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Abstract— 3D vehicle detectors based on point clouds generally
have higher detection performance than detectors based on
multi-sensors. However, with the lack of texture information,
point-based methods get many missing detection of occluded
and distant vehicles, and false detection with high-confidence
of similarly shaped objects, which is a potential threat to traffic
safety. Therefore, in the long run, fusion-based methods have
more potential. This paper presents a multi-level fusion network
for 3D vehicle detection from point clouds and images. The
fusion network includes three stages: data-level fusion of point
clouds and images, feature-level fusion of voxel and Bird’s Eye
View (BEV) in the point cloud branch, and feature-level fusion
of point clouds and images. Besides, a novel coarse-fine detection
header is proposed, which simulates the two-stage detectors,
generating coarse proposals on the encoder, and refining them
on the decoder. Extensive experiments show that the proposed
network has better detection performance on occluded and
distant vehicles, and reduces the false detection of similarly
shaped objects, proving its superiority over some state-of-the-art
detectors on the challenging KITTI benchmark. Ablation studies
have also demonstrated the effectiveness of each designed module.
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driving, false detection, point cloud processing, data fusion.
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I. INTRODUCTION

AS THE ‘eyes’ of autonomous driving systems, object
detection is a prerequisite to ensure the safe operation

of the system [1]. In recent years, with the development of
deep learning techniques and the application of large-scale
traffic scene data sets [2]–[4], the research on object detection
has made great progress. Many detectors with high detection
accuracy were proposed, which laid the foundation for their
applications. However, some problems remain to be solved
in the traffic scene, such as missing detection of occluded
and distant objects [5], and false detection of similarly shaped
objects [6], which threaten traffic safety. Therefore, these
particular problems need to be further studied.

According to the different sensors used, there are two
mainstream detection methods, the point-based methods
[7], [8] and the fusion-based methods [9], [10]. Previous
methods convert the 3D points into 2D views [7], [11]–[13]
and then directly obtain 3D coordinates, size, and heading
information via a 3D RPN network. These methods make the
processing of disordered points simple and can leverage the
mature 2D detectors to detect objects. However, the projection
operation can lose some geometrically-related spatial infor-
mation, resulting in lower detection accuracy. To avoid infor-
mation loss, the pioneering method, PointNet [14], directly
takes raw point clouds as the network input. Accordingly,
some methods [8], [15]–[17] divide the points into a 3D voxel
grid and utilize PointNet-based to extract the feature of each
voxel cell, which retain more spatial information and greatly
improve the detection accuracy. Point clouds are disordered,
sparse, and lack texture information, consequently, point-based
methods tend to provide poor detection performance for distant
and occluded objects, and also generate false detection for
similarly shaped objects. Fusion-based methods [9], [10], [18]
usually take the point clouds as the main branch and the
image as the auxiliary branch. The abstract feature maps of
each branch generated by the extractors is calibrated and
fused to perform 3D object detection. In addition, there is a
cascading fusion strategy [19], [20] to obtain 2D proposals on
the image, and perform 3D refinement on the corresponding
point frustum. With the rich texture information in images,
the fusion-based methods can overcome the shortcomings of
the point-based methods. However, the fusion strategy needs
further investigation. The point clouds provided by LiDAR
are a set of surface points sparsely distributed in 3D space.
The detectors learn the shape characteristics according to
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Fig. 1. The framework of our detector. It consists of three parts, early fusion module for the data-level fusion of point clouds and images; 3D RPN for
proposal estimation with a high recall from point clouds branch, and feature extraction from the image; deep fusion module for proposal refinement from the
features of point clouds and images.

the interaction relationship of each point, and predict the
classification probability and the 3D bounding box. However,
in complex traffic scenes, there are many objects similar to the
shape of the vehicle. If only relying on the shape features, it is
difficult for the detector to distinguish the similarly shaped
objects correctly. Besides, for distant and occluded objects,
LiDAR can only capture a small number of surface points
associated with the objects. Since these surface points cannot
provide enough semantic information, resulting in the missing
detection.

