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ABSTRACT   

Hyperspectral image has high-dimensional Spectral–spatial features, those features with some noisy and redundant 

information. Since redundant features can have significant adverse effect on learning performance. So efficient and 

robust feature selection methods are make the best of labeled and unlabeled points to extract meaningful features and 

eliminate noisy ones. On the other hand, obtaining sufficient accurate labeled data is either impossible or expensive. In 

order to take advantage of both precious labeled and unlabeled data points, in this paper, we propose a new semi-

supervised feature selection method, Firstly, we use labeled points are to enlarge the margin between data points from 

different classes; Secondly, we use unlabeled points to find the local structure of the data space; Finally, we compare our 

proposed algorithm with Fisher score, PCA and Laplacian score on HSI classification. Experimental results on 

benchmark hyperspectral data sets demonstrate the efficiency and effectiveness of our proposed algorithm.   
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1. INTRODUCTION  

Hyperspectral image (HSI), satellite sensors collect imagery simultaneously in hundreds of narrow and contiguously 
spaced spectral bands, with wavelengths ranging from the visible spectrum to the infrared region (0.4–2.5μm). The 

Hyperspectral image data is a cube-like data set, which contains two spatial dimensions and one spectral. Hyperspectral 

image with larger spectral and a much higher spectral resolution
1
. It is common step to feature extraction before 

classification e.g., texture, shape and spectral features. However, one of the main problems with hyperspectral image 

classification is the high dimension, and not all of the involved features are significant for classification
2-4

, since most of 

them are often redundant to each other and sometimes noisy sensing data, so dimensionality reduction for hyperspectral 

image data is important. Dimensionality reduction is to find a way to encode projecting high dimensional data into lower 

dimensional vector without losing important information process. In general, dimensionality reduction methods for 

hyperspectral images can be grouped into two classes, feature selection
5
 and feature extraction

6
. The first approach is to 

identify those attributes that have no contribution to the classification task and ignore them. The second approach is to 

find a transformation from high dimension into a lower dimension feature space. 

In general, all dimension reduction methods preserve the physical meaning of HSI. Feature selection methods can be 

classified into supervised, semi-supervised and unsupervised methods based on whether label of feature is available or 

not. Dimension reduction methods include unsupervised approaches, such as locally linear embedding (LLE)
7
, principal 

component analysis (PCA)
8,9

 and Laplacian score
10

, as well as supervised approaches,  such as Fisher score
11

, least 

squares regression(LSR)
12

. There are numerous variants of these techniques. Traditional supervised dimensionality 

reduction methods have been demonstrated to be effective when sufficient data are provided. However, it only focuses 

on labeled points data and ignores the local unlabeled points geometric structure of data.  On the other hand these models 

often suffer from the problem of lacking sufficient data so that it is difficult to build effective models. Recently, spectral 

graph theory
13

 and manifold learning
14

 technique were proposed. Local preservation technique preserves geometric 

structure of data through a nearest neighbor graph on sample of data points. We call this matrix: local geometric matrix. 

Local geometric matrix refers to the similarity between every two samples in a training dataset. It can be calculated by 

using a predefined similarity measure e.g. Gaussian, Spectrum and Mismatch kernels. 

Above analysis motivates us to develop a new semi-unsupervised dimensionality reduction approach for dealing with the 

high-dimensional and small-sized labeled data via preserve local structure. Unlike supervised methods
15

 which makes 
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use of only labeled data points and unsupervised methods
16

 which makes use of only unlabeled data points, our proposed 

algorithm makes use of both labeled and unlabeled data points, which tries to discover both geometrical and discriminant 

structure in the data. Specifically, we construct two graphs, same-class samples graph and unlabeled samples graph. The 

same-class samples graph connects data points which share the same label, while the unlabeled samples graph connects 

data points which are close to each other but there is no label available. The goal is to find both geometrical and 

discriminant structures of data. The contributions of the proposed solution for performing dimensionality reduction on 

the high-dimensional and small-size data are presented as follows: 

(1) Comparing to different types feature dimension reduction methods like PCA, Fisher score and Laplacian score, the 

computation has a higher accuracy. 

(2) Unlike previous feature selection methods such as Fisher score and Laplacian score, our approach makes use of both 

of labeled and unlabeled data points. 

(3) Comparing to feature extraction methods like PCA and LPP, our method no need extra computation for original test 

sample. 

The remainder of this paper is organized as follows. In Section 2, we provide the proposed algorithm in detail, including 

the extraction three kinds of hyperspectral image features. In Section 3, we discusses the experimental results on 

hyperspectral data set. And followed by the conclusion in Section 4.  

