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ABSTRACT   

Depth super-resolution is becoming popular in computer vision, and most of test data is based on indoor data sets with 
ground-truth measurements such as Middlebury. However, indoor data sets mainly are acquired from structured light 
techniques under ideal conditions, which cannot represent the objective world with nature light. Unlike indoor scenes, 
the uncontrolled outdoor environment is much more complicated and is rich both in visual and depth texture. For that 
reason, we develop a more challenging and meaningful outdoor benchmark for depth super-resolution using the state-of-
the-art active laser scanning system.   

Keywords: Depth, super-resolution, outdoor, benchmark, laser scanning 
 

1. INTRODUCTION  
Research on range image is becoming more and more popular. A variety of range image analysis and processing 
methods have been demonstrated in the computer graphics and computer vision literature. These include range image 
recognition and segmentation, range image reconstruction, range image super-resolution, etc.  

A number of depth super-resolution techniques have been proposed in the literature. For example, a depth super 
resolution framework for range images and subsequent evaluation on Middlebury benchmark is introduced in [6]. 
Nevertheless, most of the available depth super-resolution techniques are tested using only indoor data sets with ground 
truth measurements obtained from structured light techniques. On the other hand, it has been demonstrated that many 
vision algorithms performing well on indoor data sets rank below average when tested under uncontrolled real world 
environment. 

Unlike indoor scenes, the uncontrolled outdoor environment is much more challenging, and the real scenes are often rich 
in both visual and depth texture (e.g., bushes and trees). Additionally, as structured light techniques are vulnerable to 
outdoor environment where strong lighting is presented, a state-of-the-art laser scanner is used for data acquisition. We 
propose to develop a benchmark for quantitative evaluation of depth super-resolution algorithms using data sets captured 
under outdoor environment. The rest of this paper is organized as follows. Section 2 describes our system, and sections 3 
and 4 introduce the registration between scanner and camera. Then we show experiments in section 5 and conclusions in 
section 6. 

2. OUR SYSTEM 
A photo of the 3D scanning system is presented in Fig. 1. It has two parts: VZ 1000 and Nikon D300s. VZ 1000 is a 
state-of-the-art laser scanning system, of which accuracy can reach 8mm at a distance of 100m. It is designed for dense 
and accurate 3D scanning and thus is suitable for generating high resolution depth images. This scanning system comes 
with a digital camera mounted on it manually. Nikon D300s is a high resolution camera, which can provide images of up 
to 4288×2848 pixels. It is used for getting color (RGB).  

The resolution of the laser scanner can be even higher than the RGB camera but scanning time is too much. Sparse 3D 
point clouds can be captured by increasing angular step-width of the laser scanner. 

* zhr7751662@163.com  

2nd ISPRS International Conference on Computer Vision in Remote Sensing (CVRS 2015), edited by Cheng Wang, 
Rongrong Ji, Chenglu Wen, Proc. of SPIE Vol. 9901, 99010U · © 2016 SPIE · CCC code: 0277-786X/16/$18 · doi:

10.1117/12.2234860

Proc. of SPIE Vol. 9901  99010U-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 09/06/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



 

 

 

For the scanner system we use, three coordinate systems should be mentioned. SOCS represents an abbreviation of 
scanner’s own coordinate system, while CMCS an abbreviation of camera’s coordinate system. At the same time, IMCS 
is Image’s coordinate system. In the following part, we will use these abbreviated forms. 

 

 
Figure 1. Our 3D Scanning System. The top part is camera and the bottom part is laser scanner. 

 

3. COORDINATE TRANSFORMATION 
This section mainly introduces coordinate transformation from scanner to camera. This includes two parts, conversion 
from SOCS to CMCS and from CMCS to IMCS. Through transforming, we can convert a 3D point in SOCS into a 
corresponding pixel in IMCS, and further convert point cloud into depth image corresponding to RGB image. 

3.1 Extrinsic parameters  

The transformation from SOCS to CMCS, a rigid transform, can be described with a rotation matrix R and a translation 
matrix T. 

 
c s

c 3 3 s 3 1

c s

x x
y R y T
z z

× ×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (1) 

For convenience, we use the following homogeneous coordinate expression: 
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In this step, we finish the conversion from a 3D point (xs, ys, zs) in SOCS to a 3D point (xc, yc, zc) in CMCS. Matrix E is 
extrinsic parameter matrix with 6 parameters (3 rotation variables and 3 translation variables). 

3.2 Intrinsic parameters 

The transformation procedure from CMCS to IMCS actually includes perspective projection, scaling and translation 
operations: 
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Where fx and fy denote equivalent focal length in x and y directions respectively, and u0, v0 are pixel coordinates of 
principle point. In this step, we finish the conversion from a 3D point (xc, yc, zc) in CMCS to a pixel (u, v) in IMCS. 
Matrix K is the well-known intrinsic parameter matrix with 4 parameters. 

Combine the above steps, we have 
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With K and E, we can finish the transition between 3D point cloud and 2D image. 

3.3 Camera distortion  

Actually camera model is not the ideal linear model because of imperfect camera manufacturing technology. Therefore, 
camera distortion should not be ignored especially when accurate camera calibration is required. Generally speaking, 
camera distortion mainly consists of two directions’ distortion: radial and tangential distortions.  