Based on the above reasons, this paper proposes a multi-
level fusion network, as shown in Fig. 1. A data-level fusion
provides points with the rough texture information from RGB
images in the early fusion module. Then the point clouds are
encoded into two formats of voxel grid and Bird’s Eye View
(BEV), their abstract features are extracted and fused to output
the proposals with high recall via a novel coarse-fine detection
header. The proposed detection header simulates a two-stage
detection network to obtain coarse proposals on the encoder
and refine them on the decoder. Finally, the deep fusion
module improves the confidence of positive samples by further
fusing the image features, reducing the false detection. The
experimental results prove that our fusion strategy, and coarse-
fine detection header are effective for improving detection
accuracy. The visualization results also show that our method
can effectively reduce the missing detection of occluded and
distant objects, and the false detection of similarly shaped
objects.

The main contributions of this paper can be summarized as
follows:

• The proposed multi-level fusion network can detect
3D vehicles from point clouds and images with com-
petitive detection accuracy and efficiency in traffic
scenes.

• Data-level and feature-level fusion strategy (early and
deep fusion modules) can fully improve the efficiency
of data utilization and greatly improve the detection
performance of our network, especially for occluded and

distant objects, reducing the false detection of similarly
shaped objects.

• A novel coarse-fine detection header containing coarse
and fine regressors is proposed, which can obtain the
precise position and 3D shape information on the shallow
features, and reset the precise semantic information on the
deep features.

The paper is organized as follows. The related work is given
in Section II. Our proposed method is presented in Section III,
with the data set and experimental study given in Section IV.
The conclusion is addressed in Section V.

II. RELATED WORK

The existing work related to 3D detection can be grouped
into three categories [1]: image-based, point-based, and fusion-
based methods. With the lack of depth information in images,
the performance of image-based methods is generally poor,
so this section only introduces two other mainstream methods,
i.e., point-based methods and fusion-based methods.

A. Point-Based Methods

The point-based methods can be subdivided into methods
based on multi-view maps, raw point clouds, and voxel grid
according to the processing methods for point clouds.

1) Methods Based on Multi-View Maps: To apply the
mature 2D detection framework [21]–[23], some methods
project the point cloud as pseudo images, and extend the
detection result to the 3D space. [11], [24], [25] project
the point cloud as a front view, while [7], [12], [26] project
the point clouds as a BEV maps. Unlike the front views
and RGB images, each object occupies an independent spatial
position in BEV maps, which helps alleviate the problem of
occlusion. BEV representation has become the mainstream
of projection methods. The projection operation inevitably
causes geometrically-related spatial information loss, multi-
view maps have become auxiliary representations of the net-
work inputs.
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2) Methods Based on Raw Point Clouds: Avoiding the
spatial information loss caused by projection, PointNet [14]
is a pioneering work, which directly uses the raw point clouds
as the network input. It utilizes two spatial transformation
networks (STN) to deal with the rotation invariance of the
point clouds. While the symmetric function, the max-pooling
operation is beneficial for solving the disorder of point clouds.
For abstracting the local feature, PointNet++ [27] constructs
a set abstract layer to convert the raw point clouds into a set
of local regions and fine features are extracted hierarchically.
The disorder of the point clouds is the main problem that
prevents the CNN network from directly operating on the raw
points. Therefore, PointCNN [28] introduces a transformation
matrix that can process the points in a specific order to obtain
a feature that is independent of the order.

3) Methods Based on Voxel Gird: Some methods divide
the points into a voxel grid to efficiently use the advantages
of the CNN network. Previous works [29], [30] design the
hand-crafted feature for each voxel cell and train an SVM
classifier to detect objects by sliding window search. Their
variants [31], [32] used 3D CNN instead of an SVM classifier,
improving the detection performance. According to whether
there are valid points in the voxel cell, Li et al. [16] code
the point clouds as a binary grid and apply a 3D fully
convolutional neural network to extract the global feature.
Inspired by PointNet, VoxelNet [8] replaces the hand-crafted
feature with a learning method that includes an MLP and
a max-pooling to extract abstract features from each cell.
The computation cost for such methods is usually quite high
due to the expensive cost of 3D convolutions and large 3D
search space. To improve the efficiency of 3D convolution,
SECOND [15] introduces a sparse convolution network, which
can avoid useless calculations for empty cells.

