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A B S T R A C T   

Accurate land cover (LC) classification plays an important role in ecosystem protection, climate changes, and 
urban planning. The airborne multispectral LiDAR data are increasingly used for high-resolution and accurate LC 
classification tasks. However, most of the existing methods lack of the comprehensive extraction of the spatial 
geometric structure features, and ignore the fusion of multi-scale extracted features. In this paper, a point-wise 
deep learning-based method is proposed for LC classification based on airborne multispectral LiDAR data. We 
present a novel convolution operator to efficiently extract the spatial geometric structure features, called 
attentive graph geometric moments convolution (AGGM Convolution). Besides, to fuse the extracted multi-scale 
features, we propose a feature up-sampling module and construct a feature pyramid to integrate the features with 
different scales. The proposed method was evaluated using multispectral LiDAR data acquired with an airborne 
Teledyne Optech Titan system. In comparison with the previously developed state-of-the-art point cloud seg
mentation models, the proposed method behaves superiorly with an overall accuracy of 96.9% and a Kappa 
index of 0.950 on the test scenes. The quantitative assessments demonstrate that the proposed method performs 
effectively and efficiently in land cover classification tasks.   

1. Introduction 

Land cover (LC) classification is an important means to monitor the 
change of the Earth surface, global ecosystem (Lunetta et al., 2002), 
Earth radiation balancing (Hanna, 2007), and climate (Feddema et al., 
2005). In the early study of LC classification, the multispectral image 
data were utilized as the main data source to acquire the Earth surface 
information. Since the different LC types show different spectral 
reflectivity in various wavelengths, the land cover could be classified by 
the spectral information extracted from the multispectral image data 
(Wilkinson, 2005). As the rapid development of the society, the de
mands of surface change monitoring are being more and more precise, 
which requires higher resolution and accuracy LC classification prod
ucts. Theoretically, the higher resolution of the multispectral image, the 

higher accuracy of the LC classification products. However, according to 
the research of (Wilkinson, 2005), the accuracy of LC classification did 
not significantly improve with the resolution of the multispectral image 
in the past decades. The main reason is that the separability of land 
covers is reduced by the between-class spectral confusing and within- 
class spectral diversity in the multispectral image (Yan et al., 2012). 
Besides, the shadow and shaded areas are also the factors (Dare, 2005; 
Zhou et al., 2009). Therefore, many researchers think the accuracy of LC 
classification is limited to the only data source input, and the other data 
sources could be introduced as the supplement to further enhance the 
accuracy of LC classification (Yan et al., 2012). 

In the past two decades, light detection and ranging (LiDAR) data 
have gradually treated as a widely used remote sensing data source for 
Earth observations and analyses owing to its unique property of 
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containing high precision three-dimensional spatial information (Glen
nie et al., 2013). Compared with the two-dimensional image data, 
LiDAR data can obtain the more precise terrain and ground surface in
formation, and cannot be affected by the cloud coverage, weather con
dition, and relief displacement (Glennie et al., 2013). In the research of 
(Antonarakis et al., 2008; Lodha et al., 2007; Mallet et al., 2008), the 
feasibility of classifying land covers by using the airborne LiDAR data 
was analyzed and validated. However, the regular LiDAR data only 
contains single-wavelength spectral information, which severely limits 
its land cover separability, especially for the complex scenes with similar 
shapes. To overcome this drawback, many researches integrated the 
spectral information and spatial information to achieve better classifi
cation performance. 

Compared with the use of only data source, the combination of 
multispectral image and regular LiDAR data can achieve better classi
fication results indeed. For instance, (Kim and Kim, 2014) fused the 
WorldView-2 image data and airborne regular LiDAR data, and achieved 
higher LC classification accuracy than the previous works. For multi
modal data fusion, (Hong et al., 2021a) presented a general multimodal 
deep learning framework, which considered different fusion strategies 
and used for the models with CNNs. However, the heterogeneous data 
collected from different sensors have different data formats, projections, 
resolutions, and acquisition time. It inevitably produces errors during 
the data fusion process. The additional data preprocessing and data 
calibration works are essential to narrow the error (Yan et al., 2012), but 
it is still an open problem to perfectly fuse the heterogeneous data. 

The emergence of multispectral LiDAR technologies avoids the above 
problems caused by the fusion of multi-source data and attracts many 
researchers to utilize multispectral LiDAR data in this research field. 
Firstly, (Wichmann et al., 2015; Gong et al., 2015) assessed the potential 
and feasibility of applying multispectral LiDAR data into LC classifica
tion. Then, (Bakuła et al., 2016; Morsy et al., 2017a; Teo and Wu, 2017) 
validated that using the multispectral LiDAR data could achieve better 
performance than the fusion of multispectral image and regular LiDAR 
data. 

In regard of the methods using in this field, classical machine 
learning-based methods are still the mainstream. The paradigmatic ar
chitectures first extract the handcrafted features, which are usually 
called “feature extraction” or “feature representation”. Typical features 
include height (Teo and Wu, 2017; Matikainen et al., 2016), spectral 
signature (Teo and Wu, 2017; Matikainen et al., 2016), texture, and 
normalized difference vegetation index (NDVI) (Teo and Wu, 2017; 
Matikainen et al., 2016). Then, the classical machine learning methods 
are utilized as the classifier to recognize the different land cover types. 
Typical techniques include maximum likelihood (Bakuła et al., 2016; 
Morsy et al., 2017a; Fernandez-Diaz et al., 2016), random forest (Mat
ikainen et al., 2016; Matikainen et al., 2017a; Matikainen et al., 2017b), 
and support vector machine (SVM) (Teo and Wu, 2017; Ekhtari et al., 
2018). Nevertheless, in terms of the performance, these methods are 
greatly impacted by parameter settings and feature selection. 

