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Abstract— Large-scale semantic segmentation point cloud is an
ongoing research topic for on-land environments. However, there
is a rare deep learning research study for the sub-surface envi-
ronment. Although, PointNet and its successor PointNet++ have
become the cornerstone of point cloud segmentation. However,
these techniques handle a relatively small number of points. This
poses a natural difficulty in a large spatial scene with millions
of possible points. In particular, for shallow water of coastal
zone, the small number of points where the seabed and water
surface meet, close points may belong to different classes. In our
work, we present the semantic segmentation on a large-scale
airborne Lidar bathymetry (ALB) point cloud containing millions
of sample points into two classes of water surface and seabed with
the voxel sampling pre-processing (VSP) approach. The proposed
approach will allow us to capture the complicated outdoor
natural scene components of water surface and seabed more
accurately and more realistic through nonuniform voxelization
in the mixture of dense and sparse points of the ALB point
cloud. The performance of validation results show improvement
in a per-point accuracy of 72.45% compared with other state-of-
the-art deep learning-based methods.

Index Terms— Airborne Lidar bathymetric (ALB) point cloud,
coastal zone, deep learning, seabed, semantic segmentation.

I. INTRODUCTION

SCENE understanding is a key problem and fundamental
issue for various applications such as augmented reality,

robotics, industrial reconstruction, and geospatial modeling.
Semantic segmentation refers to the ability to distinguish
accurate object borders within its surroundings. This is use-
ful where the detailed information is very important such
as medical scans, criminal issues, bio-chemical, scene mod-
eling, etc. 3-D scene semantic labeling can generally be
grouped into two categories; on-surface (or on-land) envi-
ronments, which mainly considered the human-made features,
and sub-surface and underwater environments. For on-surface
semantic segmentation, convolutional neural networks (CNNs)
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architectures, which is generally processed 2-D images,
is widely used by many researchers to process 3-D point cloud
by transforming the point cloud into an image [1], [2].

For instance, Boulch et al. [1] performs the CNN approach
by converting 3-D points to 2-D snapshots. They applied
pixel-wise labeling for 2-D snapshots using fully convolutional
networks. However, this approach results in some missing data
during the transformation, and the network may have difficul-
ties extracting whole features and distinguishing them. To this
endpoint-base methods widely have been proposed based on
PointNet [3]. Other studies have investigated 3-D semantic
segmentation tasks in indoor and outdoor scenes [4], [5].
For outdoor scenes, Winiwarter et al. [4] proposed a PointNet
model on multiple scales of 3-D point clouds acquired by
airborne laser scanning (ALS) to automatically learn a repre-
sentation of local neighborhoods in an end-to-end approach.
For indoor scenes, [5] employed deep learning techniques via
building volumetric data representation and their methodology
can be adapted to different kinds of datasets.

Although, PointNet [3] and PointNet++ [6] have become
the cornerstone of point cloud segmentation. However, these
techniques handle a relatively small number of points. This
poses a difficulty in scenes that cover a large spatial area
with possibly millions of points. While large-scale point cloud
segmentation is an ongoing research topic, major efforts in
this direction are inspired by superpixel-based algorithms in
computer vision [7]. One major approach in this direction is
the Superpoint graph (SPG) for 3-D point clouds [8] which
creates a downsampled version of the original point cloud.

Most current efforts focused on human-made features such
as roads, cars, buildings [8], [9] for the on-surface environ-
ment. Although sub-surface and seabed scene understanding is
one the most challenging environments for on-time monitoring
due to geomorphological changes, sediment transportation, etc.
However, there is a rare research study using deep neural
network (DNN) approaches for 3-D semantic segmentation
applied to underwater geospatial 3-D point clouds data. This
is mainly due to lack of enough labeled datasets. Moreover,
most of recent underwater deep learning approaches applied to
2-D data such as Synthetic Aperture Sonar images [10], [11].
The main challenges of their research are related to the noise
and low quality of underwater imaging for recognizing objects.
Other research used multibeam echo-sounder (MBES) point
cloud data for underwater environment [12], [13]. Daniel
and Dupont [13] investigated a DNN to classify sea-bottom
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Fig. 1. (a) Illustration of annotated of water surface and seabed points at
breaking wave zone of very shallow water. Seabed points are in green color
and water surface points are in red color. (b) Airborne laser bathymetry (ALB)
system for point cloud acquisition (RIEGL VQ-880-G).

morphology. They obtained accuracy results no better than
65% for classifying a steep seabed into two classes. Like-
wise, [14] used geometric and full-waveform features and
applied artificial neural network (ANN) for seabed classifi-
cation on ALB point cloud.