The point clouds are sparse and unevenly distributed; there-
fore, point-based methods cannot detect occluded and distant
objects well. Besides, the detectors have poor robustness to
discriminate the similarly shaped objects with the lack of
texture information.

B. Fusion-Based Methods

The RGB images contain rich texture information, and the
point cloud can provide accurate depth information. Therefore,
the fusion-based methods can make full use of the advan-
tages of different sensors, which is essential to improve the
detection performance of special objects (occluded and distant
objects). MV3D [9] takes the BEV maps, front views, and
images as the network inputs, constructs three independent
feature extractors, and obtains the proposals on the BEV
branch through a 3D RPN network. Finally, the feature
regions corresponding to the proposals from three branches
are fused to obtain the refined detection results via a deep
fusion module. Different from the fusion strategy of MV3D,
AVOD [10] only constructed two feature extractors for images
and BEV branches. The RPN then uses both feature maps
to generate non-oriented region proposals. Besides, an early
fusion module is introduced to refine the detection results.
F-PointNet [19] and F-ConvNet [20] adopt a novel hierarchical

detection strategy. According to the 2D proposals generated
from the RGB images, corresponding frustums on point cloud
space are extracted to detect 3D objects through the point-
based methods.

The fusion-based methods should have higher performance
than other methods, but the opposite is true. This shows
that the existing fusion strategy is inefficient, reducing the
detection performance. Therefore, a more effective fusion
strategy becomes the key to improving the performance of
the fusion methods.

III. 3D VEHICLE DETECTOR

The proposed network, depicted in Fig. 1, consists of
three components: (1) early fusion, data-level fusion from
point clouds and images; (2) RPN network, bounding box
prediction from BEV and voxel grid representations, and
feature extraction from images; (3) deep fusion, bounding box
refinement from fused features. We introduce each module in
the following subsections.

A. Early Fusion

Previous works usually focus only on feature-level fusion
of point clouds and images, while ignoring the data-level
fusion. Data-level fusion can only achieve the fusion of points
and limited image pixels due to the sparsity of point clouds.
Nevertheless, it cannot be ignored that the limited pixels can
provide rough texture information for the point clouds, which
is very useful for improving point cloud representation for the
scene.

Therefore, an early fusion module is designed for data-level
fusion of point clouds and RGB images. The points and pixels
are matched according to the sensor calibration parameters,
and the color information of the pixels is concatenated with
the point features. In this way, the spatial characteristics of
the point clouds are maintained, and the semantic features
of the surface points are enriched, avoiding the dependence
of the feature extractor of point clouds on the object shape.

To improve real-time and ensure the matching of the images
and the point clouds, irrelevant points outside the camera’s
field of view are filtered out, and the detection range is set to
{[x, y, z]T | x ∈ [0, 70.4]m, y ∈ [−40, 40]m, z ∈ [−3, 1]m}.
Finally, each point includes not only the 3D coordinates and
reflection intensity in the LiDAR coordinate system,
but also the color information of the corresponding
pixels on the image plane, which can be expressed as:
pi = (xi , yi , zi , ri , Ri , Gi , Bi ).

B. 3D Region Proposal Network

The 3D RPN network proposed in this work takes two
different representations (voxel grid and BEV) as inputs. The
abstract features of two branches are fused, and a coarse-fine
detection header is introduced to obtain the proposals with
high recall. The image branch uses VGG16-like network to
extract abstract semantic features.