With the auxiliary terms ( )0

x

u u
x

f
−

= , ( )0

y

v v
y

f
−

=  and ( )( )2 1 2 2r tan sqrt x y−= + , radial distortion (δur, δur) can be 

computed like this: 

 
( )
( )

2 4 6 8
ur x 1 2 3 4

2 4 6 8
vr y 1 2 3 4

x f k r k r k r k r

y f k r k r k r k r

⎧δ = ∗ ∗ + ∗ + ∗ + ∗⎪
⎨
δ = ∗ ∗ + ∗ + ∗ + ∗⎪⎩

 (5) 

where k1, k2, k3 and k4 are radial distortion parameters. Meanwhile, tangential distortion (δut, δut) is like this: 
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where p1 and p2 are tangential distortion parameters. Then the relation between distorted (ud, vd) and undistorted (u, v) 
image coordinates is defined by the following polynomial (closely according to the OpenCV style): 
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Therefore, before we carry on linear coordinate transformation, digital image distortion must be removed. What’s more, 
camera distortion only depends on optical equipment’s interior structure. It keeps unchangeable for one existing device 
as well as intrinsic parameters. For our system, camera Nikon D300s itself has a fixed focal length and has been already 
calibrated with known distortion parameters. This makes us convenient to get undistorted images by eliminating 
distortion. 

4. REGISTRATION 
The use of our system simplifies the data acquisition problem. The major issue left is the alignment of the 3D measures 
and the 2D image captured by the installed RGB camera. The purpose of alignment is to solve extrinsic, intrinsic 
parameters, namely registration. At the beginning, we introduce the popular checkboard as calibration pattern so as to 
acquire adequate tie points (2D pixel dots and corresponding 3D points). 
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4.1 Checkerboard  

Checkboard is widely used in different kinds of calibration, such as Binocular Stereo Vision. For 2D vision, through 
extracting corners of checkboard using Matlab Toolbox, we can get precise enough corner pixel dots as tie points for 2D 
image directly. However, for 3D point cloud, it becomes complicated unexpectedly. 

There is no available and immediate way to extract tie points required from 3D point cloud, which is also impractical on 
account of complexity and enormous data volume of 3D scene. As we mentioned, we can extract accurate tie points in 
2D vision, which can give us a clue. If we can project 3D point cloud to 2D image, then everything is done. Indeed, we 
just do that.  

In addition to 3D measures, the laser scanner also provides a reflectivity measure for each scanned 3D point, which 
greatly contributes to projection. In other words, the projected 2D image is mapped by reflectivity. 

 

 
                                                           Figure 2. The calibration flow chart we propose. 

 

Our processing scheme is shown in Fig. 2. Firstly, manual calibration or registration is carried on. In detail, we manually 
select some tie points, with the help of software, from point cloud and undistorted camera image for initial or inaccurate 
calibration. Subsequently, we project 3D point cloud into 2D reflectivity image. After that, corners of checkerboard from 
RGB image and reflectivity image can be extracted. With corners from reflectivity image, we can calculate their 
corresponding 3D points. Lastly, we use pixel dots from RGB image and points from point cloud to calibrate the camera 
and the scanner accurately. 

4.2 Improvement  

Generally, checkerboard is feasible for most calibration occasions. However, for 3D laser scanner, the situation becomes 
different. Unlike passive camera, the laser scanner (VZ1000) projects laser beams to measure depth, and the size of laser 
beams is not ignorable. Calibration using a standard checkboard cannot align point cloud and image at pixel-level 
accuracy as the corners extracted from reflectivity map are not real corners duo to laser beam size.  

We adopt another pattern-circle as a substitute. Although we cannot directly extract a real point by projection mentioned 
just now, we still could calculate center of circle detected via aggregation to make up the error as a precise point. The 
procedure is similar to checkerboard except that we utilize center of circle detection instead of corner detection. The 
calibration scene can be seen in Fig. 3. 
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5. EXPERIMENT 
We have captured a total of 40 pairs of outdoor laser scans and RGB images. 20 static scenes are captured as the same 
scene is captured twice from different locations so that half of data sets can be used for training. Each RGB image has 
five corresponding depth images consisting of 1 dense and 4 diverse sparse depth images captured by the scanner but 
with five different density levels. 

                            
(a)                                                                           (b) 

Figure 3. calibration using circle. (a) is undistorted camera image. (b) is reflectivity image projected by point cloud. 

 

                                               
(a)                                                                 (c)                                                                  (e) 

                                               
(b)                                                                 (d)                                                                  (f) 

Figure 4. Our benchmark experiment results. (a) and (b) are rock and dense depth image. (c) and (d) are step and dense 
depth image. (e) and (f) are tree and dense depth image. 
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The dense depth image, which can provide accurate depth measurement for almost every pixel except for occlusion and 
misalignment, is used as ground truth measurement for quantitative evaluation. Some data sets of our benchmark are 
shown in Fig. 4. 

6. CONCLUSION 
A new challenging depth super-resolution benchmark is proposed in this paper. Unlike established indoor data sets, we 
focus on uncontrolled and complicated outdoor real-world scenes. In the future, we plan to provide a depth super-
resolution framework of our benchmark, evaluate present super-resolution algorithms and even propose an effective 
algorithm. Meanwhile, we also hope that it can attract more research on real-world super-resolution problem. 

In addition, our benchmark and 3D measures can be used for other vision problems, including but not limited to super-
pixel segmentation, 3D reconstruction, 3D object detection and 3D orientation estimation. 
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