2
 with a moving speed of approximately 50 km/h. 

Therefore, MLS systems provide a promising way to extract 

street lighting poles. In fact, automated extraction of street 

lighting poles from MLS point clouds has been an active 

research topic in recent years. A framework based on a 

collection of characteristics of point cloud segments was 

presented in [2] for poles structure recognition. A novel 

pairwise 3D shape-context method was proposed in [3] to 

extract street lighting poles from MLS point clouds. In [4], 

the proposed method firstly generated supervoxel segments 

from point clouds, and then defined a set of rules for 

merging these segments into meaningful units. Finally, the 

semantic knowledge of urban objects was formed and used 

for object classification. A hierarchical strategy including 

segmentation, principal component analysis (PCA)-based 

orthogonal regression, filtering, and parameter extraction 

procedures was presented in [5] to extract the geometric 

parameters of the vertical profiles and cross-sections of 

roads. In [6], by using local neighborhoods and based on the 

analysis of the relative sizes of the eigenvalues, poles were 

extracted.  

In this paper, we propose a novel approach to extract 

street lighting poles directly from MLS point clouds. The 

approach includes four stages: 1) elevation filtering to 

remove ground points, 2) Euclidean distance clustering to 

cluster points, 3) voxel-based normalized cut (Ncut) 

segmentation to separate overlapping objects, and 4) 

statistical analysis of geometric properties to extract 3D 

street lighting poles. The proposed approach has been tested 

on a set of 3D point clouds acquired by a RIEGL VMX-450 

MLS system. The results demonstrate the efficiency and 

reliability of the proposed approach to extract 3D street 

lighting poles. 
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 (a)                                                                                   (b)

Fig .1. (a) Raw point cloud. (b) Road surface segmentation results (yellow part). 

 

 
(a)                                                                       (b) 

 

Fig. 2. (a) Clustering result using the Euclidean distance clustering approach (different colors mean different clusters). (b) Filtering result 

using prior knowledge. 

 

2. METHOD 

 

The proposed algorithm contains four steps: ground point 

removal, Euclidean distance clustering, Ncut segmentation, 

and 3D lighting pole extraction. 

 

2.1. Ground Point Removal 

 

It is a big challenge to deal with the whole point clouds 

because of the huge amount of data. Instead of processing 

overall point clouds, it is necessary to partition the whole 

data into a number of blocks and remove the uninterested 

parts (ground points) to reduce the spatial and computational 

complexities.  

In this paper, we first use the trajectory data to partition 

the raw point clouds into a number of blocks. Within each 

block, ground points are segmented with a surface growing 

algorithm [2] [7] according to their coplanarity and 

connectivity. The implemented approach is based on planar 

seed surface detection in 3D Hough space. Further the 

neighboring points are added to the seed surface if they are 

below a threshold distance to this plane. After adding a point, 

the plane is determined anew by adjustment of all accepted 

points. Points are added to segments until defined growing 

criteria are exceeded. Leveraging the prior knowledge that 

the area of ground is large and the geometric centers are 

below the trajectory, we can segment the ground points. And 

then, by given an elevation threshold, we can remove the 

ground points. Fig. 1 shows the ground removal result. 

 

 

2.2. Euclidean Distance Clustering 

 

After removing the ground points, on-ground objects are 

isolated. Because of the discrete and unorganized 

characteristics of point clouds, we need to organize points 

into clusters that represent individual objects before 

extracting lighting poles. Here, we introduce a Euclidean 

distance clustering approach, which clusters points based on 

their Euclidean distances to their neighbors. Theoretically, 

an unclustered point is grouped into a specific cluster if and 

only if its shortest Euclidean distance to the points within 

this cluster lies below a predefined threshold. Finally, we 

leverage the knowledge that lighting poles always have some 

geometric constrains, like height, to eliminate those low-

height clusters. In Fig. 2 shows different clusters with 

different colors.  

 

2.3. Normalized Cut Segmentation 

 

Some clusters contain more than one object as shown in 

the red rectangle in Fig. 2(b). Thus, we use an Ncut 

segmentation method [8] to segment these clusters in order 

to obtain separated objects. First, the cluster is divided into a 

voxel structure with a voxel spacing ve. Second, the 

nonempty voxels are used to construct a weighted graph G = 

{V, E}, where V takes the nonempty voxels as nodes and E is 

formed between every pair of nodes. The similarity between 

a pair of nodes is represented by the weight wij which is 

computed as follows: 
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(a)                    (b)                                               (c) 

Fig. 3. (a) Raw point clouds. (b) Illustration of bipartition. (c) Ncut segmentation result (different colors mean different clusters). 
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(a)                  (b) 

Fig. 4 (a) Lighting pole prototype. (b) Extracted lighting poles 

 

Table 1 

Bhattacharya distances between the lighting pole prototype and the different objects 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

|dbhati| 4.16e

-4 

4.18e

-1 

4.38e

-1 

3.99e

-1 

4.52e

-4 

2.79e

-1 

1.67e

-3 

2.35e

-1 

1.33e

-1 

2.87e

-1 

5.94e

-4 

4.18e

-1 

3.99e

-1 

2.36e

-1 
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where pi = (xi, yi, zi) and pj = (xi, yi, zi)  are the centroids 

of voxel i and j, respectively. Pi
XY

  = (xi, yi) and Pj
XY

  = (xj, 

yj) are the coordinates of the centroids on the XY plane, pi
Z
 

= zi  and pj
Z
 = zj are the z coordinates of the centroids. σXY  

and σZ are the standard deviations, and dXY is a threshold 

determining the maximal valid horizontal distance between 

two voxels.  

