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Abstract
Robust local cross-domain feature descriptors of 2D images and 3D point clouds play an important role in 2D and 3D
vision applications, e.g. augmented Reality (AR) and robot navigation. Essentially, the robust local cross-domain feature
descriptors have the potential to establish a spatial relationship between 2D space and 3D space. However, it is challenging
for manual-based or traditional deep learning-based methods to represent the invariant cross-domain feature descriptors
between 2D images and 3D point clouds. Specifically, the mainstream point cloud deep learning network is used to extract
the global structure information of the scene. Due to the dimensional difference, there is a large gap between the two-
dimensional picture and the three-dimensional structure feature in feature accommodation. In this paper, based on the 2D
image patch and 3D point cloud volume dataset, a novel network, 2D3D-MVPNet, is proposed to jointly learn robust
local cross-domain feature descriptors between 2D images and 3D point clouds. The 2D3D-MVPNet contains a point cloud
branch and an image branch, which are optimized with triplet loss and a second-order similarity regularization. Specifically,
for the point cloud branch, first, a novel point cloud feature descriptor extractor, named the image-based point cloud encoder,
is introduced to learn a local 3D feature descriptor consistent with the local 2D feature descriptor, so that the local 3D
feature descriptors contain both geometry and colour texture information. Second, to overcome the challenge of random
order of projected image inputs, a symmetric function is introduced to deal with the feature combination of point cloud
projections. Experiments show that the local cross-domain feature descriptors of 2D images and 3D point clouds learned
by 2D3D-MVPNet achieve extraordinary 2D to 3D retrieval performance. In addition, several 3D point cloud registration
results demonstrate the effectiveness of the image-based point cloud encoder.
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1 Introduction

With the development of multisource sensors, different
data expressions of the same scene are captured by
different sensor perceptions [1]. The 2D images captured
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by lightweight cameras are a set of two-dimensional grids,
which is the most popular data source representing scene
information. Specifically, due to the strong applicability of
2D image data formats in deep neural networks, 2D images
are widely used in deep learning. However, 2D images have
diffculty fully reflecting the real situation of the 3D world
due to data dimensions limitations.

3D imaging techniques can be divided into two major
categories: 3D based on 2D matching relationships and
3D based on time of flight. First, 3D based on a 2D
matching relationship has two popular methods, structured
light [2] and stereo vision [3, 4]. The multiple-shot phase
shifting method is popular in structured light techniques.
The method uses four phase shifts to calculate the phase
map. There are also method based on one shot, such
as phase pattern based one-shot methods, point-pattern
based one-shot structured light methods, line-pattern based
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one-shot structured light methods and crossed-line pattern
based one-shot structured light methods. For the stereo
vision technique, this methods calculate the corresponding
points’ location between left camera and right camera
to estimate the point depth. Second, the time of flight
technique is widely used in radar, sonar, laser range finder
and Lidar applications. The sensor notes the time of a
round trip to estimate the position depth. The generation
of 3D models can be reconstructed from images, or can
be directly obtained by 3D sensors, such as lidar. For
models directly obtained by the 3D sensor, there are no
corresponding relationships with 2D images, and they need
to be coupled through the matching algorithm. Moreover, a
network trained from the 3D model reconstructed from the
image can be used as the initial model of transfer learning
adapted to match the raw point cloud with the image.

The combination of images and point clouds is in
increasing demand for up-to-date spatial information
of indoor environments. Recently, 2D-guided precision
anchors have been applied to 3D object detection tasks [5].
In fact, by matching images and point clouds, the spatial
relationship between 2D and 3D space is established [6],
which provides the promotion and reference significance
in the development of 2D and 3D computer vision
applications, e.g.augmented Reality (AR) and robot pose
estimation. The virtual and real registration problems in AR
and robot pose estimation can be converted to a retrieval
task [7, 8]. Pose estimation based on retrieval tasks has been
efficiently used in large-scale localization [9]. Essentially,
using the robust local cross-domain feature descriptors (2D
and 3D feature descriptors) of images and point clouds
for 2D to 3D retrieval is a solution for matching images
and point clouds (2D-3D matching). The pipeline schematic
of learning local cross-domain feature descriptors between
images and point clouds in this paper is shown in Fig. 1.
In addition, the incorrect matching problem of inaccurate
image patch will affect the performance of cross-domain
matching. To solve this problem, we adopt the method of
system optimization. First, the image samples multiple 2D
image patches, and the point cloud samples multiple 3D
point cloud volumes. Then, n 2D image patches retrieve
the corresponding 3D point cloud volume and construct n

conditions for estimating 2D space to 3D space. Finally, we
use the RANSAC algorithm to exclude abnormal conditions
and estimate the optimal spatial map.