Recently, the success of deep learning-based methods applying to 
image processing has motivated the data-driven approaches to apply in 
this field. In current study (Pan et al., 2020), the traditional used ma
chine learning-based classifiers were replaced by CNNs. Unsurprisingly, 
CNNs, as the more powerful classifier, achieve better performance than 
the other classical classifiers. However, due to the unstructured nature of 
point clouds, (Pan et al., 2020) needs to convert the raw point clouds 
into images, which inevitably causes information loss. To deeply mine 
the spectral features, (Hong et al., 2021b; Hong et al., 2021c) utilized 
deep learning techniques (GCNs and Transformers) to extract spectral 
features for classification tasks, and achieved a promising classification 
performance. 

To further improve the performance of the LC classification results, 
we design a point-wise deep learning-based method to directly classify 
the raw multispectral LiDAR data into land covers of interest. The main 
contributions of this paper are listed as follows: 

1. We propose a novel convolution operator, called AGGM Convolu
tion, which combines the attention mechanisms and graph geometric 
moments convolution to extract and aggregate the local geometric 
features effectively. The attention mechanisms can integrate the 
learned features with the learnable weights, which achieves signifi
cant improvement than the max-pooling or average-pooling 
operation.  

2. We propose a feature up-sampling module and construct a feature 
pyramid to integrate the features with different scales. The feature 
up-sampling module can convert the extracted features with 
different scales and sizes into the specified form. The feature pyramid 
not only comprises the features in the encoder layers, but also 
comprises the features in the decoder layers, which contains more 
details from different scales.  

3. We validate the potential of multispectral airborne LiDAR data and 
the effectiveness of the proposed method for LC classification ap
plications, which provides the positive reference for the further 
research in this field. 

The rest of this paper is organized as follows. Section 2 presents the 
related work. Section 3 introduces the study area and the data used in 
this paper. Section 4 details the proposed method. Section 5 presents the 
experimental results. Section 6 provides the concluding remarks. 

2. Related work 

Since the early works usually converted the multispectral LiDAR data 
into images, in terms of input data, the approaches of LC classification 
by using multispectral LiDAR data can be divided into two branches: the 
image-based methods and point-based methods. Besides, we also review 
the related point-wise deep learning-based methods. 

2.1. Image-based LC methods 

The image-based methods need to extract the features images firstly. 
Then, various classification methods are utilized to classify these feature 
images. According to the classification strategy, the image-based 
methods can be further categorized into two types: pixel-based and 
object-based (or segment-based) methods. 

2.1.1. Pixel-based LC methods 
Based on the pixel values contained in the feature images, the pixel- 

based methods usually directly apply the classifiers or classification 
strategies (like threshold) to globally classify the land cover types of 
each pixel. (Bakuła et al., 2016) classified the multispectral LiDAR data 
into six classes by using Maximum Likelihood Classification (MLC), and 
analyzed the impact of different combinations of inputs. The best 
attempt achieved an overall accuracy of 91%. Similarly, (Morsy et al., 
2017a) integrated the three rasterized intensity images (extracted from 
the three channel wavelength LiDAR data) with the Digital Surface 
Model (DSM) rasterized image, and achieved an overall accuracy of 
89.9% by using the MLC. Through experiments, (Fernandez-Diaz et al., 
2016) observed that when the intensity images of channel 2 and channel 
3 were used as the input, the MLC algorithm can obtain the optimal 
overall accuracy of 90.2%. On the contrary, adding the intensity image 
of Channel 1 would lead to the decline of the classification accuracy. 

Recently, some researchers utilized the deep learning-based methods 
to replace the classical machine learning methods as the classifier, which 
obtained promising performances. (Pan et al., 2020) used the intensity 
and elevation images of each channel as the input, and then used the 
convolutional neural networks (CNNs) as the classifier. Compared with 
their previous work, which used the same inputs and adopted the clas
sical machine learning methods as the classifier, (Pan et al., 2020) 
achieved a significant improvement on the classification accuracy. 
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2.1.2. Object-based LC methods 
With the development of image semantic segmentation technology, 

many researchers first pre-segment the input feature images to obtain 
the roughly-segmented or over-segmented result, then the classifiers are 
applied to further classify the land cover types based on that. (Teo and 
Wu, 2017) extracted the spectral, elevation, and textural features from 
multispectral LiDAR data firstly, then segmented the feature images by 
using eCognition software. Finally, the SVM algorithm was utilized to 
classify the pre-segmented images into five classes. Similarly, (Mat
ikainen et al., 2016) extracted 22 classes of features based on spectral 
information, elevation information, and the NDVI, and segmented these 
features by the eCognition software. The random forest (RF) algorithm 
was utilized to obtain the classification results of six types of land covers. 
The following studies (Matikainen et al., 2017a; Matikainen et al., 
2017b) refined the RF-based LC classification methods. (Zou et al., 
2016) used several different scales to generate multi-resolution intensity 
images from multispectral LiDAR data, and segmented these images by 
using eCognition software. Then, they chose the decision tree as the 
classifier to obtain the classification results of nine types of land covers. 
However, the problem of the decision tree method is that it is easy to 
cause overfitting, especially when the decision tree is deep. (Ghaseminik 
et al., 2021) presented a segment-based classification scheme for land 
cover mapping. They firstly employed a mutual segmentation based on 
intensity and height feature images, then classified the multispectral 
LiDAR data into seven classes by using the RF classifier. The best attempt 
achieved an overall accuracy of 94.83%. 

2.2. Point-based LC methods 

The point-based methods usually separate the ground and non- 
ground points by elevation information firstly. Then, various classi
fiers are utilized to classify the point clouds by the other features. Most 
of the existing point-based methods classify the point cloud by adopting 
the “point-by-point” classification strategy. To our best knowledge, 
there are still no point-based methods adopting the “segment-based” 
classification strategy. 

