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Abstract— Point cloud classification is a fundamental task in
3D applications. However, it is challenging to achieve effective
feature learning due to the irregularity and unordered nature
of point clouds. Lately, 3D Transformers have been adopted
to improve point cloud processing. Nevertheless, massive Trans-
former layers tend to incur huge computational and memory
costs. This paper presented a novel hierarchical framework
that incorporated convolutions with Transformers for point
cloud classification, named 3D Convolution-Transformer Net-
work (3DCTN). It combined the strong local feature learn-
ing ability of convolutions with the remarkable global context
modeling capability of Transformers. Our method had two
main modules operating on the downsampling point sets. Each
module consisted of a multi-scale local feature aggregating (LFA)
block and a global feature learning (GFL) block, which were
implemented by using the Graph Convolution and Transformer
respectively. We also conducted a detailed investigation on a series
of self-attention variants to explore better performance for our
network. Various experiments on ModelNet40 and ScanObjectNN
datasets demonstrated that our method achieves state-of-the-art
classification performance with a lightweight design. The code is
publicly available at https://github.com/d62lu/3DCTN.

Index Terms— Transformer, convolution-transformer, hierar-
chical transformer, point cloud classification, deep learning, self-
attention mechanism, graph convolution.

I. INTRODUCTION

W ITH the popularization of sensors that are able to
obtain geometric information of 3D scenes, such as

3D laser scanners and RGB-D cameras, 3D point cloud
classification, as a fundamental 3D computer vision task,
has become more and more important for many computer
graphics and vision applications. 3D point cloud data can
clearly express 3D geometry thanks to its simple yet flexible
data structure. In recent years, 3D point cloud classification
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has been applied widely in many important fields, such as
urban construction, autonomous driving, robotics, engineering
survey and mapping.

Point cloud classification is highly dependent on global
features. Compared with 2D images, point clouds have more
complicated structures distributed in 3D space, with points
arranged in an irregular and unordered manner. Therefore,
it remains a challenging research topic to design deep learning
networks to achieve effective global feature extraction.

To tackle the aforementioned challenges, a number of
deep learning-based approaches on 3D point clouds have
been proposed. Many existing works [1], [2], [3], [4], [5]
focused on projecting the 3D point cloud to 2D parame-
ter planes by using multi-view projections, or by design-
ing discrete spatial convolutions with 3D space voxelization.
Despite achieving great success in point cloud processing,
such methods fail to leverage the sparsity of spatial point
clouds, and massive projection operations tend to incur high
computation cost and memory consumption. Using a new
approach, Charles et al. [6] proposed PointNet to achieve the
point cloud feature learning in a point-wise manner. Point-
Net consisted of several core modules: rigid transformations
(T-Net), shared Multi-Layer Perceptrons (MLPs) and maxpool-
ing, which ensured the network invariant to point permutation
and shape rotation. After that, several variants [7], [8], [9] have
been proposed to improve the performance of PointNet by
introducing local feature extraction. To utilize the strong local
feature extraction capability of convolutional neural networks
(CNNs), many meaningful works, such as PointCNN [10],
PointConv [11], and DGCNN [12], were proposed to define
the 3D convolutional kernels or Graph Convolution to improve
point cloud processing and analysis.

Transformers have recently contributed to impressive
progress in Natural Language Processing (NLP) and com-
puter vision. Transformers have proven to have a remark-
able ability for global feature learning, and thus has been
applied to various point cloud processing tasks, such as object
classification, semantic scene segmentation, and object part
segmentation [13], [14], [15], [16]. The core component of
the Transformer is the self-attention mechanism, which first
computes the similarities between any two embedded words,
and then utilizes the corresponding similarities to compute
the weighted sum of all words, as the new output. With
this, each output word is able to establish connections with
all input words, which is the reason why the Transformer
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is good at learning global feature. Therefore, current 3D
point cloud Transformers tend to employ Transformer layers
to replace all convolution operations in networks for better
feature expression.

Despite recent success of 3D point cloud Transformers, the
efficiency of the Transformer networks is still below similarly
sized CNN counterparts because of massive linear transforma-
tion layers in Transformers. By introducing convolution to the
ViT [17] structure, CvT [18] achieved better performance and
robustness, while concurrently maintaining a high degree of
computational and memory efficiency. Therefore, in this work,
we hypothesized that combining the strong local modeling
ability of CNNs with the remarkable global feature learning
ability of Transformers may improve the accuracy for 3D point
cloud classification with a lightweight design.

