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ABSTRACT 

 

Traditional road surveying methods rely largely on in-situ 

measurements, which are time consuming and labor 

intensive. Recent Mobile Laser Scanning (MLS) techniques 

enable collection of road data at a normal driving speed. 

However, extracting required information from collected 

MLS data remains a challenging task. This paper focuses on 

examining the current status of automated on-road object 

extraction techniques from 3D MLS points over the last five 

years. Several kinds of on-road objects are included in this 

paper: curbs and road surfaces, road markings, pavement 

cracks, as well as manhole and sewer well covers. We 

evaluate the extraction techniques according to their method 

design, degree of automation, precision, and computational 

efficiency. Given the large volume of MLS data, to date 

most MLS object extraction techniques are aiming to 

improve their precision and efficiency. 

 

Index Terms— Mobile laser scanning (MLS), 3D point 

clouds, object extraction, road 

 

1. INTRODUCTION 

 

Road information is very useful and important, as it is 

required by many applications, especially transportation 

applications. For example, transportation departments must 

frequently evaluate pavement conditions for road 

maintenance and rehabilitation [1]. 

To acquire road information, people must collect raw 

road data first. Traditional road data collecting methods rely 

largely on in-situ measurements, which are time consuming 

and labor intensive. By contrast, with a vehicle-borne 

Mobile Laser Scanning (MLS) system, people can precisely 

survey a large area of roads within a relatively short time 

regardless of ambient light conditions [2]. 

As the major component of a MLS system, laser 

scanners emit eye-safe laser pulses and receive the returns. 

Based on the return energy and the pulse travel time, the 

reflected intensity and the precise distance between the 

scanner and the object’s surface are observed. These 

scanned data form high resolution geo-referenced 3D point 

clouds. 

After the data collection, the remaining task is to extract 

information from the data. However, the data size of a point 

cloud is usually large and uneven in point density.  

Moreover, a point cloud usually is incomplete due to 

occlusion or limitation of the scanning position and angle. 

As a result, processing MLS data has been challenging. To 

date, most MLS object extraction techniques aim to improve 

their precision and efficiency. 

MLS data may contain both on-road and off-road 

objects. This paper mainly focuses on examining the current 

status of automated on-road object extraction techniques 

from collected raw 3D MLS road point cloud data over the 

last five years. Those techniques for automated detection 

and extraction are presented as follows: Section 2 -- road 

surfaces; Section 3 -- road markings; Section 4 -- pavement 

cracks; Section 5 -- manhole covers. 

 

2. EXTRACTION OF ROAD SURFACES 

 

A curb is the edge where a raised road shoulder, sidewalk or 

road central reservation meets an un-raised roadway. Most 

urban roads have curbs. As a result, road surface extraction 

usually can benefit from curb detection. Automated 

extraction of curbs and road surfaces is extremely important 

for autonomous driving applications. 

Techniques for extraction of road curbs from MLS data 

can be mainly summarized in three categories: 1) detecting 

planer surfaces, 2) detecting linear elements, and 3) 

determining 3D spatial relationships. 

An algorithm to segment road points from raw MLS 

data using surface normal direction and normalized 

eigenvalues was proposed in [3]. Road curbs are extracted 

using both the 3D segmentation method based on elevation  
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Fig. 1. Two road sections including (left) raw MLS data and 

(right) extracted road surfaces. (a) Road 1. (b) Road 2 [10]. 

 

gradients and 2D image processing methods. 

A method using a sigmoidal function to detect curb 

points from point cloud data was proposed in [4]. The 

sigmoidal function is applied at locations where middle 

points of height jumps on a road surface are extracted. The 

algorithm requires two parameters: one to define the height 

jump, another to define the slope in the sigmoidal function. 

The algorithm achieves a completeness rate of 83% and a 

correctness rate of 90%. 

Both large-scale and local-scale of road properties 

(topology, local shape) are used in [5] to detect curbs semi-

automatically. The MLS point clouds are first partitioned 

based on GPS time. Therefore, between a constant time 

interval, points are partitioned into cross sections. A moving 

window is applied in each cross section to detect curbs 

based on changes in elevation, slope, and point density. This 

 

semi-automated algorithm results in 95% high completeness 

and correctness. 

Spacing abnormality between each two ring-shape 

planar surfaces in the MLS point clouds is used in [6] to 

detect road curbs. False curb points and occlusion issues are 

eliminated through a height-value filter and a robust least 

rimmed squares regression filter. Their algorithm involves 

four fixed parameters. The result has a 0.52 m lateral 

positioning error. 

Based on the trajectory, a generalized projection based 

M-estimator is used in [7] to extract road surfaces. Their 

method is able to deal with roads with varying directions, 

widths and slopes. However, their method can’t deal with 

the intersection of two roads. 

A method was presented in [8] to extract street 

boundaries and curbs from MLS data. After transforming 

and rasterizing the data, the edges of the curb are extracted 

by looking for the points that indicate a slope change. 

A novel snake model is applied in [9] to detect road 

edges using elevation, reflectance, and pulse width derived 

from MLS data. The advantage of this model is to be able to 

detect edges from not only urban roads but also rural and 

national primary road networks. Within a 0.5 m buffer zone, 

the snake model can achieve 90% completeness and 

correctness. 

