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A B S T R A C T   

Expansion-based methods are among the fastest algorithms to detect obstacles for safe navigation of Micro-Aerial 
Vehicles (MAVs). These methods are based on estimating an enlarging rate which is mostly computed using point 
features. Using points alone may result in situations where obstacles are only partially identified. This paper 
presents a new technique that uses image regions, instead of points, for estimating the expansion rate. The 
proposed algorithm utilises a fisheye camera that can be installed in front of a drone to detect obstacles in all 
directions. The camera takes images on which obstacles are identified. At each point in time, we extract the 
regions on the latest fisheye image and check to determine whether or not its regions belong to an obstacle. This 
step is completed by matching region points with those within the previous image. If at least three points are 
matched, then the convex hulls of the matched points on both images are formed. The expansion ratio of the 
convex hull areas is then estimated. If this ratio is bigger than a certain threshold, the region on the latest image 
is determined as an obstacle; otherwise, it is disregarded. This process is repeated until all pixels of the image are 
labelled either as obstacle or non-obstacle. Experiments were carried out using 50 pairs of fisheye images that 
covered a variety of obstacles, including people, pillars, trees, walls, and so on. The findings showed between 
74%, and 84% of pixels were labelled correctly. By comparing these results with those obtained by the method 
developed by Al-Kaff et al. (2017), it is clear that the proposed method produces more stable and accurate results.   

1. Introduction 

Due to their small size, light weight, Micro-Aerial Vehicles (MAVs) 
are ideal platforms for indoor and outdoor applications (Bi et al., 2019; 
Chataigner et al., 2020; Gao et al., 2020). However, obstacles, including 
buildings, trees, people, and other structures, may cause a MAVs to 
crash. The usual step in detecting an obstacle is to build a three- 
dimensional map of the area (McGuire et al., 2017; Pestana et al., 
2019) which might be difficult, due to MAVs’ limited processing and 
energy storage capabilities (McGuire et al., 2017; Barry et al., 2018). 

Obstacle detection techniques can be classified into sensor-based 
(Giannì et al., 2017) and vision-based (Zeng et al., 2016; Al-Kaff et al., 
2017; Häne et al., 2017; Barry et al., 2018). In sensor-based techniques, 
active sensors such as a laser (Díaz-Vilariño et al., 2016; Giannì et al., 
2017; Li et al., 2019), radar (Giannì et al., 2017), sonar (Qin et al., 

2021), ultrasonic (Singh and Kapoor, 2021), and Kinect (Kucukyildiz 
et al., 2017) can be used. Active sensors are not ideal for MAVs having 
limited weight and cost (Gao et al., 2020) or those with high energy 
consumption (Zahran et al., 2018), and sensitivity to weather conditions 
(Lee et al., 2016). 

In contrast to active sensors, cameras (as passive sensors) provide a 
lot of information about the environment (Figorito and Tarantino, 2014; 
Yin et al., 2021). Vision-based methods use cameras to detect obstacles 
using grayscale values (Mashaly et al., 2016), point features (Al-Kaff 
et al., 2017), and edge details (Huh et al., 2008; Padhy et al., 2019). 
They can be divided into monocular (Al-Kaff et al., 2017; Badrloo and 
Varshosaz, 2017) and stereo (Huang et al., 2015; McGuire et al., 2017; 
Barry et al., 2018). In stereo methods, two cameras are used to capture 
stereo images in real-time to generate the three-dimensional map of the 
surroundings, then used for obstacle detection. This approach has been 
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vastly employed to guide visually impaired people (Simões et al., 2020), 
vehicles (Jung et al., 2007; Kim et al., 2015), Unmanned Aerial Vehicles 
(UAVs) (Huang et al., 2015; Tijmons et al., 2017; McGuire et al., 2017; 
Barry et al., 2018), and MAVs (McGuire et al., 2017; Pestana et al., 
2019). Unfortunately, such methods are not computationally cost- 
effective for MAV microprocessors (McGuire et al., 2017; Barry et al., 
2018). To resolve this issue, a powerful Graphics Processing Unit (GPU) 
is needed (Aguilar et al., 2017). Also, since a method of such relies 
mostly on accurate system calibration, a tiny error could potentially 
affect the system’s stability over time (Barry et al., 2018). 

On the other hand, monocular vision-based obstacle detection 
methods make use of a single camera. They detect obstacles using im-
ages taken by a camera mounted in front or at the sides of an unmanned 
vehicle (Zeng et al., 2016; Al-Kaff et al., 2017; de Croon and De Wagter, 
2018; Lin et al., 2018; de Croon et al., 2021). Monocular techniques are 
divided into four categories (Singh and Kaur, 2017): appearance-based 
(Lee et al., 2016), motion-based (Gharani and Karimi, 2017; Ho et al., 
2018), depth-based (Häne et al., 2017; Lin et al., 2018), and expansion- 
based (Al-Kaff et al., 2017; Badrloo and Varshosaz, 2017). Appearance- 
based methods only involve the appearance properties of objects and, 
thus, usually struggle in outdoor environments with complex objects 
present (Lee et al., 2016; Mashaly et al., 2016). Similarly, motion-based 
techniques cannot usually detect obstacles directly in front of the cam-
era (Al-Kaff et al., 2017). Depth-based algorithms try to produce a 
complete three-dimensional map (Häne et al., 2017) of objects through 
unnecessary yet, costly computations. 