Therefore, we developed a new architecture for point cloud
classification, called 3DCTN, to incorporate convolutions into
Transformers, achieving the lightweight design and competi-
tive results with state-of-the-art classification methods. Specif-
ically, to avoid computational redundancy, our framework was
designed as a hierarchical structure, which had two main
modules both operating on the downsampling point sets. Each
module consisted of two blocks: the multi-scale LFA block and
GFL block, which were achieved by the Graph Convolution
and Transformer respectively.

We evaluated the accuracy and efficiency of our clas-
sification network on the public synthetic dataset, Model-
Net40 [1], and the real scanned dataset, ScanObjectNN [19].
Extensive results showed that our method achieves state-
of-the-art classification performance. Additionally, we con-
ducted a detailed investigation and analysis on a series of
self-attention variants for better performance, and concluded
that the Offset-Attention mechanism and subtraction-form
vector attention operator outperform the other variants for our
framework.

In summary, the main contributions of our work are as
follows:

• We designed a highly expressive module combining
Transformers and convolutions, to learn local and global
features effectively for point cloud classification;

• Based on such modules, we proposed a multi-scale hierar-
chical framework, which is suitable for the global feature
expression of unstructured point clouds;

• We conducted a detail investigation and analysis of a
series of self-attention variants for better performance.

II. RELATED WORK

A. 3D Point Cloud Classification

1) Volume-Based Methods: Similar as 2D image processing,
VoxNet [2] introduced the 3D voxelization method to point
cloud data processing, which quantized unstructured point
clouds to regular volumetric grid forms. Then 3D convolutions
were directly applied to point clouds for feature learning.
Such methods fail to leverage the sparsity of spatial point
clouds because of rasterization. It is also challenging to
construct high-resolution voxelization models due to huge
computation and memory costs. To address these issues,

OctNet [3] proposed an unbalanced grid-octree structure,
which allowed higher resolution (256 × 256 × 256) input than
VoxNet. Choy et al. [20] used a sparse convolution method,
only performing convolution operations at occupied voxels to
reduce memory and computational footprint. Despite the great
progress volume-based methods made, there are still problems
with the loss of geometric information due to the transforma-
tion from irregular point clouds to regular 3D voxels.

2) Projection-Based Methods: Projection-based methods
are also closely related to 2D image processing. MVCNN [21],
as the pioneer of projection-based methods, projected 3D point
clouds into multiple views. The features of each view were
extracted by 2D CNNs, and then aggregated these features
through maxpooling. To improve the robustness and accuracy
of the view feature aggregation, several variants have been
proposed. View-GCN [22] utilized the Graph Convolution
Network (GCN) to establish the relationship between different
projection views. Yu et al. [23] pointed out the limitations
of view-based pooling, and proposed a patch-level pooling
method by formulating the view-based 3D classification into a
set-to-set matching problem. However, projection-based meth-
ods may incur the loss of geometric information during the
projection process. Massive view projections tend to cause
high computation cost and memory consumption. Addition-
ally, the number and position of projection views is critical
to the classification performance, but it is still challenging to
chose projection views adaptively for the underlying geometric
structure modeling.

3) Point-Based Methods: Taking the 3D coordinates or/and
normal features as input, point-based methods deal with the
unstructured point clouds directly. The early work, Point-
Net [6], was introduced by Charles et al., where a deep
learning network with MLPs and maxpooling was designed
to achieve feature learning. After that, to aggregate local
features, PointNet++ [7] applied PointNet in a hierarchical
manner and used query ball grouping to construct local
neighborhoods. It proved that the hierarchical structure is
effective for point cloud feature learning. To further leverage
the local information of point clouds, [10], [11] introduced
3D convolution kernels to extract local features, instead of
shared MLPs. Due to the unordered nature of neighbor points,
PointCNN [10] introduced x-transformation to rearrange the
points into a latent and potentially canonical order, followed by
using typical convolution to extract local features from point
clouds.

Another kind of point-based methods is the Graph-
CNN. It establishes connections between local points with
a graph, and then models the local geometric information.
DGCNN [12] constructed dynamic neighborhoods by features
extracted from the former layer, and performed the Graph
Convolution on neighborhoods. Unlike DGCNN, ECC [24]
defined dynamic convolution-like filters based on edge labels,
which also achieved satisfactory results on various datasets.
3DGCN [25] introduced shift and scale-invariance properties
to the deep learning networks, and defined learnable ker-
nels with a graph max-pooling mechanism. DeepGCNs [26]
applied residual/dense connections and dilated convolution to
GCN frameworks to train very deep GCNs. It proved the
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positive effect of network depth in GCNs. All these methods
showed that the Graph Convolution is good at local feature
information aggregating, but nearly none of the aforemen-
tioned methods are designed to model long-range context
dependencies for the input data.