1) Point Cloud Representation: Different representations of
point clouds are beneficial to improve the robustness of the
detection network. Therefore, the point clouds are processed
into voxel grid and BEV coding in this work.
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a) Voxel grid: Voxel grid is the most popular form
of coding in the current mainstream networks, which can
efficiently represent large-scale traffic scenes, and provide
richer spatial features for detectors. To generate the voxel
grid, the detection area of point clouds is evenly divided into
several cells with fixed size 0.2m × 0.2m × 0.4m, and the
points are allocated to the corresponding cells. Due to the
influence of distance and occlusion, the number of points in
each cell is extremely unbalanced. For the convenience of
calculation, the density threshold of each cell is set to T.
If the number of points in a given cell exceeds the threshold,
T points are randomly sampled from the cell. Otherwise, zero
filling is used. In order to make full use of the interaction
among points, the initial point feature is augmented with
(xi − xm, yi − ym, zi − zm), where m denotes the arithmetic
mean coordinate of all points within a cell. Finally, each point
feature contains ten dimensions.

b) BEV: BEV generated by projection can be regarded
as a pseudo image, which could be directly processed by tra-
ditional convolution structure. Although projection can cause
information loss, this operation makes each object occupies an
independent spatial position, which is conducive to reflect the
relative position relationship between objects and alleviate the
interference of overlapping and occlusion problems. Accord-
ing to the method described in [10], the 3D point clouds are
converted into a six-channel BEV maps with five height maps
and one density map.

The detection region is cut into several squares with a
resolution of 0.1m on the x-y plane. The 3D point clouds
within detection region are divided into five equal slices along
the Z-axis, each is associated with a height map. For each
height map, height features are encoded as the maximum
height of the points within this slice. The density map is
encoded by the number of points N within each cell, which
is computed as:

min(1.0,
log(N + 1)

log16
) (1)

2) Feature Extractors: Feature extractors for each branch,
i.e. voxel grid, BEV and image, are adopted to extract abstract
features. BEV and image branches adopt the traditional convo-
lution structure, while feature extraction of voxel grid branch
follows SECOND [15]. Firstly, voxel feature extractor (VFE)
is used to extract the features of each cell, and then the global
features of voxel grid are extracted by sparse convolution
network.

a) Voxel grid branch: As shown in Fig.2, the voxel
feature extractor with a linear layer [8] is used to obtain
abstract features from each cell, generating the voxel feature
grid with size (10 × 400 × 352). To avoid invalid computation
for empty voxels, sparse convolution network is adopted
to extract global features of voxel grid. Here we use the
parameter setting of SECOND. The convolution kernel is
set to (3 × 1 × 1), and the stride is set to (2 × 1 × 1).
Finally, tensor features with size (64 × 2 × 400 × 352) are
generated after two sparse convolution layers, which can be
extracted by traditional convolution operation after reshaping
to (128 × 400 × 352).

Fig. 2. The structure of voxel branch. It consists of an VFE and a sparse
convolution network.

Fig. 3. The structure of coarse-fine detection header. It consists of an
encoder and a decoder. Rough proposals are obtained on the encode and
refined proposals are obtained on the decoder.

b) BEV and image branch: The BEV branch uses con-
volution operation and a maximum pooling to match the size
of voxel features, generating a same feature vector with the
size of (128 × 400 × 352). The image branch adopts Feature
Pyramid Network (FPN) [33] structure. First, feature encoder
with 8× down-sampling is used to extract abstract features,
and then feature decoder with 8× up-sampling is performed
to restore the feature resolution.

3) Coarse-Fine Detection Header: The traditional FPN
consists of an encoder and a decoder, and obtains the detection
results on the decoder. Because of the translation invariance
of convolution operation, the position information of the
object becomes increasingly blurred with the increase in the
number of convolution layers. Therefore, more accurate loca-
tion information is retained on shallow feature maps. In this
work, we improve the structure of FPN. Rough proposals
are obtained from the last layers of all feature blocks of
the encoder, expecting to get a higher recall. On the last
convolutional block of the decoder with strong semantic infor-
mation, the rough proposals are fine tuned. As shown in Fig. 3,
after fusing voxel grid and BEV features, the rough regressor
obtains proposals on the encoder feature maps of all scales to
avoid losing positive samples. To improve the precision of the
proposals, the refined regressor performs ROIpooling on the
last feature layer of the decoder to refines the proposals. There
are two Non-Maximum Suppressions (NMS) in the detection
header to reduce the number of proposals after the coarse and
the fine regressors.