Pixel-point registration is a practical and direct method
for 2D image and 3D point cloud matching. However, in the
absence of any 2D images and 3D point cloud calibrations,
to achieve pixel-point-based 2D images and the 3D point
cloud matching, extracting cross-domain feature descriptors
of 2D images and 3D point clouds is a very important
basic task. In detail, feature descriptor extraction involves
extracting of local information centered on 2D pixels or

3D points, that is, 2D image patches and 3D point cloud
volumes.

The matching step is usually divided into three parts:
keypoint detection, feature descriptor extraction, and
calculation of transformation for matching. In this paper,
our work focuses on learning cross-domain (2D image
patches and 3D point cloud volumes) feature descriptors
to serve the pixel-point-based 2D image and the 3D point
cloud matching. Thus, the value of our work is to learn
the invariant cross-domain feature descriptors of 2D image
patches and 3D point cloud volumes, which is a basic step
for 2D images and 3D point cloud registration tasks.

However, the data structure and dimensions between the
images and point clouds are extremely inconsistent (shown
in Fig. 2), resulting in the domain gap between the images
and the point clouds. Specifically, the traditional manually
designed 2D and 3D feature descriptors are essentially
different, 2D feature descriptors depend on the relationship
of pixel valuesz and 3D feature descriptors are calculated
based on the spatial geometry of their respective data.
Due to the difference in data structures, the 2D feature
represents the texture feature and line feature of the scene,
and the 3d feature represents the spatial structure feature
of the scene. On this basis, 2D features and 3D features
have difficult achieving unity in cross-domain matching,
so they cannot be directly used for matching tasks. Thus,
it is extremely challenging to extract the local cross-
domain descriptors of images and point clouds with robust
and consistent expression characteristics by using manual
feature descriptors.

Recently, several neural networks have attempted to
jointly learn the local feature descriptors of image patches
and point cloud volumes, such as 2D3D-MatchNet [10],
Siam2D3D-Net [11] and LCD [12]. The above networks
use traditional 2D and 3D networks that are used to extract
co-domain features, and do not consider further unifying
the feature preferences between 2D and 3D networks.
The local cross-domain feature descriptors learned by the
above networks are not robust, which results in 2D-3D
mismatching. Particularly, the following reasons make 2D-
3D matching based on regular neural networks extremely
challenging: 1) The data representations of images and point
clouds are different, which makes it impossible to use a
common coding network structure to uniformly learn the
cross-domain feature descriptions. 2) Unlike images that
retain the colour texture information of scene projections,
the point cloud mainly retains the geometric structure
information of the 3D space. The difference in information
between these cross-domain data poses a great challenge to
the network. 3) The large domain gap between images and
point clouds makes the network difficult to converge.

Inspired by the success achieved by deep learning in
computer vision, we propose using the Siamese network
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Fig. 1 The pipeline of the local cross-domain descriptors between
the 2D image and 3D point cloud learned by our proposed 2D3D-
MVPNet. The matching 2D image patches and 3D point cloud

volumes are sampled from image and point cloud. The correspon-
dences are fed into 2D3D-MVPNet to propose common feature
descriptors

framework, which is a two branch network, to learn robust
local cross-domain feature descriptors for 2D-3D matching.
Specifically, one branch (point cloud branch) is used to

retrieve the raw point cloud volumes and outputs 3D feature
descriptors. The other branch (image branch) is used to
retrieve the corresponding image patches and outputs 2D

2D image patches

3D point cloud volumes

Fig. 2 2D image patches and 3D point cloud volumes data samples. Each column corresponds to matching cross-domain data
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feature descriptors. Finally, the metric between the local
cross-domain feature descriptors is measured by Euclidean
distance.

In the point cloud deep learning network, PointNet
[13] solves the point cloud disorder problem. The network
uses a pooling function to extract the global features of
point cloud voxels, resulting in the lack of features in the
multidirectional projection. Projection-based point cloud
networks, due to the voxelization and multilayer structure of
the point cloud, lack detailed features. This paper proposes
a combination of two methods, using the fusion network
to fuse the feature information of the two methods. The
advantages of using two features learned by the structure
extractor and texture extractor instead of single features
are as follows: (1) the projection-based network (texture
extractor) provides scene colour texture and multi-view
information, (2) PointNet (structure extractor) provides
global information of the point cloud in space, and (3)
this kind of combination of projection texture and global
structure information is more similar to real application
scenarios and is similar to the way humans observe point
cloud information containing both texture information and
structural information.