4) Transformer-Based Methods: Several Transformer-based
methods for point cloud classification have been proposed
recently. To learn global features of point clouds by Trans-
formers, Point Cloud Transformer (PCT) [13] adopted the
PointNet [6] architecture where shared-MLP layers were
replaced with standard Transformer blocks. By utilizing the
Offset-Attention mechanism and neighborhood information
embedding, PCT achieved state-of-the-art performance in
point cloud classification. Han et al. [15] proposed another
point-wise approach to learn global features. Specifically, they
used a multi-level Transformer to extract global features of
target point clouds with different resolutions. Then, they con-
catenated these features and fed them into a multi-scale Trans-
former to obtain the final global features. Instead of extracting
global features in a point-wise manner, Point Transformer
(PT) [14] applied Transformer layers to local neighborhoods
of point clouds, and extracted local features hierarchically
through transition down modules. Finally, global features were
obtained by a global average pooling operation. However, this
method may have incurred information redundancy, since the
Point Transformer block was applied to all input points of
each layer. Additionally, as a pure Transformer architecture
(without CNNs), it would have suffered from high computation
and memory costs due to massive linear transformation layers.

B. Vision Transformers

Transformers have achieved a significant success in the
field of computer vision as an alternative to CNNs. Many
3D Transformers [27], [28] were developed from 2D Trans-
formers. Therefore, we make a brief introduction to vision
Transformers in this subsection. Vision Transformer (ViT) [17]
was the first to introduce a pure Transformer framework into
the field of 2D image processing and achieved the better
results compared with CNNs on large datasets. ViT divided
the image into a series of patches, taken as input tokens
for the network, followed by applying several Transformer
blocks for feature learning. Each Transformer block consisted
of two core stages: Multi-Head Attention and Feed Forward.
To leverage local information and reduce computational com-
plexity, Swin Transformer [29] proposed a window-based
Transformer algorithm, i.e., applying the Transformer to
fixed-size windows instead of the global image scale. To build
connections with different non-overlapping windows, Swin
Transformer introduced a shifted window module. Because
of the hierarchical design and cross-window connection, Swin
Transformer surpassed the previous state-of-the-art methods in
terms of image classification. There also exist several vision
Transformer variants [30], [31], [32], [33] which explored
ways to better model local features, such as replacing the
predefined positional embedding or constructing connections
between multiple tokens. Reference [34] investigated a series
of self-attention variants and assessed their effectiveness for

image processing. By introducing convolutions into the Vision
Transformer architecture, CvT [18] combined the benefits
of Transformers with the benefits of CNNs for the image
classification task. It achieved superior performance while
maintaining computational efficiency. Similar approaches [35],
[36] were also proposed in the 3D fields for point cloud
segmentation and place recognition, but few of them explores
the effectiveness of different self attention variants in such
framework.

Inspired by CvT [18], we proposed a multi-scale framework
that incorporates convolution operations into the Transformer
for point cloud classification. Additionally, we also conducted
a detailed investigation on different self attention variants to
explore the one that best suites our framework, and presented
our findings.

III. 3D CONVOLUTION-TRANSFORMER NETWORK

In this section, we showed how to combine Transformers
and convolutions in a hierarchical framework for 3D point
cloud classification. We began by presenting the design
of our hierarchical network architecture, followed by intro-
ducing the convolution-based local feature aggregating and
Transformer-based global feature learning process.

A. Overview

The overall pipeline of our 3DCTN is shown in Fig. 1.
We presented a hierarchical structure for point cloud clas-
sification to improve the efficiency and sensitivity to local
geometric layout, which has been proven to be effective by
many previous works [7], [14], [29]. Taking the original point
cloud as input, the network had two modules operating on
downsampling point sets. Each module had two blocks: the
LFA block and GFL block, where the former block was based
on the Graph Convolution, while the later one was based on
the Transformer. In this way, the network effectively combined
the strong local modeling ability of CNNs with the remarkable
global feature learning ability of Transformers. The numbers
of points in sampling point sets were set to [N/4, N/16] for
two modules respectively, where N is the number of input
points. After two modules above, an additional convolution
layer with 1 × 1 kernel was applied to extend the extracted
feature to 1024 dimensions. Then a global max pooling was
applied to obtain the final global feature for the target point
cloud. Lastly, an MLP Head layer was utilized to get the global
classification logits, which consisted of three linear layers with
the batch normalization and ReLU.

B. Local Feature Aggregating Block

The LFA block was based on the Graph Convolution, and it
was proposed to achieve local feature extraction. By aggregat-
ing the local features to corresponding center points (sampling
points), this block is able to provide effective discriminative
regional feature extraction.