Overall, expansion-based methods are among the simplest and fast-
est algorithms that use an object’s enlarging rate (across consecutive 
frames) (Badrloo and Varshosaz, 2017) to determine obstacles. These 
methods follow a similar concept used by human eyes, where geometric 
information, including scale (Mori and Scherer, 2013) and convex hull 
area (Al-Kaff et al., 2017) of objects are used to detect the obstacles. 
They do not have a detailed map of objects. Unlike motion-based 
methods, they can detect frontal obstacles and, thus, can be more 
appropriate for the safe navigation of MAVs. 

Most expansion-based approaches rely on detecting object points for 
obstacle detection (Mori and Scherer, 2013; Al-Kaff et al., 2017; Badrloo 
and Varshosaz, 2017; Häne et al., 2017). However, using points alone 
may not be as efficient as needed; thus, the MAV may crash into unde-
tected obstacles. To resolve this problem, we present a new method that 
works based on the same concept but using region-enlarging rates 
(across multiple images). We use a fisheye camera that can be mounted 
in front of a drone to cover large portions of the surrounding areas. As 
will be shown, the presented approach outperforms the current tech-
niques and produces better and more reliable results. 

The main contributions of this study are summarized in  

(a) Developing a new expansion-based method: instead of points, our 
technique uses the expansion rate of regions across successive 
images to accurately and reliably detect obstacles. Thus, 
compared to similar approaches, we obtain more complete and 
accurate results.  

(b) Implementation of the suggested approach on fisheye images: the 
implementation of our algorithm on fisheye images allows for 
larger portions of the surroundings to be simultaneously inves-
tigated for obstacles. Fisheye images present a lot of distortions 
and follow a different calibration model than frame-based im-
ages, and we had to introduce a number of additional steps in the 
proposed obstacle detection technique. 

The rest of this paper is organised as follows. Section 2 reviews the 
related work about monocular obstacle detection techniques. Section 3 
describes the proposed method for detecting obstacles. In Section 4, 
experiments are presented to evaluate the proposed method and 
compare its results with those obtained with one of the best point-based 
techniques developed by Al-Kaff et al. (2017). Finally, the paper is 

concluded in Section 5, where recommendations and suggestions for 
future works are presented. 

2. Related work 

Numerous techniques fall within the mono obstacle detection cate-
gory (Huh et al., 2008; Lee et al., 2016; Mashaly et al., 2016; de Croon 
and De Wagter, 2018). As our technique also falls within this category, 
we discuss the relevant literature in this section. Such methods can be 
divided into four types (Singh and Kaur, 2017): appearance-based (Lee 
et al., 2016), motion-based (Gharani and Karimi, 2017), depth-based 
(Häne et al., 2017; Lin et al., 2018), and expansion-based (Al-Kaff 
et al., 2017) and are discussed in more detail. 

2.1. Appearance-based 

An obstacle is defined as a foreground object against a uniformly- 
coloured background thus it can be identified using edge (Huh et al., 
2015), colour (Mashaly et al., 2016), texture (Ulrich and Nourbakhsh, 
2000), and object shape (Lee et al., 2016) information. Ulrich and 
Nourbakhsh (2000) classified each pixel in an image as an obstacle or 
terrain based on its grayscale value. Lee et al. (2016) used Markov 
random field segmentation to detect obstacles in indoor environments. 
Huh et al. (2015) defined a horizon line to separate the sky from the 
ground. To extract moving obstacles, they used a particle filter algo-
rithm. In a similar study, Mashaly et al. (2016) created a binary image to 
separate obstacles from the sky. De Croon and De Wagter (2018) used a 
self-supervised learning method to extract the horizon line. 

Appearance-based methods are generally limited to situations in 
which obstacles can easily be distinguished from the background. Un-
fortunately, this assumption is frequently violated, especially in complex 
environments with objects of varying shape and colour, such as build-
ings, trees, and humans (Zeng et al., 2016). 

2.2. Motion-based 

In these methods, depth is calculated using motion information. 
Several studies have been conducted in this area (Gharani and Karimi, 
2017; Tsai et al., 2018). Optical flow is a type of data used in most 
motion-based approaches (Ho et al., 2018; Cho et al., 2019). Gharani 
and Karimi (2017) created an obstacle detection system that measures 
optical flow on two consecutive images and chooses some points for 
obstacle detection. The optical flow is proportional to insect flight pat-
terns. Bees, for example, never travel in a straight line but rather in a 
zigzag pattern. The zigzag motion produces motion vectors that can be 
used to calculate the depth and detect obstacles. Therefore, detecting 
frontal obstacles using optical flow in direct movements is difficult (de 
Croon et al., 2021; Urban and Caplier, 2021). 