C. Deep Fusion

The number of effective points reflected from the distant
and occluded objects is small, which may not be enough to
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detect the expected objects. Therefore, a deep fusion module
is introduced to improve the confidence of positive proposals
through fusing the feature blocks of image branch. As shown
in Fig. 1, the two feature sources are merged to obtain the
final detection result through a lightweight fully convolutional
network (FCN) [38]. Since the NMS has already been per-
formed on the 3D RPN stage, the number of proposals in this
stage is small, not taking too much inference time.

D. Anchors and Targets

In the KITTI data set, the size of all labeled vehicles is
usually approximately fixed. According to the statistics, the
average size of anchors is set to wa = 1.6 m, la = 3.9 m,
ha = 1.56 m. Assuming that all vehicles are constrained on
the road, all anchors are placed at za = −1.0m with two
rotations, i.e. 0 and 90 degrees. The objectness of anchors
is defined by the intersection-over-union (IoU) between the
ground truth on the BEV plane. If the IoU value exceeds
the positive matching threshold, the anchors are considered
positive. Conversely, if the IoU value is less than the negative
matching threshold, the anchor is considered negative. The
anchors with IoU between the positive and negative threshold
are ignored. The threshold is usually an empirical value.
Following the parameter settings of most detectors, the positive
matching threshold is set to 0.6, and the negative matching
threshold is set to 0.45 in this work.

In the dataset, the 3D ground truth boxes are denoted as
(xg, yg, zg, lg, wg, hg, θg), where (xg, yg, zg) is the central
coordinates of the box, (lg, wg, hg) is the dimension, and θg

is the yaw rotation around Z-axis. Similarly, in this paper, the
anchors are set to (xa, ya, za, la, wa, ha , θa). Following the
parameter settings in SECOND, the regression target between
anchors and ground truth is encoded by Eqs. (2):

�x = xg − xa

da
, �y = yg − ya

da
, �z = zg − za

da

�l = log(
lg

la
), �w = log(

wg

wa
), �h = log(

hg

ha
)

�θ = θg − θa (2)

where �x , �y, �z are the offsets between center coordinates
of anchor and ground truth. They are normalized by the
diagonal of the base of anchors: da = √

(la)2 + (wa)2.
The reasonable regression target can achieve higher detec-

tion performance. Through the above normalized calculation,
the detection robustness of vehicles with different sizes can be
improved.

E. Loss Function

The loss function in this work includes three parts: loss for
coarse proposals, refined proposals and refined results. Each
part of the loss includes object classification loss, regression
loss and direction classification loss. Focal loss [39] is used
for object classification loss, Smooth L1 loss function for
regression loss and Cross Entropy loss function for direction
classification loss.

1) Object Classification Loss: In order to solve the imbal-
ance of foreground and background in the samples, the Focal
Loss function is used to construct the classification loss
function as follows:

Lcls = −α(1 − p)λlog(p) (3)

where p is the estimated category probability of each anchor,
α is a weighting factor to balance the importance of positive
and negative examples, and λ is a focusing parameter to down-
weight the contribution of easily-classified examples and allow
the model to focus on hard examples.

2) Regression Loss: In addition to classification task,
anchors should be fine-tuned to obtain more accurate 3D
information, including location, size, and orientation. Location
and size offsets can be directly regressed, but the radian offset
is subject to an adversarial example problem. For example,
0 and π radians correspond to the same box but lead to a
large loss. A sine function [15] is used to solve this problem.
The total regression loss is calculated by a Smooth L1 loss
function:

Lreg = �b∈(x,y,z,w,l,h) SmoothL1(�b) (4)

Lθ = SmoothL1(sin(�θ)) (5)

where Lreg and �b are the regression loss and offset for
location and dimension, Lθ and �θ are the special angle loss
and offset.