As shown in Fig. 2, given the input point cloud, the farthest
point sampling (FPS) was performed to obtain the point
cloud subset, called the sampling point set. To ensure the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Jonathan Li. Downloaded on August 20,2022 at 01:38:59 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 1. Hierarchical structure of 3DCTN. It mainly consisted of two modules, and each of them has a Graph Convolution-based LFA block and a
Transformer-based GFL block.

Fig. 2. Multi-scale LFA block. Taking Module 1 in Fig. 1 as an example, the LFA block had three key steps: Multi-scale grouping, Context fusion, and
Local feature aggregation.

diversity of the receptive fields for sampling points, multi-scale
neighborhoods of each sampling point were constructed by
query ball grouping [7]. For each neighborhood of a sampling
point, we first presented a context fusion method to encode
and combine the coordinates and feature information of the
neighborhood, which has been proven to be effective in [37].
Then, we adopted Edge Convolution [12] to aggregate the
local features.

1) Context Fusion: Given a neighborhood χi of a sampling
point xi , each neighbor point x j has two kinds of contexts:
coordinate context Pj and feature context Fj . The former is
used to describe the geometric distribution in 3D space, and
the later is used to analyze the semantic information for point
cloud classification. To leverage these contexts, we combined
both Pj and Fj as:

C j = concat (Fj , Pj ), (1)

where C j is the combined feature of x j . Based on such
combined features, we define the relationship between xi and
x j as:

�Ci j = concat (Fj − Fi , Ci ). (2)

By this way, we are able to encode comprehensive local details
for further feature aggregation.

2) Local Feature Aggregation: Having the combined fea-
tures of points in χi , a directed graph � = {B, E} was
used to describe the local structure of χi , where B represents
the neighbor points

�
x j

� j=K
j=1 , K is the number of points

in χi , varying with different modules, and E denotes edge
feature operating on the relationship between xi and x j . The
computation of the edge feature E can be defined as:

Eij = f (�Ci j ), (3)

where f (∗) is a nonlinear operator with a set of learnable
parameters. There are various ways to choose f (∗) [12], and
in our work, we defined f (∗) as:

f (�Ci j ) = Conv(�Ci j ), (4)

where Conv means a point-wise convolution with
1 × 1 kernels.

After computing all edge features, maxpooling was used to
extract the new feature of xi , which is expressed as:

yi = maxpooling
B

Ei j . (5)
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Fig. 3. Transformer-based GFL block, which adopted the offset-attention mechanism.

As such, we can aggregate the local information to the corre-
sponding sampling points for accurate feature representation.

C. Global Feature Learning Block

Taking the aggregated features Y = {yi}i=S
i=1 of sampling

points as input, where S is the number of sampling points,
the GFL block adopted the Offset-Attention mechanism with
the vector attention operator. Additionally, it also incorporated
a learnable position encoding to adaptively capture position
information. There was no input (word) embedding in the GFL
block, since Y from the LFA block can be considered as the
embedded input for the GFL block. In following subsections,
we first elaborate on the Offset-Attention mechanism, which
was proposed by [13] and achieved a great improvement for
point cloud classification. Then, we introduce the learnable
position encoding.

1) Offset-Attention: Fig. 3 shows the detailed structure of
the Offset-Attention mechanism. Unlike the standard self-
attention mechanism, the main idea of Offset-Attention was
to adopt a similar operation as a Laplacian matrix L =
D − E [38] to replace the adjacency matrix E , where D is
the diagonal degree matrix. In particular, the Offset-Attention
mechanism can be defined as:

Fout = O A(Y ) = L B R(Y − VA(Y )) + Y, (6)

where Fout is the final output of the Offset-Attention mech-
anism, L B R combines Linear , Batch Norm, and ReLU
layers, VA(∗) represents the vector attention operator which
is described in detail later, and Y − VA(Y ) is an offset opera-
tor [13] analogous to the Laplacian matrix above. Experiments
(Sec. IV-D) showed that the Offset-Attention mechanism out-
performs other self-attention mechanisms.

Generally, there are two kinds of self-attention operators:
vector attention and scalar attention, where the later has been
applied in many previous 3D Transformer works [13], [15],
while the former has been proven to be more effective than
other operators in the fields of image processing [34] and 3D
point cloud processing [14].