2.3. Depth-based 

To detect nearby obstacles, in depth-based methods, the depth in-
formation is obtained from a single image. It is used to obtain a complete 
three-dimensional map of the environment (de Croon and De Wagter, 
2018; Gao et al., 2020; Silva et al., 2020; de Croon et al., 2021). Motion 
stereo is used in some of these methods (Häne et al., 2017; Lin et al., 
2018), which can be acquired using fisheye cameras (Häne et al.; 2017). 
Lin et al. (2018) navigated a MAV using a fisheye camera and an Inertial 
Measurement Unit (IMU). They used key frames and motion stereo to 
calculate depth. 

Recently, researchers have estimated depth using artificial neural 
networks (Kumar et al., 2018; Mancini et al., 2018). For example, Kumar 
et al. (2018) used four fisheye cameras and a Convolutional Neural 
Network (CNN) to estimate the depth around a car. CNNs learn various 
characteristics of the desired features during a training step, for which 
the more data used, the more accurate results obtained. They heavily 
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rely on the availability of a large number of high-quality images (Lee 
et al., 2021), which may not always be easy to obtain, particularly in 
complex environments. 

Due to the need for a three-dimensional map of the environment, 
depth-based methods are computationally intensive (Al-Kaff et al., 
2017; Silva et al., 2020). Thus, unless a powerful GPU is used, this can be 
a problem, especially with MAVs (Aguilar et al., 2017). 

2.4. Expansion-based 

Expansion-based employs a concept similar to human perception, i.e. 
the enlargement rate of the objects between successive images. Several 
studies have been conducted using expansion-based methods (Mori and 
Scherer, 2013; Zeng et al., 2016; Al-Kaff et al., 2017; Badrloo and 

Varshosaz, 2017; Häne et al., 2017; Escobar-Alvarez et al., 2018; Padhy 
et al., 2019; Lee et al., 2021). Different enlargement rate estimation 
criteria have been used. For example, Mori and Scherer (2013) detected 
obstacles using point scale variations extracted from Speeded-Up Robust 
Features (SURF). To detect the obstacles, Zeng et al. (2016) used the 
expansion of an object boundary. In a more recent study, Al-Kaff et al. 
(2017) used the scale changes of points extracted using the Scale- 
Invariant Feature Transform (SIFT) algorithm and their convex hull 
area ratio. In contrast to other algorithms, which only provide obstacle 
points (Mori and Scherer, 2013; Badrloo and Varshosaz, 2017; Häne 
et al., 2017), they use the convex hull of points as the obstacle region. 
Furthermore, Badrloo and Varshosaz (2017) proposed a method for 
detecting obstacles based on distance ratios, while Aguilar et al. (2017) 
used a SURF template of obstacles and points. Padhy et al. (2019) used 

Fig. 1. Obstacle detection process. (a) The first image. (b) The second image. (c) The selected part in the second image. (d) Extracted regions in the selected part. (e) 
Matched points. (f) Convex hull of the points of a region in the second image. (g) Convex hull of the corresponding points in the first image. (h) The region’s binary 
obstacle image. (f) The final binary obstacle image. 
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the Euclidean distance ratio of matched points to detect obstacles. Later, 
Lee et al. (2021) identified an obstacle tree by calculating the ratio of its 
length over image to the relevant image dimension. 

Compared to the previous three methods, expansion-based are 
preferred as they do not require a complete map of the surroundings. 
Furthermore, because they employ point or distance features, they can 
be used to detect a wide range of objects (Badrloo and Varshosaz, 2017; 
Lee et al., 2021). Nevertheless, there might not be enough points for to 
completely identify an object in many cases. A door or a wall, for 
example, may have a featureless smooth texture, making the feature 
algorithm fail. Thus, the resulting obstacle points may be incomplete or 
contain gaps. Thus the main goal of this paper is to present a new 
technique that employs a number of criteria/approaches to make sure 
the obstacle detection is as complete as possible. Also, MAVs may collide 
with objects from all directions. Using more cameras can be considered 
as an immediate solution. However, as they are small, this may not be 
possible (Gao et al., 2020). As a result, the proposed algorithm employs a 
fisheye camera that can be installed in front of a drone, allowing 
detection to occur in all directions. as will be shown, we have imple-
mented our algorithm on fisheye images so obstacles can be identified in 
all directions 

3. Methodology 

In this section, various steps of our obstacle detection technique are 
described. We use a fisheye camera to take the images. Before the images 
are captured, the fisheye camera is calibrated in the laboratory (Section 
3.1). Then, as shown in Fig. 1, at any time during the drone’s flight, a 
pair of consecutive images are taken and used to detect the obstacles 
(Fig. 1 (a) and Fig. 1 (b)). We call them the first and second images. 
Then, the second image is divided into three left, middle, and right parts. 
Based on the drone’s flight direction, one of the parts (Fig. 1 (c)) is 
selected for obstacle detection. If the drone moves forward, the middle 
part is used; otherwise, one of the other two is chosen accordingly. Then, 
the regions within the selected part are extracted (Fig. 1 (d)). In the 
meantime, the pixels of the selected part is matched with those in the 
first image (Fig. 1 (e)). At this stage, the convex hulls of the points 
detected in each region are determined in both the first and second 
images (Fig. 1 (f) and Fig. 1 (g)). The ratio of the two convex hull areas is 
then estimated. If it is bigger than a certain threshold, the region is 
regarded as an obstacle, which is saved as a part of the final obstacle 
binary image (Fig. 1 (h)). The above process is repeated for all of the 
regions until the final binary obstacle image is completed (Fig. 1 (f)). 