An automated curb detection algorithm to generate 

points that are close to the road surface into pseudo scan-

lines was proposed in [10]. Road cross sections can be 

presented using point-based lines. Curb points are detected 

based on height jump. By using curb points, a cubic spline 

interpolation method is applied to form the road edge. The 

accuracy is within 7-8 cm horizontally and 2 cm vertically 

(see Fig. 1). 
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Fig. 2. Extracted pavement markings using different methods [13]. 
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3. EXTRACTION OF ROAD MARKINGS 

 

Besides 3D information, MLS point clouds also provide 

intensity, pulse width, and range information. Particularly, 

because road markings often obtain a higher intensity than 

the road surface, intensity data and range information in 

MLS point clouds has greatly aided the detection of road 

markings. By using the retro-reflective property, a series of 

studies has performed road marking extraction. 

Range-dependent thresholding and image post-

processing methods are applied in [11] to automatically 

extract road markings. Markings in circular or irregular 

shapes acquire lower precision from the extraction result. 

In [13], the Inverse Distance Weighting (IDW) 

interpolation method is applied to derive geo-referenced 

intensity data from raw road point clouds. By using the IDW 

interpolation method, points that have lower intensity or are 

far from the center point have been converted into images 

associated with lower grey value. Road markings are then 

refined from the geo-referenced intensity image using 

morphological operations (see Fig. 2). 

Road markings are directly extracted from road surface 

points through multi-segment thresholding and spatial 

density filtering in [14]. This method achieves an average 

completeness, correctness, and F-measure of 0.93, 0.92, and 

0.93, respectively.  

In [15] point clouds are rasterized into 2D laser cycles. 

Principal Component Analysis (PCA) is applied to the 2D 

laser cycles. Hough transform is incorporated into the PCA 

segmentation result to detect zebra crossing. The 

performance of the proposed algorithm achieves a 

completeness of 83%. 

 

4. EXTRACTION OF PAVEMENT CRACKS 

 

Traditionally, images are the preferred source of road crack 

surveying. However, image quality often depends on 

weather, traffic, and photogrammetry techniques. Use of 

MLS data to detect cracks is a relatively new topic. The idea 

is basically that the 3D information of MLS data will aid in 

pavement distress analysis. To achieve this idea, a few 

studies have involved converting 3D point clouds into 2D 

data and proposing algorithms to extract crack information. 

A dynamic optimization-based crack segmentation 

method is implemented in [16] on high-resolution 3D 

continuous transverse pavement profiles. The continuous 

transverse pavement profiles acquired from MLS can aid in 

detecting road cracks with widths greater than 2 mm. It 

enables crack detection under low intensity contrast and 

lighting conditions with a precision score greater than 95%. 

Extracting crack skeletons in [17] uses point cloud 

intensity information to identify pavement cracks that 

usually exhibit lower intensities compared to their 

surroundings. Crack candidates are extracted by applying the  

 
 

Fig. 3. Comparison of ITVCrack with the other 

approaches using the GRF images. (a) Crack 1. (b) 

Crack 2. (c) Crack 3. (d) Crack 4. (e) Crack 5 [18]. 

 

Otsu thresholding algorithm. Crack skeletons are extracted 

based on an L1-medial skeleton extraction method. The 

proposed algorithm was executed very fast and performed 

very well in extracting 3D crack skeletons. 

An Iterative Tensor Voting algorithm for detecting road 

Cracks (ITVCrack) from Geo-Referenced Feature (GRF) 

images was proposed in [18]. The iterative tensor voting 

based crack detection, which can well detect road cracks 

with widths larger than 2 cm, achieves a completeness of 

96% and correctness of 85%. The computational time, 

mainly consumed by the iterative tensor voting process, is 

considerable (see Fig. 3). 

 

5. EXTRACTION OF MANHOLE COVERS 

 

Manholes and sewer wells play a significant role in 

managing rainfall and other infrastructures. Since most 

manholes are made of metal materials, their points in MLS 

data have higher density values against road surfaces. 

Manhole recognition usually starts with using marked 3D 

points to extract rectangular or round-shape structures from 

digital images; then using their high intensity values to 

extract the targeted manholes. 

 

 
Fig. 4. (a) Geo-referenced intensity image. (b) 

Detected manhole and sewer well covers [20]. 
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Distance-dependent thresholding, multi-scale tensor 

voting, distance-based clustering and a morphological 

operation are used to extract manhole covers in [19] after 

converting data to geo-referenced feature images. A method 

using a novel marked point model to detect road manhole 

and sewer well covers was proposed in [20]. A reversible 

jump Markov chain Monte Carlo algorithm is applied to 

stimulate the distribution of manholes. The algorithm 

achieves very high completeness of 95.16% and correctness 

of 92.67% (see Fig. 4). 

 

6. CONCLUDING REMARKS 

 

With the blooming of MLS techniques in the last decade, 

MLS applications have developed rapidly in every part of 

urban management. Especially, MLS data provides valuable 

3D on-road information to transportation agencies. On-road 

object extraction from MLS point clouds has greatly aided 

the monitoring of pavement conditions and traffic safety.  

In this review, we collected a series of on-road object 

extraction methods. Most of the reviewed methods achieve 

desired accuracies. However, the level of automation and 

computational cost are still in the developmental stage. To 

extract on-road objects, the tested MLS datasets usually 

must be pre-processed (such as partition, segmentation, 

classification, etc.), which indispensably requires artificial 

interferences and considerable processing time. To the 

present, there is still no generally accepted automated 

algorithm for detecting on-road objects. All the methods 

mentioned above have their own drawbacks to some extent. 

Thus, further studies still must focus on better automation 

and reducing computational costs. 
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