Given input features Y = {yi }i=S
i=1 , we first computed

Query, Key and Value matrices, Q = {qi }i=S
i=1 , K = {ki }i=S

i=1 ,

V = {vi }i=S
i=1 , as:

Q = WQ × Y,

K = WK × Y,

V = WV × Y, (7)

where WQ , WK , WV are three learnable weight matrices. After
that, the standard scalar attention can be formulated as:

Fsa = Esa × V

= σsa(Q × K −1 + ρsa) × V , (8)

where Fsa is the output feature of the scalar attention, Esa is
the adjacency matrix calculated by the scalar product between
Q and K −1, σsa is a normalization function: scale + softmax,
and ρsa represents positional encoding. Essentially, Fsa is
generated by computing the weighted sum of all vectors
in V , according to the adjacency matrix Esa .

Unlike the way of generating the adjacency matrix in
the scalar attention, the vector attention used in our paper
performed a channel-wise subtraction between Q and K ,
which can be described as:

Fva = Eva · V

= σva(τ (Q � K ) + ρva) · V̄ , (9)

where Fva is the output feature of the vector attention,
Eva is the channel-wise adjacency matrix, V̄ is the expanded
Value matrix to ensure the same shape of two terms in the
equation. Specifically, we assumed that the shape of Eva was
(B, N, N, D), where B means the batch size, D means the
feature dimension of qi . Accordingly, the shape of V was
(B, N, D). To ensure the consistent shape, we expanded V
to V̄ , which had the same shape, (B, N, N, D), as Eva.
τ (∗) represents an MLP operation to produce the attention
map, σva is a normalization function: softmax + l1 normaliza-
tion, ρva represents positional encoding which is detailed in
the next subsection, and Q � K is defined as:

Q � K =

⎡
⎢⎢⎣

q1 − k1 q1 − k2 . . . q1 − kS

q2 − k1 q2 − k2 . . . q2 − kS

. . . . . . . . . . . .
qS − k1 qS − k2 . . . qS − kS

⎤
⎥⎥⎦ (10)

In contrast to the scalar product, Q � K was designed to
measure the difference of corresponding channels between two
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feature vectors like qm and kn . Compared with the scalar
attention, the vector attention tends to be more flexible and
expressive since each channel of the output feature can be
modulated according to the channel-wise adjacency matrix.

2) Position Encoding: In the vector attention, a learnable
position encoding was introduced to fuse the local spatial
information, which is essential for local feature representa-
tion. Similar as standard 2D-aware position embedding [17],
we defined the 3D position encoding scheme based on the
relative coordinates P = {Pi }i=S

i=1 of points in χi , which can
be expressed as:

ρva = ξ(P � P), (11)

where P � P is a matrix representing 3D relative coordinates
of points in χi :

P � P =

⎡
⎢⎢⎣

P1 − P1 P1 − P2 . . . P1 − PS

P2 − P1 P2 − P2 . . . P2 − PS

. . . . . . . . . . . .
PS − P1 PS − P2 . . . PS − PS

⎤
⎥⎥⎦ (12)

and ξ represents an MLP operation which consisted of two lin-
ear layers separated by batch normalization and ReLU. It was
used to extend the feature dimension of relative coordinates
from 3 to the same dimension as Q and K , to achieve channel-
wise summation in Eq.(9).

IV. EXPERIMENTS

In this section, we first introduced the implementation of
our algorithm, including hardware configuration and hyperpa-
rameter settings. Secondly, we presented the performance of
our network on the public synthetic and real-scanned datasets,
ModelNet40 [1] and ScanObjectNN [19], and compared it
with the state-of-the-art works in point cloud classification
in terms of accuracy, model size, and processing efficiency.
Thirdly, we showed the results from a series of ablation
studies to verify the effectiveness of each main component in
our framework. Fourthly, we presented detailed investigation
and analysis on a series of self-attention variants (Fig. 5)
in our network for better performance. Lastly, we illustrated
the interpretability of our network by heat map visualization
results, which showed that our method is able to understand
different shapes by their distinctive features.

A. Implementation Details

We implemented the classification network with Pytorch and
trained it on a NVIDIA Tesla V100 GPU. The network was
trained with the SGD Optimizer, with a momentum of 0.9 and
weight decay of 0.0001. The initial learning rate was set
to 0.01, with a cosine annealing schedule to adjust the learning
rate at every epoch. We trained the network for 250 epochs
and set the batch size as 16. All the involved parameters of
our method were empirically set for better performance.

B. Comparison to the State of the Art

We compared our method with the state-of-the-art works
including Transformer-based methods and other deep learning-
based methods, in terms of classification accuracy, model size,
and efficiency.