The steps described above can be summarised in (a) data acquisition 
and preparation, (b) region extraction and matching region points, and 
(c) obstacle detection. These are shown in Fig. 2 and are detailed in the 
following sections. 

3.1. Data acquisition and preparation 

Fisheye camera images have a significant amount of distortion 
(especially on the sides). Thus, it affects the precision of the measure-
ments. As a result, calibration parameters must be accurately computed 
and applied to the image coordinates before any calculations are per-
formed (Liang et al., 2021). In this study, the calibration was performed 
once in the laboratory, using a series of images from a chessboard. 
Sample images are shown in Fig. 3. 

There are many calibration models specifically proposed for fisheye 
cameras (Ricolfe-Viala and Sánchez-Salmerón, 2010; Urban et al., 2015; 
Choi et al., 2019; Jarron et al., 2019; Ji et al., 2020). Scaramuzza and 
Ikeuchi (2014) presented a model that can be applied to both catadi-
optric and fisheye cameras in a unified framework. It can model a 
fisheye camera with very large Fields of View (FoV) of up to 195◦

(Scaramuzza and Ikeuchi, 2014); as a result, this model is used in this 
study. The camera parameters can be calculated by: 

λ.

⎡

⎣
u˝
v˝
w˝

⎤

⎦= λ.g(α.U’)= λ.

⎡

⎣
(
α.u’

α.v’
)

f (α.ρ’)

⎤

⎦= λ.α.

⎡

⎣
(
u’

v’
)

a0 +⋯+aNρ’N

⎤

⎦=P.Xλ,α> 0

(1) 

As shown in Fig. 4 (b) and Fig. 4 (c), the variables (u ’, v’) and (u”, 
v”) in Eq. (1) represent the image of the ground point X on the image 
plane and the sensor plane, respectively. λ and α denote the scale 
parameter, and ρ’ is the Euclidean distance between the point and the 
centre of the image. Additionally, X∈R4 is expressed as homogeneous 
coordinates, and P∈R3×4as perspective projection matrix. The variable 
α can be combined with λ, and in general, the coefficients ai, i = 0, 1, 2, 
…, N corresponds to the same number of N + 1 polynomial parameters 
that must be specified in the calibration step. 

Once the calibration is carried out, the next step is to take the images. 
Essentially, the images should be captured using a camera mounted on a 
real drone and in a real flight. This requires time and resources that, 
unfortunately, in this research, the authors did not have. Thus, in this 
paper, the image acquisition is carried out using a camera. However, 
they are taken in exactly the same manner as those taken in real-time 
applications. 

For this, we need a pair of sequential images at each point of time 
(Fig. 1 (a) and Fig. 1 (b)). To give MAV enough time to interact safely 
with the surroundings, we process consecutive frames, the time interval 
of which is equal to: 

T = 1/fbs (2)  

3.2. Extracting regions and matching region points 

To detect the obstacles, the second fisheye image is divided into three 
horizontally equal sections: left, middle, and right (Fig. 5 (b)). To detect 
the obstacles in the proposed approach, we use the expansion rate of 
homologous regions across a pair of successive frames, which we call the 
first and second images. 

Homologous regions can be identified by detecting an object region 
in the first image and tracing it forward in the second image. However, 
this requires precise extraction and matching of the object boundaries, 
which is a challenging and difficult task, especially in complex envi-
ronments (Chen et al., 2020). To resolve the problem, the regions are 
initially identified in the second image to ensure they have counterparts 
in the first image (as the time interval between the frames is short). To 
identify the regions in the second image, the Seeded Region Growing 
(SRG) algorithm (Asmussen et al., 2015) is used, with image pixels taken 
as seed points. This process is repeated until all pixels inside a specific 
region are assigned to it. At this stage, any region smaller than a given 
threshold is disregarded (see Section 4.1). Also, we fill in the gaps within 
the regions using a closing morphological operation (Said et al., 2016) 
by: 

Closing = (IM ⊕ SE) ⊖ SE (3)  

where ⊕ and ⊖ denote the dilation and erosion, respectively, SE is the 
Structural Elements, and IM stands for image. Fig. 1 (d) shows one of the 
images used in our experiments and its extracted regions. 

In addition to delineating the regions, pixels of the selected part in 
the second image are matched with those in the first one. In this paper, 
since fisheye images contain a lot of distortions, we used the Affine-SIFT 
(ASIFT) algorithm (Yu and Morel, 2011) for matching. ASIFT is an 
improvement to the SIFT method (Lowe, 2004), and is invariant to the 
four parameters of the affine transform. To filter out the incorrect 
matches, we first correct their coordinates using the calibration pa-
rameters estimated before. Then, we use the fundamental matrix for an 
estimation of which LMedS (Rusiecki, 2012) algorithm is used due to its 
low sensitivity to incorrect match points. 