As a pioneering work, Wichmann et al. (2015) proposed a point- 
based multi-algorithm and multi-phase method. The method applied a 
hybrid approach of progressive TIN densification to separate the ground 
points, and classified the rest points into building and vegetation classes 
by using a RANSAC-based segmentation algorithm. Morsy et al. (2017a) 
also adopted the multi-algorithm and multi-phase strategy. They used 
the skewness balancing algorithm to divide the point clouds into ground 
and non-ground points firstly. Then, they utilized the Jenks natural 
breaks optimization method to define the threshold of the NDVI values 
and grouped the non-ground points and ground points into specific 
classes. To further improve the classification accuracy, in their following 
work (Morsy et al., 2017b), they replaced the skewness balancing al
gorithm with the MLC algorithm and obtained a higher overall accuracy. 
Although these multi-algorithm and multi-phase methods could achieve 
a decent accuracy, it is difficult to be widely used. Because these 
methods are usually designed for specific multispectral LiDAR data 
characteristics, the data characteristics (such as data type, content, and 
target category) would significantly affect the classification 
performance. 

Ekhtari et al. (2018) proposed a point-based LC classification 
method, which used the SVM algorithm as the classifier. The method 
combined the spectral and elevation features of each point as the input, 
and obtained the category of each point by using the SVM algorithm. 
Besides, they compared their method with the image-based method, and 
found that the results of the point-based method show higher accuracy 
with the same inputs and classifier. Wang and Gu (2020) proposed a 3-D 
LC classification method based on the tensor representation. They used 
the second-order tensor to represent the point clouds, which combines 
the spatial and spectral information. Then, they developed a tensor 
manifold discriminant embedding (TMDE) algorithm to extract features 

and classified the input point clouds with these extracted features by the 
SVM algorithm. 

2.3. Point-wise deep learning-based methods 

As the pioneering work in this field, PointNet (Qi et al., 2017a) uti
lized the Multi-Layer Perceptrons (MLPs) to directly extract features 
from raw point clouds and handle the permutation invariance issue by 
using symmetric operations. However, PointNet only learns the features 
from the coordinates of each point, which ignore the relationship be
tween the point and its neighbors. As the extension of PointNet, 
PointNet++ (Qi et al., 2017b) considered the local semantic relation
ship of points and extracted the local features by implementing PointNet 
iteratively. Besides, PointNet++ applied multi-scale feature aggregation 
strategy to achieve better robustness. To better represent the local se
mantic relationship, RS-CNN (Liu et al., 2019) considered the more 
complicated relations between a point and its neighbors, and learned the 
high-level relationships from low-level relationships through MLPs. 
Recently, RandLA-Net (Hu et al., 2020) used random sampling to 
replace the farthest point sampling (FPS), which dramatically reduced 
the computational consumption and enhanced the handling ability for 
large-scale scenes. To compensate the uncertainty of random sampling, 
RandLA-Net (Hu et al., 2020) adopted a local feature aggregation 
module to increase the receptive field and enhance the local structure 
learning. 

Since the Graph Neural Network (GNN) was developed by (Scarselli 
et al., 2009), it has been widely investigated for mining unstructured 
data. DGCNN (Wang et al., 2019a) built the directed graph in both the 
Euclidean space and the feature space, and dynamically updated the 
features layer-by-layer. GACNet (Wang et al., 2019b) introduced the 
attention mechanism into the graph-based methods, and learned the 
attention weights from local directed graph to achieve better represen
tation of the local feature. GACNN (Wen et al., 2020) considered more 
comprehensive attentions to refine the feature representation, which 
included edge attention, density attention, and graph global attention. 

In conclusion, most of the existing LC classification methods for 
airborne multispectral LiDAR data are classical machine learning-based 
methods. Previous works have proved the superiority of deep learning- 
based methods and point-based methods. 

3. Study areas and datasets 

As shown in Fig. 1, the study region we selected in this paper is sit
uated in Whitchurch-Stouffville, Ontario, Canada. The location of the 
middle position is 43◦58′00′′ and 79◦15′00′′, respectively, with regard to 
the latitude and longitude. The study area covers a total area about 3.2 
km2. We also choose the same 13 typical scenes as in (Li et al., 2020b). 

As for the datasets we used in this paper, we select the area_6 and 
area_7 from the 13 typical scenes as the test scenes, and the rest scenes as 
the training scenes. To meet the requirement of the LC classification 
task, we relabel the selected scenes into four classes: tree, building, 
grass, and road. 

As shown in Fig. 2, the number of points collected by different 
channels is varying sharply. On the one hand, the wavelengths of the 
three channels show different reflections in land cover water. According 
to the official description released by Teledyne Optech company, water 
is best penetrated by the wavelength of channel 2 (532 nm), and 
completely absorbed by the other two wavelengths of channels (1064 
nm and 1550 nm). On the other hand, aquatic plants are common in 
water area, which causes the extra interferential points collection in 
water area. Therefore, land cover water is not considered in this study. 

Since the multispectral LiDAR data are mainly collected from resi
dential areas, there are rarely exposed soils in these areas. We did some 
preliminary tests of adding these soil points, and found that the imbal
anced distribution of the training data would severely impact the clas
sification performance (Jing et al., 2021). Moreover, the soil points are 
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usually mixed with the grass points, which is difficult to manually label 
these two classes. Therefore, compared with (Pan et al., 2020), which 
evaluates the LC classification method with the same study area as ours, 
we only set four types of land covers here. 

4. Methodology 

4.1. Workflow overview 

As shown in Fig. 3, our proposed LC classification workflow consists 
of several stages. The raw multispectral LiDAR data were acquired using 
the airborne Titan multispectral LiDAR system, which include three 
different channels. To fuse the point clouds individually collected by 
different channels, we implement the data preprocessing at the very first 
stage. Here, we use the same approach as that used in (Li et al., 2020b). 

Besides, we remove the outliers with abnormal heights, such as the 
points collected from the flying birds and deep holes. As the reasons we 
mentioned before, we also remove the points of water areas in this stage. 

After data preprocessing, we could obtain the usable point cloud 
data, each point of which integrates three different intensity values from 
the three channels. To classify the point clouds, we manually label the 
fused data before feeding them into the model. Here, we label the point 
clouds into four classes: tree, grass, road, and building. 