In this paper, we propose a novel network, 2D3D-
MVPNet, to jointly learn the robust local cross-domain
feature descriptors between images and point clouds. 2D3D-
MVPNet is a Siamese framework with an image branch
and a point cloud branch for learning the local cross-
domain feature descriptors. Specifically, we embed a novel
point cloud encoder, named the image-based point cloud
encoder, to learn the 3D feature descriptors from the raw
point cloud volumes. The proposed image-based point
cloud encoder first performs point cloud projections to
obtain multiple views from the raw point cloud. Second,
features of multi-view projected images are learned by
convolutional neural networks (CNNs), and a feature of
raw point clouds is learned by PointNet. Then, the multi-
view features and raw point cloud features are combined
to generate a new point cloud feature descriptor, which
contains both geometry and colour texture information. The
idea of fusing both patch features and volume features is
similar to 3DTNet [14]. However, 3DTNet uses camera
patches instead of projections that rely on multisensor
fusion technology, and 3DTNet cannot be used in 2D-3D
matching tasks. In addition, to overcome the problem of
random input order of the multi-view projected images,
we propose to use a symmetric function to deal with
the combination of point cloud projection features in the
process of generating a multi-view feature. Based on the 2D
image patch and 3D point cloud volume dataset established
by the 3DMatch [15] dataset, experimental results show
that the local cross-domain feature descriptors learned by
2D3D-MVPNet achieve state-of-the-art 2D to 3D (image

patches to point cloud volumes) retrieval performance. In
addition, several point cloud registration results are used
to demonstrate the robustness and practicality of the local
3D feature descriptors learned by the proposed image-based
point cloud encoder of 2D3D-MVPNet.

The specific contributions of this paper are as follows:

– A novel network framework, 2D3D-MVPNet, which
embeds an image-based point cloud encoder, is
proposed to jointly learn the robust local cross-domain
feature descriptors of images and point clouds. The
introduced image-based point cloud encoder assigns
both texture and structure information from point cloud
projections and raw point clouds, respectively.

– To avoid the interference of the random input order of
multi-view projected images on the image-based point
cloud encoder, we propose a multifeature fusion module
that introduces a symmetric function to ensure the unity
of the learned 3D feature descriptors.

– The local cross-domain feature descriptor learned by
2D3D-MVPNet is applied in 2D-3D retrieval and
3D global registration tasks, and the 2D-3D retrieval
accuracy achieves state-of-the-art performance.

2 Related work

Effective and ingenious matching network frameworks
and feature descriptors have been studied in previous
deep learning works. These methods provide guides and
references to learn the cross-domain feature descriptors
of images and point clouds. In the following, we briefly
introduce the deep similarity learning network, 2D image
descriptors, 3D point cloud descriptor and matching
networks of 2D images and 3D point clouds.

2.1 Deep similarity learning networks

Deep similarity learning networks are used to learn data
features and the similarity between different data. Through
the data similarity in the high-level feature space, data
matching and data retrieval can be completed. Specifically,
Siamese networks and triplet networks are popular deep
similarity learning networks.

Siamese networks use a two-tower structure that is set
to learn feature descriptors. Then, manual functions or
a trained deep metric network is used to measure the
similarity between the feature descriptors learned by the
Siamese framework. MatchNet [16] uses two branches
to extract feature descriptors with an additional metric
learning network in image patch matching. The metric
learning network learns a nonlinear function to measure the
similarity between feature descriptors instead of Euclidean
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distance. This metric learning network has achieved good
performance but requires considerable time and cost
to calculate the similarity between feature descriptors.
DeepDesc [17] is a typical Siamese network for image
patch matching based on feature retrieval. The paired image
patches are fed into DeepDesc, which outputs constant
dimensional feature descriptors to achieve image patch
retrieval based on Euclidean distance. In addition, many
image patch-based matching network frameworks have
been proposed, such as SiamAM-Net [1], DeepCD [18],
L2-Net [19], H-Net [20], DescNet [21], AE-GAN-Net
[22] etc. The above networks have undergone different
improvements to adapt to more application scenarios and
have achieved good results.

Triplet networks introduce a negative sample learning
strategy that accepts both positive and negative paired
samples. The triplet networks ensure that the positive pairs
have a high similarity while ensuring that the negative
pairs have a lower similarity. Therefore, compared with
the Siamese networks, the triplet networks obtain better
performance. The more common triplet networks are
FaceNet [23], DOAP [24], DDSAT [25], etc. However, the
following difficulties exist in designing a triplet network.
1) Due to the introduction of negative samples, the triplet
network optimization process is slow and difficult to
converge. 2) Negative samples are difficult to select and
define, and inappropriate negative samples seriously affect
network performance; therefore, it is particularly important
to choose a suitable negative sample construction strategy.
3) It is necessary to set a margin between feature descriptors
to separate the positive pairs and the negative pairs, which
requires considerable cost for tests and experiments.

2.2 2D and 3D feature descriptors

2D feature descriptors are used to describe the local
features of the 2D image grid. Previously, 2D handcrafted
feature descriptors have been widely used in image feature
description and feature detection. With the development of
deep learning, the performance of 2D feature descriptors
learned from neural networks has been demonstrated
to outperform 2D handcrafted feature descriptors. For
example, the 2D feature descriptors learned from DeepDesc
[17], DeepCD [18], L2-Net [19] (Siamese networks),
FaceNet [23], DOAP [24] and DDSAT [25] (triplet
networks) learn the robust 2D feature descriptors. Some
novel work recently designed robust descriptors, such as
Superpoint [26], R2D2 [27], D2-Net [28], ASLFeat [29].