Ncut segmentation aims to partition graph G into two 

disjoint voxel groups A and B by maximizing the similarity 

within each group and minimizing the similarity between 

voxel groups. The purpose is achieved by solving the 

corresponding generalized eigenvalue problem: 

( )D W y Dy                          (2) 

where W(i, j) = wij and D is a diagonal matrix with D(i, i) 

= 
imm

w . 

Finally, by applying a threshold to the eigenvalue 

associated with the second smallest eigenvalue, a cluster is 

separated into two segments as shown in Fig. 3. 

 
2.4. 3D Street lighting pole Extraction 

 

We propose a robust algorithm based on a statistical 

analysis of the geometric properties of the data to extract 3D  

 

street lighting poles [9]. Given a clustered object, first, each 

point on the object is represented using a five-dimensional 

feature vector fp for describing the local geometry and it is 

given by 

fp = <Nx, Ny, Nz, dis, nvar>                 (3) 

 where Nx, Ny, and Nz are the components of the normal 

vector at each point computed by averaging the eight-

neighborhood normal vectors, dis is the distance between 

the point and the central of all points in the XoY coordinates, 

nvar is the local normal variance around the eight neighbors 

of the point. Next, this cluster’s associated probability 

density function (pdf) ϕi is modeled by a five-dimensional 

Gaussian function ϕi = Ni (μi, Σi), where μi and Σi are given 

by 

1
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         (4) 

The clusters corresponding to the same structure are likely to 

have similar geometric properties. Hence, their pdfs 

modeling the distribution of these properties are expected to 

be similar. We leverage this characteristic and compare the 

pdfs of a given clustered object and the known lighting pole 

model using as a metric the Bhattacharya distance. The 

Bhattacharya distance dbhat is a computationally very simple 

quantity that measures the separability between two normal 

distributions Np = <μp, Σp> and Ni = <μi, Σi> and it is 

given by 
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Table 2 

Description of the ground truth and extraction results in the dataset 

 
Ground Truth Extraction Results Accuracy Evaluations 

Lighting 

poles 

Other 

poles 

Lighting 

poles 

Missed Other 

poles 

Completeness Correctness Quality 

141 12 132 9 8 93.62% 94.29% 88.59% 
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       (5) 

where Np is the normal distribution of a known lighting pole 

model; Ni is the normal distribution of the cluster i.  

Eq. (5) gives the separability between two normal 

distributions. The range of values for the Bhattacharyya 

distance |dbhati| is [0, +∞), where dbhati = 0 indicates that the 

two normal distributions are identical. Table 1 gives the 

Bhattacharya distances between the light pole prototype and 

the different objects as shown in Fig. 3(c). Given a threshold 

dbhati=0.01, we can extract lighting poles from all the objects. 

Fig. 4 shows the result of lighting pole extraction. 

 

3. RESULTS AND DISCUSSION 

 

The MLS point clouds used in this study were acquired 

by a RIEGL VMX-450 system in a tropical urban 

environment, Xiamen, a port city in southeast China. The 

average density of the point clouds is approximately 4000 

point/m
2
. The accuracy of the acquired point clouds is within 

8mm (1σ standard deviation), and the precision is 5mm with 

a maximum effective rate of 1.1 million measurements per 

second. 

To extract lighting poles, a road surface point cloud was 

selected from the surveyed data with a distance of 

approximately 3 km along the road. First we partitioned the 

road surface point cloud into a number of blocks. In each 

block, the ground points were removed by implemented the 

surface growing algorithm. The Euclidean distance 

clustering and Ncut segmentation algorithm were performed 

sequentially. Finally, we applied the proposed lighting pole 

extraction algorithm to extract lighting poles from the 

clusters. The ground truth and the extraction result are listed 

in Table 2. Compared with the ground truth, the majority of 

lighting poles were extracted with a small number of false 

alarms.  

In order to quantitatively evaluate the accuracy of the 

detection results, we applied three indices presented in [10]: 

completeness, correctness, and quality. As shown in Table 2, 

our algorithm achieved a completeness of 93.62%, a 

correctness of 94.29%, and a quantity of 88.59%. These 

results demonstrate that the proposed approach performs 

very well and achieves reliable results as shown in Fig. 5. 

 

 

 

 
 

Fig. 5. Illustration of a part of street lighting pole extraction results 

using the proposed algorithm. 
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