3) Direction Classification Loss: Since the regression loss
cannot identity flipped boxes, a SoftMax classification loss,
Ldir , is used to determine whether the orientation of prediction
is inversed. The target of direction classifier is set as: in the
x-y plane, if the heading angle of the vehicle is within the first
or second quadrant, the result should be positive; otherwise,
it should be negative.

In summary, the total loss function is:
Ltotal = �i∈(coarse, f ine, f usion)Li (6)

Li = βclsLcls + 1

Npos
(βreg(Lreg + Lθ ) + βdir Ldir ) (7)

where Npos is the number of positive anchors, βreg , βcls and
βdir are respectively the weight of regression, classification,
and direction classification. An experiment is also shown in
the ablation study to illustrate that βreg = 2.0, βcls = 1.0,
βdir = 0.2 is most appropriate.

IV. EXPERIMENTS

This section evaluates our proposed method and compares
it with several state-of-the-art methods on the KITTI dataset.
This dataset contains, respectively, 7481 and 7518 training and
testing samples, which are divided into three difficulty levels
(easy, moderate, and hard) based on the object pixel height,
occlusion, and truncation. A total of 7481 training samples
are divided into 3712 samples for training and 3769 samples
for validation. Following the official evaluation protocol, the
BEV and 3D detection results were evaluated in terms of
the AP (IoU threshold is set to 0.7). In addition, some
ablation experiments have been performed to demonstrate the
effectiveness of some settings and novel modules.
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TABLE I

PERFORMANCE COMPARISON IN 3D AND BEV VEHICLE DETECTION: AVERAGE PRECISION (AP) ON KITTI VAL SET

Fig. 4. Detection examples of 3D detection on the KITTI dataset. Top: Our network with point cloud only as input; Bottom: Our network with point cloud
and image as inputs. Distant object detection (left), occluded object detection (middle), and false detection (right). The red boxes indicate the vehicles detected
by both two networks. The blue boxes indicate the vehicles detected by the network with point cloud and image as input. The green box indicates the false
detection sample. The radiuses of yellow semicircles are 20m, 40m, and 60m respectively. It can be seen that the network fused image has better robustness
to alleviate the problems of occluded object detection, distant object detection and false detection. Note that the closest car in the middle sample is a truck,
so it is not a missing detection.

A. Quantitative Analysis
The performance comparison of our MLF and other SOTA

methods in 3D detection and BEV detection for vehicles are
presented in Table I. All methods use images and point cloud
as inputs. In the 3D detection, the APs of our MLF can achieve
89.52%, 80.35%, and 78.93% in three difficulties respectively,
which are 2.76%, 2.24%, and 1.21% lower than the best
method, EPNet. Different from the data-level fusion of 3D
points and image pixels in our MLF, EPNet has introduced a
novel structure called LI-Fusion Module, which can realize the
feature-level fusion of each 3D point and the corresponding
pixel. This is the reason why our MLF performs worse than
the EPNet. Compared with 3D-CVF, the detection accuracy
of our MLF are better, 0.47% and 0.46% higher in moderate

and hard levels, only 0.15% lower in easy level. In the BEV
detection, the AP of MLF is 4.22% lower than that of EPNet in
easy level, while in the moderate and hard levels, the gaps are
reduced to 0.77% and 0.3%. This is due to the introduction
of the BEV encoding from point cloud in our MLF, which
can intuitively reflect the relative position between objects.
In summary, although the detection accuracy and speed are
not the best, compared with other SOTA methods, our MLF
can still achieve a competitive detection performance via the
multi-modal and multi-stage fusion of images and point cloud.

In order to intuitively compare the performance of fusion-
based method and point-based method, Fig. 4 shows some
results from three aspects: occluded object detection, remote
object detection and false detection. It can be seen that the
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Fig. 5. Relationship between the detection performance and computational
complexity of different spatial resolutions. The voxel cell sizes are set as
0.4m ×{0.122 , 0.162, 0.202, 0.242, 0.282}m2 alone Z-Y-X axes, respectively.