3D feature descriptors are used to describe the features of
the local 3D point cloud. Handcrafted 3D feature descriptors
are defined by geometric relationships between points. 3D
feature descriptors learned from deep learning networks,

such as PointNet [13], PointNet++ [30], PointSIFT [31]
and PointCNN [32], allow raw point clouds to be input
and local 3D feature descriptors are output, and 3D
local descriptors, such as PerfectMatch [33], Ppf-Net [34],
FCGF [35], 3DFeat-Net [36], D3Feat [37], have good
performance in 3D feature description. In addition, multi-
view representations, such as MvCNN [38], GVCNN [39],
take advantage of the multi-view representation of point
clouds. For volumetric representation, features are passed
through two 3D convolutional layers to obtain the final
representation, such as 3D ShapeNet [40] and OctNet
[41]. The graph-based method constructs the relationship
between the point cloud structure through nodes and
edges, such as Superpoint Graphs [42]. In recent years,
some innovative feature methods have been proposed. PV-
RCNN [43] combines both a 3D voxel convolutional neural
network (CNN) and PointNet-based set abstraction. FPS-
Net [44] explores the uniqueness and discrepancy among
the projected image channels.

In studies of 2D feature descriptors and 3D feature
descriptors, previous studies have proven their feature
expression ability. The 2D feature descriptors are obtained
through the pixel relationship, and the 3D feature descrip-
tors are obtained through the geometric position relationship
between the point and neighbours. Based on this, the defi-
nitions of the 2D and 3D feature descriptors are different;
thus, it is difficult to use the existing feature descriptor
for cross-domain tasks. Therefore, the study of extracting
robust 2D-3D cross-domain descriptors is of significance.

2.3 2D-3Dmatching networks

2D-3D matching networks, which extract the common
cross-domain descriptors of 2D images and 3D point
clouds, are applied in cross-domain retrieval tasks between
2D images and 3D point clouds. 2D3D-MatchNet [10]
first uses the SIFT keypoints of images and the ISS
[45] keypoints of the point cloud to construct outdoor
2D-3D correspondences, and then the triplet network is
used for learning local 2D and 3D feature descriptors.
Siam2D3D-Net [11] constructs more refined 2D and 3D
patch datasets and uses a Siamese network framework to
learn local 2D and 3D feature descriptors, which are not
robust to noisy datasets. LCD [12] uses an autoencoder
with triplet loss to learn cross-domain feature descriptors.
2D-3D LCD correspondences are sampled from 3DMatch
[15] and multitask performance has been proven by several
experiments. Matching methods in recent years, 2d-3d line
correspondences establish the 2D-3D spatial relationship
[46]; DeepI2P [47] applies classification to estimate the
relative pose; 2D-3D embedding space is used in robotic
global localization [48].
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3 Network architecture

In this section, we introduce the network framework, loss
function and training strategy of the proposed 2D3D-
MVPNet in detail.

3.1 2D3D-MVPNet framework

2D3D-MVPNet, as shown in Figs. 3 and 4, is designed
to jointly learn a local cross-domain feature descriptor
for image patch retrieval point cloud volumes. Because
of the different image and point cloud data structures,
2D3D-MVPNet contains two encoders to learn the 2D and
3D feature descriptors. One is the patch encoder (image

branch), and the other is the image-based point cloud
encoder (point cloud branch). It should be noted that the
2D3D-MVPNet inputs are the matching pairs of image
patches and point cloud volumes, whereas the nonmatching
image patches and point cloud volumes are generated during
the training process.

3.2 Patch encoder architecture

The traditional CNN architecture is introduced to learn 2D
feature descriptors for image patches. The patch encoder
inputs are the image patches whose size is 64 × 64 × 3.
Except for the last layer, batch normalization (BN) and the
nonlinear active function ReLU are added to each layer

Fig. 3 The network structure of 2D3D-MVPNet and the embed-
ded hard triplet loss schematic. Using d (p1, v1) as an example,
for the 2D feature descriptor p1 of the image patch, assuming
d (p1, v4) is the smallest distance of nonmatching samples; for
the 3D feature descriptor v1 of the point cloud volume, assuming

d (p2, v1) is the smallest distance of nonmatching samples; then, if
d (p1, v4min) >d

(
p2min, v1

)
, selecting p2 as the closest distance for

v1, the corresponding P2 is the hardest negative sample for V1. The
detailed structure of the image-based point cloud encoder is shown in
Fig. 4
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Fig. 4 The decomposed
schematic of image-based point
cloud encoder. A point cloud
volume is input into Texture
Extractor and Structure
Extractor, and the output
features are fused by Fusion
Network to generate the final
point cloud feature. Texture
Extractor uses the point cloud
projection basis, and Structure
Extractor embeds PointNet as a
feature extractor

PointNet

Fusion Network

Point Cloud Feature

Multi-feature
Fusion Module

Texture Extractor

Structure Extractor

Point Cloud Volume 

Projection

Multiview

CNNs

of the convolutional layer. The specific network structure
parameters are set to C(32, 4, 2) − BN − ReLU − C(64,
4, 2)−BN −ReLU −C(128, 4, 2)−BN−ReLU−C(256,
4, 2)−BN−ReLU−C(256, 4, 4), finally obtain a 256-
dimensional feature descriptor. C(n, k, s) denotes the convo-
lution layer with n filters of kernel size k × k with stride s.