With the labeled data, we choose parts of the scenes as the training 
scenes, and the rest of the scenes as the test scenes. To guarantee the 
training effect of the model, we set the proportion of the training and test 
scenes close to quadruple. For each training and test scenes, we used the 
FPS-KNN sample generation method, which we proposed in (Li et al., 
2020b), to generate the samples for meeting the input requirements of 
the point-wise deep learning-based model. 

Fig. 1. Study area, selected scenes, preprocessed data, and corresponding labeled data.  

Fig. 2. Illustration of the water point clouds of three channels, respectively.  

Fig. 3. Workflow of LC Classification.  
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Subsequently, we first train the model with the labeled training 
samples, and then classify the unlabeled test samples with the trained 
model. Here, we propose the Attentive Geometric Feature Pyramid 
Network (AGFP-Net) as the model used in the workflow. The details of 
the AGFP-Net are described in section 4.2. 

Finally, the point-wise LC classification results could be obtained 
through the trained model, which means each point of the test scenes 
could be classified with an estimated label by the trained model. 

4.2. Attentive geometric feature pyramid network 

4.2.1. Attentive graph geometric moments convolution 
1. The graph geometric moments representation of point clouds 
In mathematics and statistics, moments are a set of measurements of 

the distribution and morphological characteristics of variables. Mo
ments are commonly used to describe the image feature during image 
processing. The geometric moments are a kind of moments-based 
feature descriptor. 

For a two-dimensional density distribution function f(x,y), the mo
ments function φpq with p+q orders could be defined as (Ming-Kuei, 
1962): 

ϕpq =

∫+∞

− ∞

∫+∞

− ∞

ψpg(x, y)f (x, y)dxdy (1)  

where ψpq(x, y) is the basis function. 
When ψpq(x,y) = xpyq, there is the definition of geometric moments: 

mpq =

∫+∞

− ∞

∫+∞

− ∞

xpyqf (x, y)dxdy (2)  

where p,q = 0,1,2,…. 
Accordingly, in three-dimensional space, the p+q+r orders geo

metric moments could be defined as (Yokoya and Levine, 1989): 

mpqr =

∫+∞

− ∞

∫+∞

− ∞

∫+∞

− ∞

xpyqzrf (x, y, z)dxdydz (3)  

where p,q, r = 0,1,2,…. 
For homogeneous objects in three-dimensional space, the discrete 

form of the p+q+r orders geometric moments could be defined as (Liu 
and Tsai, 1990): 

mpqr =
∑

R3

xpyqzrf (x, y, z) (4)  

where R3 is the three-dimensional region in Euclidean space. 
A point cloud is a set of points in space, and each point has exact 

position (coordinates), but without the volume or size. Referring to 
(Joseph-Rivlin et al., 2018), we define the geometric moments repre
sentation of point clouds as the set of xpyqzr. For example, the 1 order 
geometric moments of a point cloud is 

M1 = [m100 m010 m001] = [x1y0z0 x0y1z0 x0y0z1] = [x y z] (5) 

To consider the relationship between a point and its neighbors, we 
construct the local directed graph like the previous graph-based 
methods DGCNN (Wang et al., 2019a). Coincidently, the directed edge 
from the nearest neighbors to the central point also has its geometric 
moments representation, which is the central geometric moments. The 
central geometric moments μpqr could be defined as (Tuceryan, 1994): 

μpqr =
∑

R3

(x − x)p
(y − y)q

(z − z)r f (x, y, z) (6)  

where (x, y, z) is the centroid of the object, which can be obtained from 

the lower order moments 

x =
m100

m000
y =

m100

m000
z =

m100

m000
(7) 

The different orders geometric moments of point clouds describe the 
geometry feature from different aspects, such as the 1 order geometric 
moments of point clouds describes the centroid of each point, which 
represents its center coordinates. Combining multiple orders geometric 
moments of point clouds can provide the more comprehensive input 
information, which could help the model to learn better geometry 
feature representations theoretically. Considering the objects in outdoor 
scenes having complex shapes, here, we adopt the combination of the 
first three orders geometric moments as the input of the proposed model. 

2. Attention mechanisms 
Attention mechanisms are the signal processing mechanisms that 

were discovered by scientists in the 1990 s while studying human vision. 
The researchers in the field of artificial intelligence introduced these 
mechanisms into the neural networks and achieved promising rewards. 
Recently, attention mechanisms have been one of the most popular 
modules widely applied in the deep learning field. Attention mecha
nisms, as an approach to improve neural networks, have achieved suc
cesses in the field of image processing (Fu et al., 2019), natural language 
processing (Lin et al., 2017a, 2017b), and graph network representation 
(Chen et al., 2019). The previous studies demonstrated that the attention 
mechanisms could enhance the feature representation ability of neural 
network, which inspires us to introduce the attention mechanisms into 
our previously proposed model. 

The attention function is defined as follows (Vaswani et al., 2017): 

Attention(Q,K,V) = soft max(
QKT
̅̅̅̅̅
dk

√ )v (8)  

where matrices Q, K, V indicate a set of queries, keys, and values 
respectively, and 1/

̅̅̅̅̅
dk

√
indicates the scaling factor. Since the essence of 

attention mechanisms lies in learning the corresponding “attention” 
weight from the adjacent channels or features of the current feature to 
optimize the semantic representation of the current feature, many 
neural network models utilize the attention mechanisms as a strategy for 
feature aggregation. In our previous work (Li et al., 2020a), we adopted 
the average-pooling operation to aggregate the k nearest local neigh
bouring features into the central feature. Although we had demonstrated 
that the average-pooling operation is a better choice than the max- 
pooling operation, there still exists the issue of information loss 
caused by the average-pooling operation. Therefore, we introduce the 
attention mechanisms to learn the attention weight matrices from the k 
nearest local neighbouring features, and sum the weighted features to 
obtain the feature with the better semantic representation. The details of 
this process are described as follows: 

Step 1: calculating the attention weight matrices. Given a set of local 

features Fi =
{

f1
i ⋯fk

i ⋯fK
i

}
, the corresponding attention weight of each 

feature is calculated by the function g. Generally, the function g consists 
of a Multi-Layer Perceptrons (MLP) and a softmax, which could be 
formulized as follows: 

sk
i = g(f k

i ,W) (9)  

where W is the weights contained in the MLP. 
Step 2: summing the weighted features. The learned attention 

weights can be seen as a kind of filters or masks, which help the model to 
recognize more important or useful features. The attention weights 
sk
i calculated by the previous step are multiplied with the features fk

i , and 
the aggregated feature is the sum of that, which could be formulized as 
follows: 

f̃ i =
∑k

k=1
(f k

i ⋅sk
i ) (10) 
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where ̃f iis the aggregated feature. 