TABLE II

RESULTS ON THE WEIGHT SETTING OF THE LOSS FUNCTION

fusion-based method has better performance for the problems
that often appear in traffic scenes.

B. Ablation Studies

1) Voxel Size: The spatial resolution of voxel grid has
a significant impact on the accuracy and efficiency of the
detector. Smaller cells allow finer localization, while larger
cells make the network run faster. Fig. 5 shows the impact of
different resolutions on accuracy and efficiency. It corroborates
that the smaller voxel is beneficial to the precision while the
larger voxel can reduce the computational complexity. In order
to achieve a trade-off of accuracy and efficiency, the size of
the voxel in this work is set to 0.4m × 0.202m2.

2) Loss Weight for Different Tasks: In this work, the loss
function consists of three parts: objectness classification loss,
regression loss and direction classification loss. The weight of
each loss has a great impact on the detection results. A smaller
weight is assigned to direction classification loss, since it is an
auxiliary task to distinguish whether the direction is reversed.
For objectness classification and regression loss, we set up
experiments in three different situations: dominated by classi-
fication task, dominated by regression task, and balanced by
both two. The results in Table II show that the network needs
to pay more attention to the regression of 3D information of
vehicles to obtain better performance.

3) Coarse-Fine Detection Header: Considering that the
location information is more accurate on the shallow feature
maps, while the semantic information is more explicit on the
deep feature maps, this work proposes a coarse-fine detection
header to obtain a higher recall, ensuring that most positive

TABLE III

COMPARISON OF DIFFERENT DETECTION HEADERS

TABLE IV

COMPARISON OF DIFFERENT FUSION MODES

Fig. 6. PR curves of the point-based network and the fusion-based network
in three difficulties respectively.

proposals can be detected. Table III compares our coarse-fine
detection header with the single-scale detection header and
the multi-scale detection header. The results prove that the
coarse-fine detection header has more advantages, especially
for challenging samples (hard difficulty).

4) Fusion Mode: The image is rich in texture information,
which is very useful for detecting occluded objects, distant
objects and alleviating false detection. The image fusion in
this work includes two parts: early fusion and deep fusions.
Table IV shows the performance comparison of no image
fusion, early fusion, deep fusion, and both fusion. Experi-
mental results prove that the performance of the network has
been greatly improved via integrating early fusion and deep
fusion.

5) PR Curve: Fig. 6 shows the Precision-Recall (PR) curves
of the point cloud-based network and the fusion-based network
in three difficulties. It reveals that under the low recall (taking
0.1 as an example), the fusion method has a higher accuracy,
which proves that the fusion based network can alleviate false
detection.
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V. CONCLUSION

In this work, we have proposed a multi-level fusion net-
work for 3D vehicle detection based on images and point
clouds to improve the detection performance of occluded and
distant objects and reduce the false detection of similarly
shaped objects. Different from other fusion-based methods,
we introduce an early fusion module to perform a data-level
fusion of images and point clouds, giving the point cloud
rough texture information. In the point clouds branch, the 3D
points are represented as voxel grid and BEV to enhance the
ability for characterizing the traffic scene; a novel coarse-fine
detection header is proposed to generate the coarse results on
the encoder feature map with accurate position information,
and the refined results on the decoder with high semantic
information. In the deep fusion module, the feature maps of
the image branch are further fused with the point cloud feature
maps, which is essential to reduce the false detection of the
similarly shaped object. Experimental results show that our
method has higher performance than some SOTA methods,
especially for occluded and distant objects, and also reduces
the false detection of similarly shaped objects. The ablation
experiments also prove that the modules proposed in this
work is effective for improving the detection performance. The
network structure of this work is more complicated, which
leads to a slightly worse real-time performance than other
methods. Further research is to consider the lightweight for
network model.
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