3.3 Image-based point cloud encoder architecture

The proposed image-based point cloud encoder incorporates
both structural features and texture features by a fusion
network, as shown in Fig. 4. On the one hand, the structure
feature is directly learned by a structure extractor, which is
the PointNet [13] with a fully connected layer. The inputs
and outputs of the structure extractor are the raw point cloud
with 1024 points and 256-dimensional structure feature
descriptors. On the other hand, the texture feature of point
cloud volume is learned from the texture extractor, which
contains a multi-view projection feature generator and a
multifeature fusion module.

3.3.1 Multi-view projections generator

The 2D grids of images and 3D voxels of point clouds
reflect the real-world state from the 2D and 3D perspectives,
respectively. Thus, the 2D projection of the voxels has a
certain degree of correlation with the texture information
of 2D grids. Therefore, we consider embedding voxelized
point cloud projections as an important part of the point
cloud encoder, as shown in Fig. 4.

In our framework, we use three-view projections
as multiple-view projections. Furthermore, the texture
extractor is designed to extract the target’s texture features,
and the three-view projections are equipped with redundant
texture information. Therefore, the texture feature extraction
task will be completed well with three-view projections as
multi-view projections.

The image-based point cloud encoder first uses point
cloud voxelization to a 32×32×32 voxel format; then, it is
projected to three coordinate planes perpendicular to x, y, z;
finally, it saves the projections as the grid with size 64× 64.
In detail, for a point cloud Volume P = {p0, p1, · · · , p1023}
with 1024 points, we define a space cube circumscribed to
the point cloud volume and divide it equally into 32×32×32
small cubes. Each small cube is defined as Vi,j,k , where
i, j , k represent the number of cubes parallel to the x, y,
z coordinate axes. A zero-one matrix M32×32×32×1024 is
constructed to record whether the spatial point cloud falls
in Vi,j,k . The voxel value from the voxelization process is
defined as:

Vi,j,k = avg

(
1023∑

v=0

Mi,j,k,v × pv

)

(1)

where pv is the RGB value of point, and Vi,j,k is the voxel
value.

Finally, the multi-viewed projected images obtain their
respective 256-dimensional feature descriptors by using
CNNs, whose structure is the same as that of the patch
encoder (Section 3.2). The CNNs used in multi-viewed
projections share the same weight.

3.3.2 Multifeature fusion module

The feature fusion of multiple views plays an important role
in the texture feature in image-based point cloud encoders.
If n features of projected images are simply concatenated
and the final 256-dimensional feature is obtained through a
fully connected network, there will be n! different feature
combination strategies, which will lead to uncontrollable
network performance. To address the confusion problem
caused by the different input orders of the multi-view
projection images, we design a fusion method that integrates
the features of the multi-view projections. Benefitting from
the uniformity of the symmetric function to the input
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order, we choose an effective symmetric function, the sum
function, to solve the order problem of the multi-view
projections, defined as follows:

sum {f1, f2, · · · , fn} = ff usion (2)

where fi, i = 1, 2, · · · , n, is the output feature of the
CNN branch with one of the projection inputs, and ff usion

denotes the learned texture feature of the point cloud
extracted by the texture extractor.

Finally, the learned 256-dimensional structure feature
and 256-dimensional temperature feature are incorporated
by a fusion network. The detailed structure of the fusion
network is FC(512, 256)− ReLU − FC(256, 256), where
FC(p, q) represents the input p-dimensional feature vector
map to the q-dimensional feature vector through a fully
connected network. The input of the fusion network is
the 512-dimensional concatenated feature of the structure
feature and texture feature. The output of the fusion network
is the 256-dimensional feature, i.e., the point cloud volume
feature descriptor learned by the proposed image-based
point cloud encoder.

3.4 Loss function

Inspired by the negative sample construction strategy of
HardNet [49], the nonmatching paired image patches and
point cloud volumes are generated from the matching paired
image patches and point cloud volumes during training, as
shown in Fig. 3. Then, we use the triplet margin loss to
optimize 2D3D-MVPNet.