There are situations where the number of matched points in a region 
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Fig. 2. The framework of the proposed method.  
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is insufficient (i.e. less than 3 non-collinear points). Thus, the region is 
searched for additional corner points using the Shi-Tomasi algorithm 
(Mu and Li, 2018), which after being matched in the first image, are 
added to the region points. It is hoped that now the region contains 
enough matched points. Otherwise, it is disregarded and considered as a 
non-obstacle object 

3.3. Obstacle detection 

Any region that contains at least three non-collinear points is 
considered as a potential obstacle. To determine this, the convex hull of 
its match points is generated in both images (Fig. 1 (f) and Fig. 1 (g)). 
The convex hull is regarded as an irregular polygon. As a result, the area 
of a given C as a convex hull can be determined as follows: 

Carea =
1
2

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

x1

x2

x3

⋮

y1

y2

y3

⋮
xn yn

x1 y1

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

=
1
2
[(x1y2 + x2y3 + x3y4 + ⋯ + xny1) − (y1x2 + y2x3 + y3x4 + ⋯

+ ynx1) ] (4)  

where × (1: n) and y (1: n) are vertices, and n is the number of sides of the 
polygon. To determine if the region should be considered as an obstacle, 
we use the following equation: 

Ratio ( Carea) = C2area/C1area (5)  

where C2area and C1area denote the convex hull areas in the second and 
first images, respectively. A region is considered to be an obstacle, if the 
ratio ( Carea) exceeds a certain threshold. Assuming that a1, and a2 are 
the areas the convex hulls in the first image and in the second image, 
from Fig. 6, it can easily be shown that: 

a2

a1
= (

H + h
H

)
2 (6)  

where H is the distance between the object and the second image, and h 
is the spatial distance between the two images (Fig. 6). The minimum 
value for H, is called the reaction distance Hm which is the minimum 
distance an MAV needs to preserve to avoid obstacles. This means if the 
ratio of the areas is equal to or bigger than that obtained by using H=Hm. 
In practice, we may consider a larger value to be on the safe side. 

The preceding procedure is repeated for all of the regions until all 
pixels in the second image are labelled as either obstacle or non- 

Fig. 3. Sample of the images for the fisheye camera calibration.  

Fig. 4. Relationship between the points u’ ،u˝ and the vector P (which connects the image’s centre O to the ground point X), (a) Catadioptric coordinate system, (b) 
sensor plane, and (c) image plane. 

Fig. 5. Left, front, and right of the fisheye image. (a) FoV for each section. (b) Each section’s image.  
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obstacle. The final output is a binary image with highlighted obstacle 
locations in white and non-obstacle regions in black. Following that, 
using the closing morphological algorithm, the holes in the obstacle 
image are closed (Said et al., 2016). 

4. Results and discussion 

In this section, the proposed algorithm for obstacle detection is 
evaluated. For this, a fisheye camera was moved in front and side di-
rections in a relatively complex environment that included various ob-
jects to perform the experiments. In addition, the results were compared 
with those obtained by Al-Kaff et al. (2017). In each experiment, a bi-
nary image was produced on which obstacles and non-obstacles were 
presented by white and black pixels, respectively. For evaluations, the 
following terms were used: 

TP: The number of pixels that are indeed obstacles and detected as 
obstacles. 

FP: The number of pixels that are actually not obstacles but detected 
as obstacles. 

FN: The number of pixels that are actually obstacles but are detected 
as non-obstacles. 

TN: The number of pixels that are actually not obstacles and are 
detected as non-obstacles. 

The above terms can be used to compute the recall, precision, and 
overall accuracy of the results (Hong and Oh, 2021) by the following 
equations. 

Recall =
TP

TP + FN
× 100% (7)  

Precision =
TP

TP + FP
× 100% (8)  

Overallaccuracy =
TP + TN

TP + FP + FN + TN
× 100% (9) 

A low recall rate suggests obstacle detection is not carried out 
completely, which is risky for an MAV. The precision parameter mea-
sures the algorithm’s accuracy in detecting non-obstacles. When preci-
sion is poor, non-obstacles are assumed to be obstacles. As a result, 
MAV’s manoeuvrability is limited by low precision. In addition to the 
above parameters, the time spent on each experiment was also 
examined. 

4.1. Experimental results 

We used an LG 360 CAM fisheye camera to take fifty pairs of images, 
twenty-five pairs of which were taken with the camera moving forward 
(Fig. 7) and the other twenty-five were taken with the camera moving to 
the sides (Fig. 8). Images were analysed in pairs to compute the 
enlarging rate between sequential images. To define the distance be-
tween the images of each pair, we assumed that the drone’s speed is 10 
m/s, and the image acquisition is carried out at 30 fps. Thus, h is equal to 
33 cm. Also, we assumed the drone’s minimum reaction time is equal to 
250 msec. Thus, Hm is equal to 2.5 m. As a result, regions having a 

convex hull ratio bigger than 1.28 must be considered as immediate 
obstacles. To be on the safe side, we used 1.20 as the minimum value 
(the threshold) that identifies a region as an obstacle. Fig. 7 and Fig. 8 
show several samples, with the corresponding outputs at each step as 
discussed in Section 3. Fig. 7 shows samples for the forward motion 
images, while Fig. 8 presents samples of the images taken assuming the 
drone moves to the right. 

