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ABSTRACT: 

 

This study aims at building a robust semi-automated pavement marking extraction workflow based on the use of mobile LiDAR 

point clouds. The proposed workflow consists of three components: preprocessing, extraction, and classification. In preprocessing, 

the mobile LiDAR point clouds are converted into the radiometrically corrected intensity imagery of the road surface. Then the 

pavement markings are automatically extracted with the intensity using a set of algorithms, including Otsu’s thresholding, neighbor-

counting filtering, and region growing. Finally, the extracted pavement markings are classified with the geometric parameters using a 

manually defined decision tree. Case studies are conducted using the mobile LiDAR dataset acquired in Xiamen (Fujian, China) with 

different road environments by the RIEGL VMX-450 system. The results demonstrated that the proposed workflow and our software 

tool can achieve 93% in completeness, 95% in correctness, and 94% in F-score when using Xiamen dataset. 
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1. INTRODUCTION 

Intelligent transportation systems (ITS) have been introduced 

for many years. The current development of ITS focuses on the 

driverless car, which is the most viable form of ITS. As a 

robotic vehicle that is capable of traveling between destinations 

without a human operator, the driverless car is driven not by 

human but the data. There are two principal data sources for the 

navigation of the driverless cars. The first one is the sensory 

input in terms of the surroundings of the driverless car. It can be 

acquired and collected by the radar, LiDAR sensor and video 

cameras. The second one is a prior highly detailed 3D map. 

Different from the traditional road map, this detailed 3D map is 

developed for the machine. The highly precise map is 

indispensable not only to allow a car to locate itself on the 

traffic lane but also enable a vehicle to take corresponding 

actions correctly (Guizzo, 2011). 

 

To capture the world in 3D for autonomous vehicles, mobile 

laser scanning (MLS) technology is applied before the 

driverless cars hit the road. It is an effective and efficient 

method for acquiring highly accurate, precise, and dense geo-

referencing 3D topographic data (Puente et al., 2013). MLS 

systems are the mobile mapping systems based on the LiDAR, 

which capture 3D point clouds from the surrounding 

environment using profiling scanners. The detailed 3D point 

cloud data normally involves the important information of 

traffic lane such as lanes’ geometry and boundary, lanes’ types, 

speed limit and lane traversal information. The indispensable 

data helps the driverless car make solid decisions (Kent, 2015). 

 

It is noted that majority of the information of lanes is 

represented by the road markings, thus, a variety of study has 

been carried out on the detection of road markings from point 

clouds. In general, the road markings have much higher 

reflectance than the unpainted road surface. Therefore, their 

relatively high intensity can be used for detecting the road 

markings. Smadja et al. (2010) implemented a simple threshold 

on intensity for detecting the road markings. Toth et al. (2008) 

selected an intensity value based on the intensity distribution in 

a search window as a global threshold for the extraction. Yang 

et al. (2012) extracted continuous edge lines and broken lane 

line markings successfully. Studies were also undertaken aiming 

at solving the problem caused by inconstant intensity. Chen et 

al. (2009) selected the intensity peaks along the scan line as lane 

marking points by using adaptive thresholding. Vosselman 

(2009) proposed a distance-dependent thresholding method to 

detect the road markings, and a connected components analysis 

to extract road markings. In other studies, the distance-

dependence of intensity was used in different ways. Guan et al. 

(2014) implemented multi-thresholding segmentation to extract 

road markings. The distribution of point density along the cross 

section was fitted to a Gaussian normal distribution function. 

The road surface points were segmented into some bins 

according to the estimated mean and standard deviation. Yu et 

al. (2015) applied a distance-dependent multi-thresholding 

segmentation in which the road surface points were segmented 

into the blocks along the road. 

 

This study focuses on the extraction and recognition of road 

markings from MLS data for building the prior map of 

driverless car. The detailed research objectives include: (1) 

Completely extract the road markings from MLS data 

automatically with high accuracy in different environments, and 

(2) classify the road markings into thorough and detailed 

categories. 



 

2. STUDY AREA AND DATASET 

The study area is located in the City of Xiamen. Xiamen is a 

port city on the southeast coast of mainland China. A complete 

survey of mobile laser scanning was carried out back and forth 

on Xiamen Island Ring Road on 23 April 2012 by a RIEGL 

VMX-450 system. The total length for one direction survey was 

around 10 km. This primary road in Xiamen is characterized by 

numerous vehicles, trees, shafts (e.g., light poles and traffic 

poles). The majority of the road surface and road markings are 

in good condition. Seven samples of the survey data (i.e. the 

straight, curve roads and different types of road markings) were 

selected as the test dataset for evaluating the proposed method. 

 

The average point density of the dataset is 7,000 points/m2. The 

dataset was then converted into the format of LAS that is a 

standard in the laser scanning industry. 

 

Figure 1. Study area (Island Ring Road, Xiamen, Fujian, China) 

 

3. METHODS 

The proposed method within this study consists of three phases, 

including preprocessing, road marking extraction, and road 

marking classification. 

 

3.1 Preprocessing 

The raw point clouds are preprocessed in two steps to reduce 

the volume of the data and overcome the problem resulting from 

the uneven distribution of intensity data. 