Assuming that there are n pairs of matching image
patches and point cloud volumes for each minibatch, the
patch encoder and image-based point cloud encoder will
output 2n cross-domain feature descriptors (n 2D feature
descriptors and n 3D feature descriptors). Based on the
Euclidean distance of the cross-domain descriptors, the L2
pairwise distance matrixD = cdist (p, v) of size n × n is
calculated to construct nonmatching paired image patches
and point cloud volumes:

D =
⎛

⎜
⎝

d1,1 · · · d1,n
...

. . .
...

dn,1 · · · dn,n

⎞

⎟
⎠ (3)

where p denotes the 2D feature descriptors of image
patches, v denotes the 3D feature descriptors of point cloud
volumes, di,j = d

(
pi, vj

) = √
2 − 2pivi, i = 1, · · · , n

and j = 1, · · · , n. In detail, for any matching pair feature
descriptor

(
pi, vj

)
, i = j , the nearest nonmatching samples

are measured as follows: for the pi , the 2nd nearest neigh-
bour is defined as vjmin = argminj=1,··· ,n,i �=j d

(
pi, vj

)
;

the same for vj , the 2nd nearest neighbor is defined as
pkmin = argmimk=1,··· ,n,i �=kd

(
pk, vj

)
. The visualization

of the sampling strategy for hardest negative samples is
shown in Fig. 3.

Finally, with the above matching cross-domain feature
descriptor (pi, vi) and the closest nonmatching cross-
domain feature descriptors

(
pi, vjmin

)
and (pkmin, vi),

the triplet margin loss aims to minimize the distance
between matching descriptors and maximize the distance
between nonmatching descriptors. additionally, a second-
order similarity regularization is attached to loss functions.
Thus, the loss function is defined as follows:

L = 1

n

n∑

i=1

max{0, 0.25 + d(pi, vi) − min[d(pi, vjmin ), d(pkmin , vi)]}

+ 1

n

n∑

i=1

√√√√
n∑

j �=i

(d(pi, pj ) − d(vi , vj ))2

(4)

3.5 Training strategy

During the experiments, 2D3D-MVPNet is implemented by
the PyTorch framework and trained with an NVIDIA 3090
GPU. The SGD optimizer is settled for 2D3D- MVPNet.
The learning rate is initially set as 0.001, and the momentum
is set as 0.9. The weight decay by 0.0005 for every epoch.

4 Experiments and results

In this section, we first introduce the 2D image patch and 3D
point cloud volume dataset used in this paper. Second, we
demonstrate the state-of-the-art performance of the jointly
local cross-domain feature descriptors learned by 2D3D-
MVPNet in the 2D-3D retrieval task. Finally, we perform
the learned 3D feature descriptors on the point cloud global
registration task, which demonstrates the robustness of the
learned local cross-domain feature descriptors.

4.1 Dataset

The 2D image patch and 3D point cloud volume dataset
used in this paper is generated from the 3DMatch [15]
dataset. We choose the subdataset to collect 2D-3D
correspondences from 54 RGB-D scans in the 3DMatch
dataset. First, for one scan, several 3D points are randomly
sampled. Second, each selected 3D point is set as a centre
of the sphere to generate 3D point cloud volumes. Third, to
obtain 2D-3D correspondences, reprojecting the 3D points
that are found in the first step to RGB-D frames. Finally,
the corresponding matching image patches are generated by
referring to the reprojected points, as the samples shown in
Fig. 2.
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Table 1 The TOP1 and TOP5 retrieval accuracy of 2D to 3D retrieval
between 2D3D-MVPNet and comparative networks. 2D3D-MVPNet
has better performance than other networks. The bold font indicates
best retrieval performance

TOP1 TOP5

2D3D-MVPNet (Ours) 0.8011 0.9482

LCD [12] 0.7174 0.9412

Siam2D3D-Net [11] 0.2123 0.4567

2D3D-MatchNet [10] 0.2097 0.4318

In the experiments, we use 580,000 and 20,000 pairs of
corresponding image patches and point cloud volumes as
the training and testing data, respectively. The training data
and testing data do not intersect with each other.

4.2 2D-3D retrieval

To measure the performance of the local cross-domain fea-
ture descriptors learned by 2D3D-MVPNet, we consider
using the 2D to 3D retrieval task on the testing data (20,000

pairs of matching image patches and point cloud vol-
umes) to evaluate the learned local cross-domain feature
descriptors. The TOP1 and TOP5 retrieval accuracies on the
retrieval testing data are used to evaluate 2D3D-MVPNet
and all comparative networks. Specifically, the 2D fea-
ture descriptor is set as a query to retrieve the 3D feature
descriptor to calculate the TOP1 and TOP5 retrieval accu-
racies. The successful TOP1 retrieval is that the 2D feature
descriptor finds the corresponding 3D feature descriptor in
the nearest neighbour in cross-domain space; the successful
TOP5 retrieval is that the 2D feature descriptor finds the cor-
responding 3D feature descriptor in the 5-nearest neighbour
in cross-domain space.