The dimensions of the images were 1260 × 2560 pixels, while the 
camera’s field of view was 206◦. As discussed in Section 3.1, we used the 
Scaramuzza and Ikeuchi (2014) method for camera calibration that 
works for images of up to a maximum of 195◦. Thus, in our experiments, 
the far left and right 6◦s of the images have not been used. The Scar-
amuzza and Ikeuchi (2014) technique assumes an optimal Calibration 
yielded five parameters: a0, a1, a2, a3, and a4 (Table 1). Calibration 
parameter values were derived using N = 4, which is used by Scar-
amuzza and Ikeuchi (2014) method, 

The regions were extracted using a grayscale difference threshold of 
10, with those smaller than 300 pixels disregarded. To fill in the holes, 
we determined that 20 was the best closing morphological parameter 
threshold value. To remove incorrect matches, we chose 2000 random 
points to calculate the fundamental matrix parameters. Also, Shi-Tomasi 
algorithm (Mu and Li, 2018) to detect additional corner points were 
where then matched using the Least Square Matching (LSM) algorithm 
using a 15 × 15 pixels window size and a threshold of 0.5. 

Fig. 7 (e) and Fig. 8 (e) show the final results in which obstacles are 
highlighted in white and non-obstacles in black. The implementation 
results of each step for forwarding and right motion are illustrated in 
Table 2. 

It is evident that the average number of extracted regions varies 
between 7 and 48, depending on the complexity of features in the image. 
Moreover, the third row of Table 2 shows that 64% of the regions had at 
least three ASIFT match points. This finding shows that 36% of the re-
gions still do not have a corresponding point and cannot be used for 
obstacle detection. Therefore, the new extracted corners provide at least 
three match points for 18% of the regions. As a result, 18% of regions 
can also be used in obstacle detection by matching corner points, and 
only18% of the regions remain without corresponding points. For this 
reason, the seventh row of Table 2 shows that 18% of regions are not an 
obstacle due to a lack of match points. These regions are mostly on the 
right side of the image. Because of the low quality of the fisheye images 
on the sides, the number of matched points is reduced. 

At this stage, we need to evaluate the results because it is necessary 
to compare the identified obstacles with the real ones. Therefore, a bi-
nary image of the obstacles was manually constructed. The pixels 
belonging to less than 2.5 m away were then manually identified and 
marked in white in the binary image (Fig. 7 (f) and Fig. 8 (f)). Finally, the 
percentages of recall, precision, and overall accuracy were calculated by 
comparing the overlap between the real binary images of the obstacle 
and the binary image created using the suggested method. Table 3 dis-
plays the average of evaluation results and computation time. Please 
note that the time was taken to run the algorithm in MATLAB software 
R2018b using a system with the following specifications:  

▪ CPU: Intel (R) Core (TM) i7-8550U CPU @ 1.80 GHz  
▪ RAM: 12 GB  
▪ Graphics card: NVIDIA GeForce MX130 

It is evident that the average recall accuracy for the people, wall, 
tree, pillar and other obstacles data sets are 98.5%, 77.4%, 83.6%, 
78.6%, and 83.5%, respectively. Fig. 7 (e) shows the completeness of 
obstacle regions. It is observed that the wall and pillar data sets have 
lower average recall accuracy than the other four. For the people, wall, 
tree, pillar and other obstacles data sets, average precision accuracy is 
83%, 79.4%, 63.4%, 60.8%, and 97%, respectively. Average precision in 
the tree data set and especially the pillar data set is not good. Finally, the 
algorithm’s average overall accuracy is 91.4%, 77.4%, 77.6%, 78%, and 

h    H

Image 1 Image 2

A

a1 a2

Fig. 6. Increasing the area of an object in consecutive images.  
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84% for the first twenty-five data sets. 
For the data taken when moving to the right, average recall accuracy 

is 96.5%, 56.6%, 57%, 71.4%, and 90.5% for the people, wall, tree, 
pillar and other obstacles data sets, respectively. The wall and tree data 
sets have lower average recall accuracy. The people, wall, tree, pillar, 

and other obstacles data sets had average precision accuracy of 99%, 
59.4%, 47%, 77.8%, and 91.5%, respectively. The tree data set’s average 
precision accuracy is less than the other data sets. This finding is due to 
the grayscale similarity of trees and distant features. Finally, the people, 
wall, tree, pillar and other obstacles data sets exhibit 97.3%, 56.8%, 

Fig. 7. Sample of the images for forward motion. (a) The first image. (b) The second image. (c) Extracted regions of the second image. (d) Obstacle regions obtained 
using the proposed method. (e) The final obstacle binary image after closing morphological algorithm. (f) The true binary image of the obstacles. 
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56.6%, 78%, and 88.5% average overall accuracy. Overall, the results 
indicate that the proposed technique enables the identification of the 
obstacles with an average of 84.3% and 74.4% accuracy in forward and 
right motion mode, respectively. 