4.2.2. Network architecture 
Fig. 4 shows the detailed architecture of the AGFP-Net. (N,D)

represent the number of points and the feature dimension, respectively. 
The schematic diagram of the input clouds is randomly selected from the 
test samples, and drew with the fake colors, which utilizes the normal
ized intensity values of the three channels as the RGB values. The AGGM 
represents the AGGM Convolution, which will be detailed in section 
4.2.3. The FPS and FP represent the Farthest Point Sampling method and 
Feature Propagation operation, respectively. The MLP represents the 
Multi-Layer Perceptrons. The (N,1) in the last rectangle means that the 
model directly outputs the predicted label for each point, as shown in 
the schematic diagram of the output. The FU represents the feature up- 
sampling module, and the addition symbol means the addition 
operation. 

The details of feature up-sampling module are described as follows. 
Firstly, we take the extracted features from different layers and the 
original input point cloud as the input to the module. These extracted 
features are attached to the corresponding point set, and the size of these 
point sets are smaller than the original input point cloud. Then, for each 
point in the original input point cloud, we find its three nearest neigh
bors in the corresponding point set of the input features. According to 
the distance between the point and its nearest neighbors, the weights of 
three nearest features can be calculated. The weighted three nearest 
features are summed into the points of the original input point cloud. 
Thus, we can obtain a feature having the same dimension as the input 
features and the same size as the original input point cloud. Finally, 
through an MLP and LeakyReLU layer, the dimension of feature is 
updated to the same as the feature output from the last decoder layer. 

The features extracted from different layers represent the different- 
scale feature representations of the input point clouds, which contain 
the details in different scales. Therefore, we construct the feature pyr
amid with these multiple scales features. Unlike the most of feature 
pyramid architectures that only consider the features output from 
encoder layers, we also take the decoder layers into account to contain 
more comprehensive details. With the feature up-sampling module, 
these size-varying multiple scale features can be processed into the same 
size and same dimension. Finally, referring to (Lin et al., 2017a, 2017b), 
we utilize the addition operation to merge the up-sampled features and 
the feature output from the last decoder layer. 

4.2.3. Architecture of the AGGM Convolution 
Fig. 5 shows the detailed architecture of the AGGM Convolution. 

Given a (3 + d)-dimensional point cloud with N points as the input point 
features, the first three dimensions are the spatial coordinates of the 
points, and the next d dimensions are the additional features, such as the 
color, surface normal, and spectral value. The 3D coordinates and the 
additional features are represented as green and yellow rectangles in 
Fig. 5, respectively. Since the multispectral LiDAR data we used in this 

paper have three channels, for the very first inputs of the AGGM 
Convolution, the additional features are spectral intensity values of the 
three channels, the dimension d equals 3. 

The following dotted arrow indicates splitting one point from the 
input N points, pi represents the spatial coordinates of the current point, 
and fi represents the corresponding additional features. For each point of 
the input N points, the local directed graph is generated based on the k- 
nearest neighbors (KNN) method by its spatial coordinates. Subse
quently, the generated graph structure data would be split into three 
branches for further processing. 

For the top branch in Fig. 5, the stacked K green rectangles represent 
the edges between the central node and its k-nearest neighbors. For the 
geometric moments representation calculation stage, we calculate the 
first three order geometric moments to obtain more detailed geometric 
structure features. The calculated first three order geometric moments of 
the edges have nineteen dimensions. Then, a shared MLP is implemented 
to extract the local geometric features, which sets the output dimension 
with dout/2. 

For the middle branch in Fig. 5, to meet the data format requirement 
of the following addition operation, the current point, which is also 
called central point, is duplicated K times to formulate the same shape as 
the edges in the top branch. Then, the geometric moments representa
tion of the duplicated current point is calculated like the edges. Simi
larly, a shared MLP is also used to extract the geometric features, and the 
output dimension of the shared MLP is also set as dout/2. 

For the bottom branch in Fig. 5, the stacked K yellow rectangles are 
the additional features of the current point and its k-nearest neighboring 
points. The set of additional features fK

i is fed into a shared MLP to obtain 
the features with a higher dimension, which has a more powerful se
mantic representation. The dimension of the output features of the 
shared MLP is also set as dout/2. 

The two extracted geometric features are aggregated by the addition 
operation, which is indicated with the addition symbol in Fig. 5. To fuse 
the aggregated geometric features and additional features, we utilize the 
concatenation operation to output the fused features with dout di
mensions. Using the concatenated features as the input to the attention 
module could sufficiently consider the attention influences of both the 
geometric features and the additional features, which is superior to 
individually calculate the attention weights. On the other hand, this 
strategy can also decrease the computational consumption. 

As we mentioned above, there are two steps in the attention module. 
In the first step, the concatenated features are fed into a fully connected 
layer, and then normalized by a softmax layer. The output of the first 
step is the attention weight matrix, which is indicated with the K stacked 
blue rectangles in Fig. 5. In the second step, the attention weight matrix 
is multiplied the concatenated features. Then, the K weighted features 
with dout dimensions are summed into one feature with dout dimensions, 
which is the output of the attention module. 

Finally, we append a shared MLP at the end of the AGGM Convolu
tion to increase the robustness of the whole module. Then, the aggre

Fig. 4. Architecture of AGFP-Net.  
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gated feature ̃f i, which is indicated with the orange rectangle in Fig. 5, is 
obtained by the AGGM Convolution module. With the same operation 
for each point in the input points, the AGGM Convolution can output the 
same N features with the specified dimension of dout . 