 

The first step is road surface detection. The non-ground removal 

is implemented to extract ground points from the MLS data. 

The ground surface points are rasterized into a digital terrain 

model (DTM) by inverse distance weighted (IDW) interpolation. 

 

A voxel-based upward growing method (Yu, 2015) is employed 

to segment the raw MLS data into ground points and non-

ground points. This method partitions point cloud data into an 

octree structure with a voxel size. For each voxel, it expands to 

its 9-neighbour upward voxels, and then the growing scheme 

expends until it reaches the top boundary. If the elevation of the 

top voxel is smaller than the predefined threshold, the cluster of 

these voxels is referred to the ground. The point clouds in these 

voxels are labelled as ground points. Otherwise, the point 

clouds will be categorized as non-ground points. In the removal 

process, all the non-ground points are removed from raw point 

clouds. The volume of the ground points concentrates 60% of 

the raw MLS data. To further reduce the data volume and 

improve the computational efficiency, the ground points will be 

rasterized into the DTM by IDW interpolation. With the IDW 

interpolation, the grey value of a grid is interpolated with its 

neighbours: 
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where wk is the weight of the k-th point within the grid, as the 

function of distance dk; zk is the k-th point grey value; n is the 

number of points in a grid. 

 

The main features of the road surface are characterised by its 

smoothness and connectedness. In general, the surface of the 

grass is rougher than the road surface. Additionally, it is clear 

that the existence of a curb would result in a sudden change in 

the height on the road boundary. Therefore, a high-pass filter is 

applied to the DTM, and the absolute values of the road surface 

will be much lower than the values of the other surfaces. 

 
Figure 2. Cosine of the scan angle rank vs. intensity 

 

The second step is the intensity correction and enhancement. 

The intensity value of the ground surface points are corrected 

by the scan angle rank, following by the IDW interpolation. The 

intensity values of the point clouds have a positive correlation 

with cosines of incidence angles, as shown in Figure 2. Thus, 

the linear regression model generated from the intensity image 

can be used to correct the intensity value of MLS data. The 

formula of the linear regression model is presented as below: 

 2479415115  xy  (2) 

3.2 Road Marking Extraction 

The Otsu’s thresholding method is applied to extract road 

markings. It segments the image automatically with the 

optimum threshold that helps minimize the within-class 

variance.  It is assumed that the image is bimodal and the 

illumination is uniform, therefore the bimodal brightness can be 

determined based on the differences of the materials’ properties.  

 

The road surface area is preserved in the intensity images in the 

format of either asphalt pavements or the road markings. With 

the assistance of the intensity correction, the illumination in the 

image is uniform. Thus, the corrected intensity image is able to 

meet the requirements of the Otsu’s thresholding method, and 

the global thresholding process can be employed. 

 



 

3.3 Road Marking Classification 

3.3.1 Road Marking Segmentation: The first step of road 

marking classification is dividing the extracted road marking 

into segments, where a 4-neighbor region growing segmentation 

is employed. Figure 3 shows an extracted road marking and the 

segmentation result, in which the noise and little clusters are 

removed in the procedure of region growing. 

 

Figure 3. Region growing segmentation 

 

The large road marking in Figure 3 should be segmented into a 

few road markings to guarantee the subsequent recognition. 

Taking the width and junction into consideration, the large road 

marking can be classified into two types: the thin road marking 

and the wide road marking. The segmentation method consists 

of two steps: distinguishing thin and wide road markings, and 

splitting road markings at junctions. The neighbour-counting 

filtering is applied to detect the thin, wide road markings and 

their junctions. 

  
                      (a)                                                  (b) 

  
                       (c)                                                 (d) 

Figure 4. Large road marking segmentation: (a) Neighbour-

counting image, (b) wide and thin road marking, (c) neighbour-

counting image of wide road marking, and (d) segmentation 

result of large road marking. 

 

3.3.2 Feature Extraction: After the road marking is 

partitioned into segments, geometric parameters of marking 

segments will be calculated. Four parameters were employed 

including area, perimeter, estimated width, and orientation. The 

estimated width is the function of area and perimeter: 

 perimeter/areawidth  2  (3) 

Although this estimated value is not the true width of the 

segment, it can indicate the thinness of road marking. Based on 

area and width, rectangular markings can be detected and 

recognized, but irregular markings having similar area and 

width may be misclassified. In this case, a minimum bounding 

rectangular (MBR) is derived to present the extent of each road 

marking. According to the width of MBRs, road markings can 

be classified into thin MBRs (e.g., zebra strip and broken line) 

and wide MBRs (arrow, diamond, character, and number). 

 

Based on the MBRs, the main angle of a road marking can be 

calculated. 