4.2. Comparative study 

In this section, the proposed method is compared with a similar al-
gorithm. Al-Kaff et al. (2017) published a study on expansion-based 
methods. Unlike previous algorithms that only provide obstacle points 
(Mori and Scherer, 2013; Aguilar et al., 2017; Badrloo and Varshosaz, 

Fig. 8. Sample of the images for rightward motion. (a) The first image. (b) The second image. (c) Extracted regions of the second image. (d) Obstacle regions 
obtained using the proposed method. (e) The final obstacle binary image after closing morphological algorithm. (f) The true binary image of the obstacles. 
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2017; Padhy et al., 2019), their methods considered the convex hull as 
an obstacle region in addition to obstacle points. Thus, similar to our 
method, their technique displays the obstacle as a region. For this 
reason, we compared our method with their technique. 

In Al-Kaff et al.’s (2017) method, keypoints and the descriptors are 
extracted from two successive images using SIFT (Lowe, 2004). After 
detecting the keypoints and the descriptors, the Brute-Force algorithm 
with a distance-ratio threshold of 0.28 was applied to match the key-
points from the two images. Afterwards, the algorithm returns the 
matched keypoints if and only if its size is growing. Then, the size ratio 
of the matched keypoints from the second image to the first image was 
calculated by Eq. (10). In this equation, mkp1(i) and mkp2(i) denote the 
i-point scale sizes in the first and second images, respectively. 

Ratio(mkp) =
1
N

∑N

i=1

size(mkp2(i) )
size(mkp1(i) )

(10) 

Furthermore, the area ratio of the convex hull from the second to the 
first images was calculated by applying Eq. (11). Size (c1) and size (c2) in 
Eq. (11) are also the convex hull areas of the first and second images, 
respectively. 

Ratio(c) =
size(c2)

size(c1)
(11) 

Finally, if the size ratio of the matched keypoints is greater than 1 
and the area ratio of the convex hull is greater than 1.45, the convex hull 
points and regions are identified as obstacles. Thus, the obstacle is less 
than 2.5 m away from the MAV when the thresholds of 1 and 1.45 are 
used. 

Fig. 9 depicts the comparison results. As shown in the figure, only a 
few points on the obstacle and a piece of the convex hull were detected 
by Al-Kaff et al. (2017) (Fig. 9 (a) and Fig. 9 (b)). Therefore, obstacle 
regions have not been completely detected. As shown in Table 4, the 
recall value of our algorithm is bigger than that of the available method 
in all of the data sets used in this research. As can be seen, on average, 
the proposed technique outperforms the Al-Kaff et al. (2017) approach 
by 60.7%, 2.5%, and 32.4% in forward motion and 57.6%, 56%, and 
53.6% in rightward motion with respect to recall, precision, and overall 
accuracy metrics, respectively. This suggested that, although Al-Kaff 
approach (2017) may have been successful in working with frame im-
ages, our region-based approach produces more accurate and complete 
results when fisheye images are utilised for obstacle detection. 

4.3. Discussion 

The experiments in Section 4.1 analysed outcomes in two tests. In the 
first test, the evaluation was completed while the camera moved ahead. 
In the second test, evaluations were also completed in the rightward 
direction. The suggested algorithm was then compared to a currently 
available method (Section 4.2). 

When moving forward (first test), the obstacle’s regions are fully 
detected. However, the wall and pillar data sets had lower obstacle 
detection average recall accuracy than the others, as some obstacle parts 
were not detected completely. This problem appears to be due to a lack 
of match points in one area and the probability of inaccurate match 
points in other areas. Moreover, because obstacles and distant objects 
have similar grey levels, the SRG algorithm extracted them as a single 
area. As a result, the proposed method failed to detect the obstacle pixels 
correctly. Furthermore, an appropriate grayscale difference threshold 
variable for each image is required to extract the regions using the SRG 
algorithm. This means that setting the threshold to a fixed value may 
lead to the combination of near and far regions or the production of 
many tiny regions. 

Also, the findings of the second test showed that the wall and tree 
data sets have lower average recall accuracy than the others. As previ-
ously stated, this error was caused by a lack of sufficient match points 
and the possibility of incorrect match points, particularly at the edges of 

Table 1 
Calibration parameters.  

Calibration Parameters Values 

Average reprojection error [pixels] 1.206645 
a0 − 926.71402 
a1 100 
a2 0.0004200359242 
a3 − 0.0000001970037 
a4 0.0000000001967  

Table 2 
Results obtained during the implementation of the proposed algorithm.  