5. Results and discussions 

5.1. Implementation details 

We applied the same training strategy as in (Wang et al., 2019a). The 
loss function we used is the cross entropy. We chose the stochastic 
gradient descent (SGD) as the optimizer, whose initial learning rate was 
set with 0.01, and the learning rate declined thirty percent after each 
fifty iterations. The training iteration was set with 200. The batch size 
was set with 12. The momentum was set with 0.9. The LeakyReLU was 
adopted as the activation function, and the negative slope was set with 
0.2. The batch normalization strategy was applied to each MLP layer. 
When the model was trained, we picked up the one with the best per
formance from the saved networks, and validated the test data with it. A 
NIVIDIA 2080 TI GPU was used to train the proposed model. 

5.2. Accuracy evaluation metrics 

To better evaluate the proposed AGFP-Net, we used four kinds of 
quantitative evaluation metrics, which are commonly used in LC clas
sification tasks. The quantitative evaluation metrics include overall ac
curacy (OA), Kappa index, producer accuracy (PA), and user accuracy 
(UA) (Congalton, 1991; Foody, 2010). 

Since the proposed model directly outputs the class label of each 
point in the test scenes, we validated the results by the point-based 
evaluation strategy, which directly used the number of the correctly 
and falsely classified points as the inputs for metrics calculation. 
Compared with the traditional pixel-based and object-based evaluations, 
the point-based evaluation is more precise and strict, which is more 
suitable for the proposed point-wise LC classification method. 

5.3. Parameter sensitivity analysis 

5.3.1. Ablation study 
The GGM-Net (Li et al., 2020a) first proposed the graph geometric 

moments-based convolution operator. Since (Li et al., 2020a) already 
did the ablation study about the graph geometric moments convolution, 
batch normalization, and dropout technique, here, we directly adopted 
the GGM-Net as the baseline (model A in Table 1) of our ablation study. 
In Table 1, “#points” indicates sample size (i.e., the number of input 
points), “HA” indicates hierarchical architecture, “AM” indicates 
attention mechanism, “FP” indicates feature pyramid (including feature 
up-sampling module). 

As shown in Table 1, the baseline only achieved the OA and Kappa 
index of 89.0% and 0.819. With the hierarchical architecture, model B 
was sharply improved to higher accuracies with an OA of 94.6% and a 
Kappa index of 0.913. By introducing the attention mechanism, the core 
convolution module was enhanced, model C was improved with respect 
to the OA and Kappa index by 1.4% and 0.023, respectively. Finally, 
with the feature up-sampling module, model D constructed a feature 
pyramid with details from multiple scale features and achieved the best 
OA and Kappa index of 96.9% and 0.950, respectively. Except the main 
metrics OA and Kappa, the PA and UA of the four land cover types also 
showed the similar tendency. 

We found that the proposed feature up-sampling module and mul
tiple scale feature pyramid construction could be applied as a universal 
operation. To further validate the function of that, we designed a com
parison experiment by applying with and without feature pyramid 
operation. We picked up the classical hierarchical model, PointNet++, 

Fig. 5. Architecture of the AGGM Convolution.  

Table 1 
Ablation study of AGFP-Net.  

Model #points HA AM FP  Building Tree Grass Road OA(%) Kappa 

A 4096    PA  76.0  91.6  89.2  79.3 89.0 0.819 
UA  49.0  96.7  89.4  74.9 

B 4096 √   PA  89.6  98.3  90.0  91.1 94.6 0.913 
UA  88.2  96.7  96.3  82.7 

C 4096 √ √  PA  93.6  98.5  93.2  93.9 96.0 0.936 
UA  90.3  98.5  97.3  83.5 

D 4096 √ √ √ PA  96.9  98.8  94.4  95.3 96.9 0.950 
UA  92.2  99.4  97.8  84.8  

Table 2 
Results of PointNet++ with and without feature pyramid construction.  

Model  Road Grass Tree Building OA 
(%) 

Kappa 

PointNet++ PA  74.4  86.9  94.2  66.7 88.3 0.811 
UA  77.0  91.1  93.5  51.1 

PointNet++ with 
feature pyramid 

PA  83.8  87.6  93.9  74.2 89.9 0.834 
UA  70.4  92.8  96.0  58.0  
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as the model used for comparison. The training sample size was set as 
4096. As shown in Table 2, the model “PointNet++ with feature pyra
mid” achieved better performance in all metrics, which further validated 
the effectiveness of the proposed feature up-sampling module and 
multiple scale feature pyramid construction operation. 

5.3.2. Spectral information 
Since the different types of land covers have different reflectance 

intensities with the specific wavelengths, the spectral information 
collected from different wavelengths (or channels) shows different ef
fects for classifying different types of land covers. To fully assess the 
function of the spectral information collected from different channels, 
we designed five comparison experiments with different spectral inputs. 
Since the spatial coordinates are essential for the proposed model, as 
shown in Table 3, the inputs of the five designed comparison experi
ments include the spatial coordinates, spatial coordinates and channel 1 
spectral values, spatial coordinates and channel 2 spectral values, spatial 
coordinates and channel 3 spectral values, spatial coordinates and 
spectral values from all channels. 

The training sample size was set as 4096. Two test scenes, area_6 and 
area_7, were generated into 257 and 474 samples by the FPS-KNN 
sampling method, respectively. During the sample generation stage, 
some points might be allocated in two or three different samples. For 
these points in the overlapped part, we counted the predicted labels 
from every involved samples, and chose the most counted predicted 
label as its final predicted label. Finally, the four accuracy metrics were 
calculated with the point-wise classification results. 

As shown in Table 3, compared with group 1, which only used the 
spatial coordinates as the input, with the additional spectral informa
tion, the LC classification accuracies were improved in different degrees. 
Using the spatial coordinates and all spectral values as the input ach
ieved the highest OA and Kappa index. 