The TOP1 and TOP5 retrieval accuracy results of
2D3D-MVPNet and comparative networks are shown in
Table 1, which shows that our proposed 2D3D-MVPNet
achieves state-of-art retrieval performance, i.e., verifying
the performance of local cross-domain feature descriptors
learned by 2D2D-MVPNet are superior to LCD [12],
Siam2D3D-Net [11] and 2D3D-MatchNet [10]. In addition,
Fig. 5 shows the TOP5 3D-2D retrieval results of point
cloud volumes by using the queried image patches. The

Patches TOP5 ranking results of point cloud volumes

Fig. 5 The TOP5 ranking 2D-3D retrieval result by the local cross-domain feature descriptors learned by 2D3D-MVPNet. The queries are the 2D
image patches, and the ground truths and correct retrieval results of 3D point cloud volumes are labeled with the red bounding boxes



B. Lai et al.

Volumes TOP5 ranking results of image patches

Fig. 6 The TOP5 ranking 3D-2D retrieval result by the local cross-domain feature descriptors learned by 2D3D-MVPNet. The queries are the 3D
point cloud volumes, and the ground truths and correct retrieval results of 2D image patches are labelled with the red bounding boxes

Fig. 7 The histogram visualization of the local cross-domain feature
descriptors learned by 2D3D-MVPNet between matching 2D image
patches and 3D point cloud volumes. The pink circles are the salient

area. Top: 2D feature descriptor of the image patch; Bottom: 3D
feature descriptor of the point cloud volume
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Fig. 8 Visualization of the 3D
global registration based on the
3DMatch indoor dataset. Yellow
point cloud set as the source and
blue point cloud set as the target
in our 3D registration
experiments

ground truths are labelled with the red bounding boxes.
The TOP5 retrieved point cloud volumes have a similar
structure, which demonstrates that the local cross-domain
feature descriptors learned by 2D3D-MVPNet are robust
and contiguous.

Figure 6 shows the results of a 3D-2D search using the
point cloud volumes in the red bounding boxes of Fig. 5. The
ground truths are labelled with the red bounding boxes. The
TOP5 retrieved 2D image patches have similar backgrounds
and contents, which demonstrates that the local cross-domain
feature descriptors learned by 2D3D-MVPNet are robust and
contiguous.

In addition, the 3DMatch dataset is the RGB-D scene recon-
structions. However, the RBG-D frame data do not completely
cover all the details of the reconstructed scene; thus, the point
cloud data in the 3DMatch dataset are inevitably occluded.
For example, as shown in Fig. 5, the point cloud data with
the cup background in the first and fourth rows is occluded.
Therefore, some of the point cloud data of the 3DMatch
dataset used in this paper are occluded. It can be seen in

Table 2 The performance of local cross-domain feature descrip-
tors learned by 2D3D-MVPNet with different dimensions.256-
dimensional descriptors have the most superior TOP1 retrieval per-
formance. And 64-dimensional descriptos have the most superior
TOP5 retrieval performance. The bold font indicates best retrieval
performance

Dimension 64 128 256 512

TOP1 0.7908 0.7913 0.8011 0.7750

TOP5 0.9612 0.9589 0.9482 0.9478

Fig. 5 that our proposed 2D3D-MVPNet can also solve the
problem of 2D image and 3D point cloud matching with
partial occlusion.

4.3 Visualization of learned cross-domain feature
descriptor

To more intuitively show the relationship between the
local cross-domain feature descriptors learned by 2D3D-
MVPNet, we visualized the learned 2D and 3D feature
descriptors of the matching image patches and point cloud
volumes as a histogram, as shown in Fig. 7. The x-axis
and the y-axis are the dimensions and the value of the
feature descriptors, respectively. The distribution trend and
the salient area of the matching feature histogram are similar
(e.g., the pink labelled circled area in the histogram), which
also demonstrates the similarity of the local cross-domain
feature descriptors learned by 2D3D-MVPNet.

4.4 3D global registration

In addition, we perform the learned 3D feature descriptors
on the point cloud global registration task. The 3D global
registration works as follows: first, two fragments given in
a scan are downsampled to obtain keypoints; second, the
point cloud volume with a 30 cm radius is taken for each
keypoint; third, each volume is fed to an image-based point
cloud encoder to obtain a 3D feature descriptor; finally, all
key points are matched by the descriptor nearest search, and
the transformation matrix is estimated with RANSAC. Four
scenes in the 3DMatch dataset are used as the testing data,
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Projections

Raw point 

cloud volumes

Image patches

Fig. 9 Visualization of one of the multiple views generated by the point cloud projection and the matching image patches.In the plane structure,
point cloud projections and image patches have a high similarity, which is conducive to the completion of 2D-3D Matching

and the 3D global registration results are shown in Fig. 8.
The 3D feature descriptors learned by 2D3D-MVPNet work
steadily on the point cloud registration, which demonstrates
the robustness and practicality of the local 3D feature
descriptors learned by the proposed image-based point
cloud encoder.