1) Datasets and Metrics: The ModelNet40 [1] dataset is
widely used in 3D point cloud classification. It consists of
12311 CAD-like models in 40 object categories, which have
been split into 9843 training models and 2468 testing models.
For our this experiment, each model was downsampled to
1024 points with normals by FPS, as input of the network,
following PointNet [6]. Since point clouds in ModelNet40
were generated from the corresponding 3D meshes, the nor-
mals of point clouds could be obtained directly from the
mesh normals. To further evaluate the generalization perfor-
mance of the method to real objects, the real-scanned dataset,
ScanObjectNN [19], was also used in our experiments. It con-
tains ∼15, 000 objects that are categorized into 15 categories
with 2902 unique object instances. Since each object was
segmented from the scene point cloud, point clouds usually
include massive outliers like background points, and were
corrupted by occlusions and noises. Therefore, it was more
challenging to perform shape classification on this dataset.
We used the hardest variant of the dataset (P B_T 50_RS),
and adopted the original train/test split as in [19]. In common
with the ModelNet40 dataset, we downsampled each model
in the ScanObjectNN dataset to 1024 points, as input of our
network. We noted that point clouds in P B_T 50_RS have no
normal information, we only took the 3D coordinates of point
clouds as input.

For evaluation metrics, we utilized the mean accuracy
operated on each category (m Acc) and the overall accuracy
(O A) operated on all classes, which are formulated as:

m Acc =

K

i=1
Ti
Ni

K
,

O A = T

N
, (13)

where T is the number of all correctly predicted point clouds,
T = 
K

i=1 Ti , Ti is the number of correctly predicted point
clouds in class i , K is the number of classes in the dataset,
N is the number of all point clouds in the dataset, N =
K

i=1 Ni and Ni is the number of point clouds in class i .
Additionally, we adopted the total number of parameters,
FLOPs (FLOating Point operations), and FPS (Frame Per
Second) of the benchmarked networks to evaluate the model
size and efficiency.

2) Performance Comparison: We compared our method
with the state-of-the-art Transformer-based methods and other
deep learning-based methods. As shown in Table. I,1 our
method achieved the highest value of m Acc and a compet-
itive value of O A on ModelNet40, thanks to the combina-
tion of the Graph Convolution and Transformer. Specifically,
our method obtained 91.6% Top-1 m Acc, 1.0% higher than
PointTransformer [14] and 0.6% higher than GBNet [46].
The results indicate that our method has robust classification
performance for different shapes. Additionally, our method
also achieved the best results in terms of both m Acc and O A
on ScanObjectNN. This demonstrates that our method has a
strong generalization performance.

1Missing entries are due to lack of source code for particular benchmarked
models.
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TABLE I

CLASSIFICATION RESULTS ON MODELNET40 AND SCANOBJECTNN

Fig. 4. Parallel pattern of our method. An additional MLP-based input embedding was added before the first GFL block.

As shown in Table. I, thanks to our hierarchical structure
and light-weight LFA blocks, our method with single-scale
neighborhood had fewer parameters and FLOPs than other
Transformer-based approaches. This confirms the lightweight
design of our network. Our single-scale model had only
30.4% of the parameters and used only 11.5% of the FLOPs,
compared with PointTransformer. However, since downsam-
pling and neighborhood building operations in the LFA block
were very time-consuming, our method had no remarkable
superiority in terms of FPS. Improving the efficiency of our
network by optimizing the sampling and grouping operations
could be one of our potential future research directions.

C. Ablation Study

In this section, we presented the results of various ablation
experiments to evaluate the effectiveness of each main com-
ponent of our framework on ModelNet40.

1) Hierarchical Structure: The proposed hierarchical struc-
ture can aggregate local features effectively, with the signifi-
cant reduction of computational and memory costs. As shown
in Table. II (Row 2), for the network without the hierarchical

structure, it is inevitable to require more computational and
memory costs, since the multi-scale local feature aggregating
and global feature learning were performed on each point.
This results suggest that the proposed hierarchical structure is
effective to reduce the model size for our framework.

Additionally, we also compared different hierarchical pat-
terns: cascade design and parallel design, where the former
is shown in Fig. 1, and the later is shown in Fig. 4. For the
parallel-design network, since the features from the LFA block
could not be taken as the embedded input to the GFL block,
we added an additional MLP-based input embedding before
the first GFL block. From the results shown in Table. II,
we saw that the cascade design (Row 9) achieved a slight
improvement of accuracy and efficiency compared with the
parallel design (Row 2). This was because the first GFL block
lacks local information, causing poor feature representation.
Moreover, the additional input embedding modules increased
the model size of the parallel-design network.