 

3.3.3 Decision-Tree Based Classification: A decision tree is 

designed and developed for the classification. The hierarchical 

tree of road marking categories that developed in this study is 

illustrated in Figure 5. According to the People's Republic of 

China National Standards: Road Traffic Marking (2009), the 

road markings in Xiamen dataset can be classified into two 

categories: longitudinal and transverse marking. The orientation 

of road marking segments can be measured by the main angle of 

MBRs. Transverse and longitudinal markings have a high and 

low variance of the main angle in a section of the road 

respectively. The difference of orientation variance is adopted 

as the rule for the first level of the decision tree. At the second 

level, longitudinal marking segments are separated into two 

groups based on the MBR width. In the third level, if the width 

of the segment exceeds 45 cm, it is refer to a wide MBR (i.e. 

road arrow or non-road arrow); otherwise, it is referred to a thin 

MBR (i.e. strip of zebra crossing, broken line or continuous 

line). In the fourth level, zebra crossings, broken lines, 

continuous lines, road arrows and non-road arrows are further 

classified into specific subclasses based on their area and 

estimated width. 

 

4. RESULTS AND DISCUSSION 

4.1 Preprocessing 

Preprocessing aims to compress the large-sized data and 

balance the uneven distribution of intensity data prior to the 

extraction of the road markings. The ground removal result is 

shown in Figure 6. 

 

 
Figure 6. MLS data and ground surface points 

 



 

 
Figure 5. A hierarchical tree of the road marking categories 

 

 
Figure 7. Intensity image after intensity correction 

 

 
Table 1. Quantitative assessment using completeness, correctness and F-Score 

 

 
Table 2. Quantitative evaluation results of different road marking extraction methods 



 

 
Figure 8. Results of road marking extraction based on Otsu thresholding 

 

 

 
Figure 9. Extracted road markings from Sample 01 dataset: (a) road surface points, (b) Chen’s method result, (c) Guan’s method 

result, (d) Yu’s method result, (e) proposed method result, and (f) manually labelled reference data (Adapted from: Yu, 2015). 



 

 
Figure 10. Results of road marking classification 

 

In order to extract the road marking, a scan-angle-rank-based 

intensity correction was used to correct various intensity values 

caused by different incidence angles. The corrected intensity 

images are presented in Figure 7. It is evident that the contrast 

between road markings and the pavements was enhanced; 

therefore the road markings became more detectable. 

 

4.2 Road Marking Extraction 

Based on the corrected intensity image, the Otsu’s thresholding 

was used to extract the road marking, and the results are shown 

in Figure 8. It is identified that majority of the road markings 

were extracted but with three errors. Errors 1 and 3 are caused 

by lacking of sufficient laser points, and error 2 is the false 

negative located in the inner of the road arrows. 

 

As shown in the quantitative assessment (see Table 1), the 

proposed road marking extraction is capable to achieve 93% 

complete-ness, 95% correctness and 93% F-Score. The rate of 

completeness is smaller than the correctness’s in each sample, 

indicating that some marking pixels were misclassified into the 

pavements. Due to the decay of the road markings, the sizes of 

manually labelled references are bigger than the damaged road 

markings’. Therefore, the performance of proposed method was 

underestimated in the result. 

 

A comparative study was carried out between the proposed 

method and Chen’s (Chen et al., 2009), Guan’s (Guan et al., 

2014) and Yu’s methods (Yu et al., 2015), and the results are 

shown in Figure 9. The performance of these four methods is 

evaluated in a quantitative way, using three variables, i.e. 

completeness, correctness and F-score (see Table 2). It is 

identified that the proposed method outmatches Chen’s and 

Guan’s methods while it is inferior to Yu’s method in terms of 

the completeness. 

 

4.3 Road Marking Classification 

The marking segments were classified into categories based on 

the decision tree. All kinds of the road markings in the samples 



 

are illustrated in Figure 10. It is identified that majority of the 

segments were classified into correct categories. Nevertheless, 

three problems arose in the classification. 

 

Aiming at these unclassifiable segments, caused by marking 

decay, a rectification method can correct these misclassifi-

cations. The basic idea is that these unclassified segments 

should be reclassified according to the confessedly recognized 

road marking segments. Based on these correctly classified 

road-marking segments, the near unclassified segment can be 

set into the closest road marking. Although the damaged road 

marking cannot be classified correctly by its geometric features, 

it still has a strong spatial relationship with its congeneric 

markings. 

 

In order to identify Chinese characters, successfully separating 

the strokes becomes the crucial point. One solution is to expand 

the segments of strokes to generate them to become one 

connected region, and then detected as one character correctly. 

The dilation, as one of the basic operators in the area of 

mathematical morphology, was tested to connect separate 

strokes. After region expanding, the strokes in one connect area 

can be classified as one character. 

 

5. CONCLUSION 

Majority of the existing MLS point clouds-based road marking 

extraction methods are based on the application of global 

intensity filtering and multi-thresholding segmentation. 

However, these methods could be greatly influenced by the 

unevenly distributed intensity. This study has highlighted that 

the application of the scan-angle-rank-based intensity correction 

and the large-size high-pass filtering have the potential to 

significantly reduce the in-class variance of road markings and 

pavements. In addition, based on the comprehensive prior 

knowledge, a shape-based hierarchical tree developed in this 

study is capable to undertake the classification in an efficient 

and systematic manner. Based on the case study results, the 

developed workflow is capable of rapid extraction and 

classification of the road markings in the MLS point clouds. 
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