 

2. THE ALGORITHM 

This algorithm can be divided into three main steps. Firstly, three kinds of hyperspectral image feature extraction 

methods are introduced. Secondly, the proposed feature selection method is employed to form new low-dimensional 

vector. Final, SVM classifier is used for test sample classification.   

2.1 Hyperspectral image feature extraction 

In this paper, three kinds of features are introduced. Each feature is represented as a single vector. Three kinds of feature 

comprise the spectral value feature, the Gabor texture feature, and the shape feature. 

Spectral Value Feature: The spectral feature of a hyperspectral image is acquired by arranging the digital number (DN) 

of all of the l bands. 

'

1 2S [s ,s ,...s ,...,s ] l

Spectral k l R      (1) 

 where 
ks denotes  the value in band  i . 

Gabor Texture Feature: The Gabor wavelet filter, whose impulse response is defined by a Gaussian envelope and a 

complex plane wave, has been widely used in HIS analysis. In this paper, we perform a 2-D Gabor wavelet transform 

corresponding to the orientation and scale of the physical structures on the first principal component analysis (PCA) 

image, denoted as I of the hyperspectral image , to extract the Gabor texture feature, the generalized 2-D Gabor function 

can be defined as follows: 
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where (x, y)x   is the spatial domain variable and the frequency vector 
( /8)(s,d) ( / 2 ).es i dv f  , in which f = 2, 

s = 0, 1, . . . , 4 and d = 0, 1, . . . , 11, which determines the 5 scales and the 12 directions of the Gabor function. The 

number of oscillations under the Gaussian envelope is determined by 2  . The Gabor texture feature contains the 

magnitude information in the first PCA
8
 image I with the Gabor function of the specific scale parameter s and direction 

parameter d 

, ,( , ) ( , )* ( , )s d s dF x y G x y I x y      (3) 
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The texture feature of a pixel located on (x, y) is obtained by 

' *

1,1 ,F (x, y),...,F (x, y) s d

Texture s ds R        (4) 

PSI: Shape Feature: The pixel shape index method (PSI) is adopted to describe the shape feature in a local area 

surrounding a certain pixel. Pixel shape feature extraction of a specific pixel consists of the following two steps. 

Step 1) Extension of direction lines based on gray level similarity. The pixel homogeneity is defined using the following 

method:  

1

n
cen sur

i s s

s

PH p p


       (5) 

The ith direction line is extended if the following conditions are met. 

1) 
iPH  is less than a predefined threshold T1. 

2) The total number of pixels in this direction line is less than another predefined threshold T2. 

Step 2) Length of direction line: The PSI in the ith direction is calculated by the length of the direction line di. Then, the 

shape feature is achieved by 

'

1 2, ,..., p

Shape ps d d d R         (6) 

 

in which p is the total number of all directions. 

 

2.2 Local  structure preservation framework 

Construct the feature matrix X, shown as ' ' '

,1: Texture,1: ,1:X= , , n d

Spectral n n Shape nS S S R      , whose columns x Xi  correspond 

to data instances and rows to features, Let  
'

1 2X = , ,..., l d

l ix x x R   and  
'

1 2X = , ,..., u d

u ux x x R  be the labeled and 

unlabeled data matrices. Since a few label information is unavailable for semi-unsupervised feature selection, Let 

 
'

1 2= , ,..., l c

l lY y y y R  denote the labels of 
lX , where and  

1
0,1

c
yi


 is the class label of lx Xi  . As the 

corresponding label matrix. We wish to directly learn a transform matrix Wd c
. By which we transform the high-

dimensional data X to low-dimensional data. In order to maximally preserve the global structure of X with XW, an 2,1l -

norm regularizer of W is imposed to enforce row sparsity, which has an effect of feature selection and helps to avoid 

selecting redundant features.  The objective function  of the proposed method is defined as follows:  

2
1 +arg min 2,1

, ,

Y X W b B M Wf nl F
W b M

           (7) 

where W is the transform matrix, b is the bias term, and 1n
 is an n × 1 constant vector where all the elements are equal 

to 1.  
l cY R   is the class indicator matrix, where only these elements corresponding to the data in the jth class are equal 

to 1 and other remaining elements are 0. Thus, each column vector of Y actually stipulates a type of binary regression 

with target “+1” for the jth class and target “0” for the remaining classes.  For the 0/1 output, we drag these binary 

outputs far away along two opposite directions by  imposing a positive slack variable ε. we hope the output becomes 1 + 

ε for 1 and −ε for 0. In this way, the distance between two data points from different classes will be enlarged. Let 
l cB R   be a constant matrix, in which the ith row and jth column element is defined as follows: 
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Where ijB  = +1 means it points to the positive direction and ijB  =−1 means it points to the negative direction.   The ε 

matrix 
l cM R   . Each of its elements ij  is nonnegative, this treatment could help to enlarge the distance between 

classes after the data points are mapped. Now, we can rewritten (6)  model as follows: 

2
1arg min 2,1

,

Y X W b Wf nl F
W b

    (9) 

where  is a Hadamard product operator of matrices. 