2) Multi-Scale Strategy: We compared the multi-scale local
feature aggregating with the single-scale (middle scale) way,
and showed the results in Table. II (Row 3). Fig. 2 shows
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TABLE II

ABLATION STUDY

TABLE III

CLASSIFICATION RESULTS OF DIFFERENT PARAMETER SETTINGS FOR THE MULTI-SCALE STRATEGY

that the multi-scale aggregating built three neighborhoods
with different radiuses for each sampling point, while the
single-scale strategy only used the middle-scale neighborhood
to achieve local feature aggregating. From the comparison
results, the classification accuracy of the single-scale strategy
was lower than the multiple-scale strategy. This demonstrates
that multiple receptive fields are able to improve the local
feature aggregating. In terms of the lightweight design, single-
scale strategy led to a significant reduction of 57% in para-
meters, and 73% in FLOPs.

Additionally, we also conducted experiments to choose
the optimal parameter setting for the multi-scale strategy.
As shown in Table. III, we saw that the parameter setting of
1-2 achieved the highest classification accuracy on both Mod-
elNet40 and ScanObjectNN datasets. Since the multi-scale
strategy aimed at aggregating local features, a large-scale
neighborhood tended to include many irrelevant points, low-
ering the classification performance. Therefore, we chose the
1-2 setting as the optimal setting of the multi-scale strategy.

3) Local Feature Aggregating: We studied the effectiveness
of the proposed LFA block (Sec. III-B), and Table. II (Row 4)
shows the results. We first removed the LFA block, making
the framework a pure Transformer network. From the results,
without the local feature aggregating, the performance dropped
significantly, which highlights the importance of the LFA
block. Next we replaced the Graph Convolution in LFA with
the Transformer block, and we saw that the total parameters

and FLOPs of the network were much higher than the original.
These results confirms that local feature aggregating based on
the Graph Convolution has better local modeling ability, and
is crucial in reducing the memory and computational footprint
of our model.

4) Global Feature Learning: We also studied the choice of
different global feature learning methods in the GFL block
(Sec. III-C), and the results are shown in Table. II (Row 5).
According to the results, the removal of the GFL block caused
a drop in classification performance. When we replaced the
Transformer block with the Graph Convolution, the perfor-
mance dropped again, which confirms the superiority of the
Transformer-based GFL block.

5) Position Encoding: The position encoding in Eq.(9) can
introduce the spatial difference of the input words (points) to
the attention map. We conducted an ablation study on that
and showed results in Table. II (Row 6). Without the position
encoding, both m Acc and O A were lower than the original,
indicating the effectiveness of such component.

6) Self-Attention Mechanism: We compared the Offset-
Attention in the GFL block with the standard self-attention
mechanism (shown in Fig. 5(a)) in Table. II (Row 7). From
the results, by using the standard self-attention mechanism,
we observed a 0.8% and 1.4% drop in m Acc and O A
respectively. This suggests that the Offset-Attention mech-
anism outperforms the standard self-attention mechanism.
Additionally, we conducted a detailed investigation about
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Fig. 5. Architectures of various self-attention mechanisms for 3D point cloud processing. (a) Standard self-attention. (b) P-A [35]. (c) A-SCN [47].
(d) CAA [46]. (e) Offset-Attention.

TABLE IV

INVESTIGATION OF SELF-ATTENTION MECHANISMS

different self-attention mechanisms for our framework, and
the architectures of there mechanisms are shown in Fig 5.
See Sec. IV-D for more results.

7) Self-Attention Operator: We also investigated the types
of the self-attention operator used in the GFL block. Generally,
there are two commonly-used self-attention operators: vector
attention and scalar attention. As shown in Table. II (Row 8),
the scalar attention led to a drop of accuracy (0.7% in m Acc
and 0.2% in O A), compared with the vector attention. This
demonstrates the superiority of the vector attention.

D. Investigation on 3D Attentions

In this section, we presented a detailed investigation
on self-attention mechanisms and operators for better per-
formance in point cloud classification. This investigation
is also expected to provide some benefit references for
Transformer-based classification works.

1) Self-Attention Mechanisms: We collected a series of
self-attention mechanisms widely used in the 3D point cloud
processing. As shown in Fig. 5, the standard self-attention
mechanism includes three linear layers to generate Query,
Key and Value matrices. The attention map is estimated by
comparing query and key, and then normalized to limit the
variance of the matrix. The final output can be obtained
by multiplying the attention matrix and value matrix. Atten-
tional ShapeContextNet (A-SCN) [47] and Point-Attention
(P-A) [35] had similar architectures to the standard

self-attention mechanism, with a key difference being both
applied residual connection operations to strengthen the
connection between the input and output. Therefore, they
both achieved better classification results than the standard
self-attention mechanism. In contrast with the aforemen-
tioned point-wise mechanisms, Channel-wise Affinity Atten-
tion (CAA) [46] focused on the channel space, and achieved an
outstanding performance in point cloud classification. It first
used a Compact Channel-wise Comparator block (CCC) to
generate the similarity matrix efficiently, followed by intro-
ducing a Channel Affinity Estimator block (CAE) to generate
the affinity matrix which was able to sharpen the attention
weights and reduce the redundant information. Lastly, the
output was calculated by multiplying the affinity matrix and
value matrix, with the same residual connection as P-A [35].
The results in Table. IV show the Offset-Attention mechanism
achieves a better result than the other, which suggests that it is
more suitable to our framework. Additionally, CAA [46] also
achieved satisfactory performance terms of both accuracy and
efficiency.