Specifically, by adding the channel 1 spectral values (group 2), there 
was an effective improvement on the classification accuracy for Road, 
the PA and UA of Road were improved by 11.9 and 6.1 percentage 
points, respectively. For the other metrics, there was only a slight 
improvement. By adding the channel 2 spectral values (group 3), except 
the Tree and Building, the PA and UA of all the other land cover types 
had a significant improvement, the OA and Kappa index were also 
sharply improved by 7.2 and 0.12, respectively. By adding the channel 3 
spectral values (group 4), there was a similar improvement trend as 
group 3, but the more moderate one, the OA and Kappa index were only 
improved by 3.9 and 0.066, respectively. 

Through the comparison experiments, it is verified that adding the 
additional spectral information can enhance the accuracy of poiny-wise 

LC classification, and the function of the spectral information collected 
from different channels show varying effects on different land cover 
types. 

5.3.3. Sample size 
The point-wise deep learning-based methods require the fixed sam

ple size, therefore, we tested the performance of the model with different 
training sample sizes, and determined the sample size according to the 
comparison results. The different size training samples provide different 
semantic information and geometric continuity of objects in the scene, 
which are both critical for the deep learning-based methods. Subcon
sciously, in terms of sample size, we think the larger the better. Duo to 
GPU memory limitations, we set the maximum sample size to 4096 and 
the other two comparisons to 2048 and 1024. All the comparison ex
periments used the same input features. 

As shown in Table 4, the OA and Kappa index were gradually 
increasing with the enlargement of the sample size. The PA and UA 
showed the same trend on the four land cover types. For the main 
evaluation metrics, OA and Kappa index, the accuracies of 4096 sample 
size was higher than those of 2048 and 1024 sample size by 1.0 and 
0.017, 1.8 and 0.028, respectively. As for the PA and UA, the overall 
trend was also gradually increasing with the enlargement of the sample 
size. 

The results of comparison experiments validated our speculation, 
that is the larger sample size contributes to the better LC classification 
accuracies. Besides the FPS sample method, we also considered the 
random sample method, which used in RandLA-Net (Hu et al., 2020), to 
reduce the memory consumption. We found that the increase of the 
sample size did not contribute to the improvement of the classification 
accuracies obtained by the proposed model and RandLA-Net. The main 
reasons might be the following aspects. (1) The random sample method 
might not guarantee the sampling performance as that of the FPS sample 
method. (2) The data used in the RandLA-Net (Hu et al., 2020) were the 
point clouds collected from mobile laser scanning (MLS) or terrestrial 
laser scanning (TLS) systems, which have different coverage and char
acteristics from airborne multispectral LiDAR data. (3) Compared with 
the general semantic segmentation task, the land cover classification 
task places emphasis on classifying the land cover types within a certain 
area. 

5.4. Comparative studies 

Since there is still no existing point-wise deep learning-based LC 
classification method for airborne multispectral LiDAR data, to better 
assess the performance of our AGFP-Net, we chose the popularly used 
state-of-the-art networks, which designed for semantic segmentation on 
point clouds, as the comparison methods. The comparison methods 
include PointNet (Qi et al., 2017a), PointNet++ (Qi et al., 2017b), 
DGCNN (Wang et al., 2019a), RS-CNN (Liu et al., 2019), GACNet (Wang 
et al., 2019b), and RandLA-Net (Hu et al., 2020). 

As seen in Table 5, the AGFP-Net achieved the highest accuracies on 
all metrics and all classes. For the main evaluation metrics, OA and 
Kappa index, the proposed AGFP-Net achieved even 2.1 and 3.4 per
centage points higher than those of the second-highest method, RS-CNN, 
no mention the other comparison methods. For the other metrics, PA 

Table 3 
Results of AGFP-Net by training with different spectral inputs.  

Input  Road Grass Tree Building OA 
(%) 

Kappa 

Spatial 
coordinates 

PA  61.5  78.2  98.6  96.5 89.2 0.822 
UA  25.8  93.1  99.5  89.7 

Spatial 
coordinates and 
channel 1 
spectral values 

PA  73.4  79.8  98.6  97.3 90.3 0.840 
UA  31.9  95.3  99.2  89.4 

Spatial 
coordinates and 
channel 2 
spectral values 

PA  94.6  93.9  98.6  94.6 96.4 0.942 
UA  85.2  97.3  98.8  91.0 

Spatial 
coordinates and 
channel 3 
spectral values 

PA  87.5  85.7  98.8  94.4 93.1 0.888 
UA  60.1  95.9  99.0  85.9 

Spatial 
coordinates and 
all spectral 
values 

PA  95.3  94.4  98.8  96.9 96.9 0.950 
UA  84.8  97.8  99.4  92.2  

Table 4 
Results of AGFP-Net by training with different sample sizes.  

Sample size  Road Grass Tree Building OA(%) Kappa 

1024 PA  94.7  91.2  98.3  91.0 95.1 0.922 
UA  80.5  97.0  97.6  89.7 

2048 PA  95.3  92.1  98.5  95.4 95.9 0.933 
UA  80.5  97.4  98.7  91.0 

4096 PA  95.3  94.4  98.8  96.9 96.9 0.950 
UA  84.8  97.8  99.4  92.2  
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and UA, the AGFP-Net achieved a dramatic improvement on land covers 
Road and Building, which are 4.0 and 2.7, 2.6 and 11.7 percentage 
points higher than those of the second-highest method respectively. 
Some comparison methods misclassified some Road points as the Grass 
ones, because the two land covers have the similar geometric shapes. 
The Building points have the similar heights with the Tree points. There 
are the reasons why many comparison methods achieved low accuracies 
on Road and Building. The proposed AGFP-Net well overcomes these 
shortages, and shows the powerful ability of geometric feature extrac
tion. The results of the comparison experiments demonstrated the su
periority of the proposed AGFP-Net. 