The underlying local structure information is ignored. In order to characterize the underlying local structure, many

manifold learning algorithms have been proposed, such as Local Linear Embedding (LLE) and ISOMAP . Many 

unsupervised feature selection algorithms, use various graphs to capture the local geometry of unlabeled points. For 

semi-supervised, both labeled and unlabeled dada should be considered. So we employ a new method based on widely

used models, combining Gaussian and Mismatch kernels, let G n
denote a graph with n nodes. The i th node corresponds

to the data point 
ix  . Put an edge between nodes i and j if they share the same label, or if one of them is unlabeled but 

they are sufficiently close to each other. Define a weight matrix S as follows: 

 2

,

1     if nodes i and j share the same label   

exp if node i or j is

unlabeled,  but=
node i KNN(j)
or

i j

i j

x x t

S

 


 node j KNN(i)

0      otherwise










 (10) 

where KNN(i) denotes the set of k nearest neighbors of node i and KNN(j) denotes the set of k nearest neighbors of node 

j. The LPP algorithm aims to minimize the following cost function:

2
' '

arg min
, =1

n
f W x W x Si j ij

i jW

  (11) 

Combining above two aspect analysis, we propose the objective of our framework as follows: 

 

2
1arg min

, ,

2
' '

2,1, 1

Y X W b B Mf nl F
W b M

n
W x W x S Wi j ij

i j
 

   

  


(12) 

Where  and are tradeoff parameters (  ,  >0). Equation (11) can be rewritten as 

 

2
1arg min

, ,

' '
tr

2,1

Y X W b B Mf nl F
W b M

W X LXW W 

   

 

(13) 

where the matrix L is often called Laplacian matrix and 

L = D – S (14) 
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D is a diagonal matrix, with its (i, i) element equal to the sum of the ith row of the weighted matrix 

 ,
1

n
D S i jii

j
 


(15) 

Where S  is computed by (10). 

3. RESULTS AND DISCUSSION

In this experiment, Support vector machine (SVM) classifier
17

, which has been reported to be effective in the 

classification of hyper dimensional feature sets, was used to classify samples based on the selected features. The 

Washington DC Mall dataset used to evaluate the performance of our proposed method. In this dataset there were 210 

bands in the 0.4 to 2.4 µm region of the visible and infrared spectrum. This data set contains 1208 scan lines with 307 

pixels in each scan line. This data and reference data are show in Figure1 and Figure2. 

Figure 1. RGB composite of the Washington DC Mall data (channels 60, 27 and 17) 

Figure 2. Reference data 

Considering that our proposed method belongs to the semi-supervised learning problem, to validate the effectiveness of 

our algorithm for feature selection, we compare it with the different type dimension reduction methods. The following 

feature dimension reduction methods are used to be compared. 

Table 1. Class-specific accuracies and standard deviation in percentage for various features. 

Method 

Fisher 

score 
PCA 

Laplacian 

score 

Our 

Method 

All Feature 

Road 0.9688 0.9728 0.9823 0.9790 0.9741 

Grass 0.9888 0.9881 0.9811 0.9965 0.9507 

Water 0.9529 0.9283 0.9164 0.9334 0.9358 

Trail 0.9350 0.9470 0.9465 0.9663 0.9010 

Tree 0.9906 0.9768 0.9941 0.9887 0.9843 

Shadow 0.9616 0.9661 0.9656 0.9746 0.9465 

Roof 0.9864 0.9995 0.9926 0.9938 0.9981 

OA 0.9751 0.9754 0.9738 0.9843 0.9675 

Kappa 0.9693 0.9696 0.9676 0.9806 0.9598 
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Figure 3. accuracies for number selected features 

 

4. CONCLUSION 

In this paper, we propose a novel semi-supervised feature selection approach for dealing with the high-dimensional and 

small-sized labeled data. This method makes use of both labeled and unlabeled data points to find the local structure of 

the data. Therefore, it is more effective to select those most discriminative and informative features. As a result, it can 

select the most representative features. The experimental results validate that the new method achieves significantly 

higher performance for classification.  
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