Self-attention Operators. The effectiveness of different
self-attention operators has been studied in the field of 2D
image processing by [34], but there is still no such investi-
gation in point cloud classification. Self-attention operators
can be generally divided into two types: scalar attention
and vector attention. The former operates on feature-level
similarity estimation, while the later operates on channel-level
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TABLE V

INVESTIGATION OF SELF-ATTENTION OPERATORS

Fig. 6. Heat map visualization. First row: Airplane, Second row: Chair, Third row: Person. As can be seen, the attention (red) is focused on wings and tails
for airplanes, on legs and backs for chairs, and on heads and limbs for persons.

estimation. The detailed definition of each operator is shown
below:

scalar attention : Fsa = Esa × V = σsa(Q × K −1) × V ,

vector attention : Fva = Eva · V = σva(τ (�(Q, K )) · V̄ ,

(14)

where the representative form of the scalar attention is the
dot product, and � in the second equation represents various
forms of the vector attention, which can be formulated as:

� =

⎡
⎢⎢⎣

δ(q1, k1) δ(q1, k2) . . . δ(q1, kS)
δ(q2, k1) δ(q2, k2) . . . δ(q2, kS)

. . . . . . . . . . . .
δ(qS, k1) δ(qS, k2) . . . δ(qS, kS)

⎤
⎥⎥⎦ (15)

where δ can be expressed as different forms:
Concatenation : δ(qi , ki ) = [qi , ki ] ,

Summation : δ(qi , ki ) = qi + ki ,

Subtraction : δ(qi , ki ) = qi − ki ,

Division : δ(qi , ki ) = qi/ki ,

Hadamard product : δ(qi , ki ) = qi · ki . (16)

We applied all operators above to our framework, to evaluate
the their performance. The results in Table. V show that

the scalar attention outperforms most channel-wise operators
except the subtraction-form vector attention. The results sug-
gestes that the subtraction-form vector attention operator is
most suitable for our point cloud classification framework.

E. Heat Map Visualization

To highlight the interpretability of our network, we gen-
erated attention map visualization results by utilizing the
Grad-CAM method [48] which is commonly used in the 2D
fields. As shown in Fig. 6, heat maps show the different regions
of interest (ROI) of the network for different types of point
clouds. For the airplane category, our network focused more on
airplane wings and tail, which are key discriminative geometric
features. For the chair category, the ROI of our network were
the chair leg and back, which makes them distinguishable
from desks. For the person category, our network focused
more on the head and limbs, which is also consistent with our
common sense of person classification. Specially, as shown in
Fig. 6 Row 3 (e), when there were interference point sets (like
backpack), our network was still able to focus on the key areas
of the person, which illustrates the robust performance of our
network.
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V. CONCLUSION

In this paper, we proposed a hierarchical framework that
incorporated convolutions into Transformers for 3D point
cloud classification. Taking a downsampled point cloud as
input, our method had two main modules to extract the global
feature progressively. In each module, we first aggregated the
multi-scale local features by the Graph Convolution and then
learned the global features by the Transformer. As such, Our
network was able to combine the strong local modeling ability
of CNNs with the remarkable global feature learning ability of
Transformers. After that, we added an additional convolution
layer with a 1×1 kernel, a maxpooling operation, and an MLP
head layer sequentially, to generate final classification results.
To explore the better classification performance, we conducted
a detailed investigation on a series of self-attention variants.
To demonstrate the effectiveness of the proposed method,
we designed and performed a number of ablation experiments
on main components of our framework. Extensive experi-
ments on ModelNet40 and ScanObjectNN datasets proved
the effectiveness of our method, and showed that it achieves
state-of-the-art classification performance with a lightweight
design.

Future work. There have been many studies on the combi-
nation of the convolution and Transformer in 2D images, and
we believe that it will also be a promising research direction
in 3D point cloud processing. In the future, we will further
develop our framework and extend it to more complex 3D
applications, such as point cloud segmentation and object
detection.
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