5 Ablation study

To demonstrate the superiority of the proposed 2D3D-
MVPNet, we conduct several ablation studies with analyses
and discussions. Of note, except in Section 5.1, all the
dimensions of the cross-domain feature descriptors learned
from 2D3D-MVPNet in the ablation study are set as 256
dimensions.

5.1 Dimension of descriptors

To explore the impact of the dimensions on local cross-
domain feature descriptors learned by 2D3D-MVPNet, we
conduct experiments with output feature dimensions of 64,
128, 256, 512. The retrieval results are shown in Table 2.

Table 3 The performance of 2D3D-MVPNet with and without a
texture extractor (TE) and structure extractor (SE). TE and SE can
be used as point cloud encoders to achieve results in cross-domain
retireval tasks, but the image-based point cloud encoder that combines
the two has the best performance. The bold font indicates best retrieval
performance

TOP1 TOP5

2D3D-MVPNet 0.8011 0.9482

2D3D-MVPNet w/o TE 0.7293 0.9429

2D3D-MVPNet w/o SE 0.6496 0.9258

When the feature dimension is 256, the local cross-domain
feature descriptors learned by 2D3D-MVPNet have the best
TOP1 retrieval performance. However, lower-dimensional
features have better TOP5 retrieval performance than high-
dimensional features, such as the 64-dimensional feature
descriptor having better TOP5 retrieval performance than
the 256-dimensional feature descriptor. As the feature
dimension increases, its ability to distinguish hard samples
and resolution ability improves; however, the overall feature
quality decreases.

5.2 Effectiveness of the texture extractor

The feature descriptors learned by PointNet are not robust
for plan structure; thus, we construct the texture extractor
(TE) to assist 3D feature learning. The raw point cloud
volumes of the planar structure have similar geometric
information, and the point sets are distributed in a coplanar
space. The projections generated by the point cloud
volume accurately capture the colour texture similar to the
corresponding patch at certain angles. Then, through the
multiple views generated by the projection, a texture similar
to the patch of the planar structures can be obtained, as
shown in Fig. 9. Furthermore, to quantify the significance
of the TE, we conduct 2D3D-MVPNet experiments with
TE or without a structure extractor (SE), and the results

Table 4 The performance of 2D3D-MVPNet with or without the
multifeature fusion module (MfFM). After TE replaced MfFM with
FCN, it failed to converge. The reason was that FCN could not adapt to
the disorder of input. The bold font indicates best retrieval performance

2D3D-MVPNet with SE 2D3D-MVPNet w/o SE

with MfFM with FCN with MfFM with FCN

TOP1 0.8011 0.7491 0.6496 0.0009

TOP5 0.9482 0.9403 0.9258 0.0025
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are shown in Table 3. Experiments demonstrate that when
2D3D-MVPNet has both TE and SE network structures,
the robustness of the learned local cross-domain feature
descriptors is better. TE and SE provide richer feature
information for cross-domain descriptors, greatly improving
retrieval performance, especially in TOP1 retrieval results.

5.3 Effectiveness of multi-feature fusionmodule

To verify the role of the multifeature fusion module (MfFM)
in 2D3D-MVPNet, we first replaced the MfFM with a fully
connected network (FCN) (denoted as 2D3D-MVPNet with
SE and FCN). All features learned from multiprojections
with CNNs were concatenated and fed into the FCN to
obtain a constant dimensional vector. In addition, to avoid
the self-learning fusion network abandoning the TE branch
in the learning process, only effective information was
obtained from the SE network. Based on removing SE
(denoted as 2D3D-MVPNet w/o SE and with MfFM), we
also replaced MfFM with an FCN (denoted as 2D3D-
MVPNet w/o SE and with FCN). The experimental results
are shown in Table 4 and demonstrate the effectiveness
of the symmetric function proposed for different orders of
projection input. Experiments also show that the network
of 2D3D-MVPNet w/o SE with FCN cannot converge
due to the disordered inputs, resulting in a sharp drop in
performance. The multifeature fusion module guarantees
the common output of the unordered feature input.

6 Conclusion

In this paper, we proposed a novel network, 2D3D-
MVPNet, to jointly learn the local cross-domain descriptor
for 2D images and 3D point clouds. The proposed image-
based point cloud encoder was successfully embedded into
2D3D-MVPNet to learn 3D descriptors that contain both
structure and texture information, resulting in improved
performance of 2D-3D retrieval. In addition, we proposed a
multifeature fusion module based on a symmetric function
to solve the problem of random input order of the
projections in the texture extractor. Experiments showed
that the local cross-domain feature descriptors learned by
2D3D-MVPNet achieved state-of-the-art results in 2D-3D
retrieval tasks. Finally, the point cloud feature descriptors
were successfully used in the 3D global registration task to
verify the robustness and representativeness. In future work,
we plan to explore more robust feature descriptors for more
2D-3D data generated from different scenes.
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