Parameters Forward movement data Right movement data  

People Wall Tree Pillar Other Obstacles People Wall Tree Pillar Other Obstacles 

Average number of extracted regions 23 7 35 15 47 32 6 48 23 42 
Average number of regions with at least 3 ASIFT points 17 4 22 11 38 21 3 29 14 24 
Regions with at least three ASIFT points (%) 74 57 63 73 81 66 50 60 61 57 
Average number of regions with at least three corner match points 5 1 9 3 7 8 1 8 3 5 
Regions with at least three corner match points (%) 20 14 26 20 15 25 17 17 13 12 
Average number of regions that do not have three match points 1 2 4 1 2 3 2 11 6 13 
Regions that do not have three match points (%) 4 29 11 7 4 9 33 23 26 31  

Table 3 
The proposed obstacle detection method’s results.  

Movement direction Parameters Data Total 

People Wall Tree Pillar Other Obstacles 

Forward Recall (%) 98.5 77.4 83.6 78.6 83.5 84.3 
Precision (%) 83.0 79.4 63.4 60.8 97.0 76.7 
Overall accuracy (%) 91.4 77.4 77.6 78.0 84.0 81.7 
Time (s) 96 49 149 141 75 102  

Rightward Recall (%) 96.5 56.6 57.0 71.4 90.5 74.4 
Precision (%) 99 59.4 47.0 77.8 91.5 74.9 
Overall accuracy (%) 97.3 56.8 56.6 78.0 88.5 75.4 
Time (s) 134 33 113 124 77 96  
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the fisheye image. Additionally, the comparison of our method to Al-Kaff 
et al. (2017) suggested that our technique has a better recall in all ex-
periments. Due to the use of regions, the proposed method has a rela-
tively large recall parameter. 

Another issue examined was the computation time. Although the 
primary intention of this paper was to improve the accuracy of obstacle 
detection, we observed that running the proposed method took much 
longer than the intended 250 msec. Thus, the speed issue is still chal-
lenging and needs further improvement in future studies. In addition, 
the proposed method is suitable for rigid stationary objects. Due to the 
critical importance of detecting moving obstacles, future studies will 
generalize the proposed method for detecting moving obstacles. 

5. Conclusion 

Expansion-based obstacle detection techniques use an enlarging rate 
which is mostly calculated using point features. However, using points 

alone may result in situations where obstacles are only partially iden-
tified. Aiming at increasing the accuracy and completeness of obstacle 
detection, we proposed a novel approach that uses image regions to 
compute the expansion rate across successive images. In the proposed 
algorithm, a fisheye camera is used that can be installed at the front of a 
drone to detect obstacles in all directions. For this, regions on the most 
recent image are extracted and checked for matched points within the 
previous image. An object is defined as an obstacle if it contains at least 
three matched points. Various techniques were incorporated to ensure 
the maximum number of obstacles are identified and the minimum 
number of holes remain in the results. 

The proposed method was evaluated in several experiments with 
images taken in forward and sideward directions. The results indicated 
that, the accuracy of the proposed technique in identifying the obstacles, 
ranged from 74% to 84%. Furthermore, in another experiment, our re-
sults were compared with those obtained by a strong point-based 
obstacle detection approach developed by Al-Kaff et al. (2017). It was 
observed that, on average, the proposed technique outperforms the Al- 
Kaff et al. (2017) approach by 60.7%, 2.5%, and 32.4% in forward 
motion and 57.6%, 56%, and 53.6% in rightward motion with respect to 
recall, precision, and overall accuracy metrics, respectively. This sug-
gested that, although the Al-Kaff approach (2017) is successful in 
working with frame images, our region-based approach produces more 
accurate and complete results when fisheye images are utilised. 

Despite offering promising results, our technique failed to detect 
some of the obstacles correctly when the obstacle colour was similar to 
those of distant objects. Therefore, it is suggested that future research 
focus on using semantic maps for obstacle detection. It was also 
observed; sometimes obstacles were not detected at all due to a lack of 
match points and/or the possibility of incorrect match points. Thus, we 
recommend utilising a matching method explicitly developed for fisheye 
images. 

Another issue examined was the computation time. Although the 
primary intention of this paper was to improve the accuracy of obstacle 

Fig. 9. Comparison of the proposed method’s results to those of a currently available method (Al-Kaff et al., 2017). (a) The currently available method shows the 
results with white obstacle points and a red convex hull region. (b) The currently available method results as a binary image. (c) Obstacle regions obtained using our 
approach. (d) The final obstacle binary image in our approach. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Table 4 
Comparison of the proposed method’s results to those of Al-Kaff et al. (2017).  

Movement 
direction 

Parameters Proposed in this 
study 

Al-Kaff et al.’s 
(2017) 

Forward Recall (%) 84.3 23.6 
Precision (%) 76.7 74.2 
Overall accuracy 
(%) 

81.7 49.3 

Time (s) 102 65  

Rightward Recall (%) 74.4 16.8 
Precision (%) 74.9 18.9 
Overall accuracy 
(%) 

75.4 21.8 

Time (s) 96 57  
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detection, we observed that running the proposed method took much 
longer than the intended 250 msec. Thus, the speed issue is still chal-
lenging and needs further improvement in future studies. 
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