To have a better visualization effect, we chose the area_7 from the 
two test scenes as the visualization scene, which has more points and 
well-distributed land cover distribution than area_6. The four types of 
land covers, Road, Grass, Tree, and Building, are represented with blue, 

yellow, red, and green in Figs. 6, 7, and 8, respectively. Fig. 6 illustrates 
the visualization of the classification results of the comparison methods 
and the ground truth, the two black circles in (h) indicate the region of 
detailed visualization in Figs. 7 and 8 respectively. 

As shown in Fig. 6, the result of the proposed AGFP-Net shows high 
consistency with the Ground Truth, which achieved less misclassifica
tion outlier points and better completeness of the LC classification. The 
RS-CNN has the most closing visualization effect with the proposed 
model among all the comparison methods. To better compare the clas
sification performance, we picked two typical sub-scenes in area_7 to 
illustrate the differences among different methods. 

As seen in Fig. 7, our AGFP-Net misclassified part of the road points 
as the grass points, because the road points in this region have the 
similar heights to the surrounding grass points. Although some of the 
comparison methods recognized more road points, their classification 
accuracies of the other points in this region are much lower than the 
proposed model, and their misclassified points are disorganized. Rela
tively, the proposed AGFP-Net and RS-CNN achieved better classifica
tion results on the whole, which have the neater classification result and 
higher consistency with the Ground Truth. By the close-up observation, 
it could be found that, compared with the RS-CNN, the proposed model 
obtained better classification results at the edge points between different 
land cover types. For example, the RS-CNN misclassified the edge points 
of several buildings as the tree points in this region, which demonstrated 
the features extracted by the proposed model have better interclass 
separability. 

As shown in Fig. 8, with the side view, it could be observed that there 
are three buildings surrounded by the tall trees in this sub-scene, and 
some part of the buildings and trees are sheltered or overlapped. For this 
complex environment, it is difficult to classify the land cover correctly. 
Among the comparison methods, only DGCNN correctly recognized the 
part of the building points, but still misclassified more than half of the 
building points. For the rest methods, there were only few fragmentary 

Table 5 
Results of comparison methods.  

Model  Road Grass Tree Building OA 
(%) 

Kappa 

PointNet (Qi 
et al., 2017a) 

PA  74.2  79.4  90.7  63.8 84.3 0.741 
UA  58.0  89.3  92.1  39.6 

PointNet++ (Qi 
et al., 2017b) 

PA  74.4  86.9  94.2  66.7 88.3 0.811 
UA  77.0  91.1  93.5  51.1 

DGCNN (Wang 
et al., 2019a) 

PA  88.3  89.1  94.5  83.8 91.6 0.862 
UA  74.2  94.0  97.2  62.9 

RS-CNN (Liu 
et al., 2019) 

PA  91.5  91.4  97.6  93.0 94.7 0.914 
UA  81.0  96.7  97.9  81.5 

GACNet (Wang 
et al., 2019b) 

PA  83.4  83.4  91.8  71.0 87.4 0.792 
UA  62.3  92.3  94.9  44.5 

RandLA-Net (Hu 
et al., 2020) 

PA  86.0  90.5  96.1  82.7 92.5 0.878 
UA  80.9  94.0  96.2  75.0 

AGFP-Net PA  95.3  94.4  98.8  96.9 96.9 0.950 
UA  84.8  97.8  99.4  92.2  

Fig. 6. Visualization of the comparison methods.  
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Fig. 7. Detailed visualization of the comparison methods.  

Fig. 8. Detailed visualization of the comparison methods.  
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building points correctly classified, or even failed to be correctly clas
sified at all. The proposed AGFP-Net correctly classified most of the 
building points, which achieved obviously better classification result. 
Since the building has obvious geometric structure characteristics, the 
detailed visualization of this sub-scene further validated the high effi
ciency of the proposed model in terms of the spatial geometric structure 
extraction. 

Although the proposed method achieved the promising LC classifi
cation accuracies, there is still room for improvement. Firstly, the 
spectral information could be further mined. In this paper, we mainly 
focused on the improvement of local geometric feature extraction and 
feature aggregation, and thus extracted spectral features just by regular 
linear or MLP operations. Theoretically, the spectral information might 
be comprehensively explored by a customized feature extractor, 
contributing for improving LC classification accuracies. Secondly, 
limited by the sample size, the data processing ability is inadequate for 
point clouds with a large-scale scene. As we mentioned above, we, to 
enlarge the sample size, replaced our FPS sample method with the 
random sample method. However, we found that the sample size used by 
the random sample method led to a degradation of classification accu
racies. Therefore, the more efficient sample method is needed to be 
developed to trade off the data processing ability of large-scale point 
clouds and high LC classification accuracy. 

6. Conclusion 

In this paper, we proposed a point-wise AGFP-Net LC classification 
method, which only uses the raw multispectral LiDAR point clouds as 
the input, and directly outputs the predicted label for each point. 
Correspondingly, we adopt the point-based evaluation instead of the 
traditionally used pixel-based or object-based evaluation, which is more 
precise, strict, and suitable for the proposed point-wise method. By 
introducing the attention mechanisms, we design a novel convolution 
operator, called AGGM Convolution, which extracts and aggregates the 
geometry features effectively. Moreover, we propose a feature up- 
sampling module to up-sample the features extracted from layers, and 
construct a feature pyramid with multiple scales to merge more 
comprehensive details. Experiments validated the feasibility and effec
tiveness of the proposed method. Visual inspections and quantitative 
evaluations showed that the proposed method is superior for LC classi
fication from airborne multispectral LiDAR point clouds. In addition, to 
investigate the potential of airborne multispectral LiDAR data, we 
validated the function of different wavelength spectral values by the 
comparison experiments of LC classification, which could provide the 
reference for the related researches and applications. Although the 
proposed method achieved quite high accuracies on four metrics, an 
obvious limitation is that the collected multispectral LiDAR data only 
has three different wavelength channels, which is far less than the 
channels of hyper-spectral images. In the next future, the registered 
hyper-spectral imagery can be fused to generate the hyper-spectral point 
clouds, and the proposed method will be further tested with these 
datasets. Besides, how to handle the large scale scenes and maintain the 
high accuracy at the same time is also one of our future works. 
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