Almost no efforts focused on the seabed 3-D semantic
segmentation using airborne Lidar bathymetry (ALB) point
cloud. In this letter, we present the semantic segmentation of
water surface and seabed on the large-scale ALB point cloud.
The main contributions are summarized as follows.

1) We present a pipeline for semantic labeling of ALB
point clouds, which combines the voxel-sampling pre-
processing (VSP) approach with state-of-the-art SPGs.
This innovative study improved the performance by
72.45% per-point accuracy.

2) Present the modified SPG approach on the underwa-
ter shallow water of coastal zones for more accurate
monitoring, evaluation, and management of shore and
near-shore of the ocean area.

II. METHODOLOGY

A. Voxel-Sampling Pre-Processing (VSP)

An ALS sensor is used for capturing a wide range of point
clouds data. In data collection, due to the sensor characteristic,
the broom part of the laser makes dense quality data in the
central scope of the sensor. Whilst the opposite is seen when
further away from the sensor center, the data will be sparser.
In conclusion, we encountered less quality data in the far-end
part of data.

In semantic segmentation, the uniform representation is vital
in the case of detailed information. Tchapmi et al. [15] used
3-D convolutions on a regular voxel grid. However, the voxel
gross need to be created carefully in our dataset because of the
sparse data parts. Since voxelization is the main problem in
this step, we decided to implement different sampling strate-
gies for segmentation. Previously we were sampling sparse and
dense data at the same rate. In another effort, we sampled them
at different rates. We sample the sparse data at a higher rate
and the dense data at a lower rate. The hierarchical approaches
were implemented where the segmentation is done at different
scales for the model to learn the global picture of the profile.

In this case, we design the VSP strategy (see Fig. 2).
To conduct nonuniform sampling, we follow the voxelization
procedure. In the voxelization procedure, we define a small
voxel volume R corresponding to an R × R × R cube. All
points inside this voxel are represented by the voxel. For

Fig. 2. General framework of semantic labeling with SPG for small indoor
objects. The above shows the desk, mirror, and flowerpot. (a) Coherent
set of points which provide a simple and meaningful shape of the object.
(b) SPG, connecting each related Superpoint (node) by Superedges. Each
node corresponds to a small part of the object. (c) PointNet embedded
each Superpoint. GRU then updates itself by incoming messages through
Superedges. (d) Final labeling for whole table object.

sparse parts of the data, we set R = 5 and for dense part
of the data, we set R = 16, except where the water and
seabed meet, where we set R = 2. By doing this, we reduce
the size of the point cloud set. The subsampled set in this
way reflects the geometric profile of our data. We directly
render the point cloud as nonuniform voxelization by using
sub-voxel in the dense location and large-voxel at the sparse
location. The aforementioned approach is an alternative to
geometric partitioning which is proposed in the Superpoint [8].
We iterate, however, that this does not prevent us from using
the Voronoi tessellation approach of the Superpoint method.

B. Geometric Separation

Generally, for point-set segmentation, the objective is the
small single compact objects such as guitar, bed or chair, and
small room, etc. The basic idea in point-set segmentation is
providing a coherent set of points to a model such that the
collection of points provide an idea of the shape of the profile.
However, in this dataset, we have natural outdoor objects. The
first object is noncompact, formable, and fluid water, the other
is an impressible, moveable and erodible object as soil.

Due to breaking waves happening at the surfing zone of
the shoreline, the water surface and seabed points are so near
each other and the created turbulences result in a mixture
of points of both classes. Therefore, the mixture points will
make difficult to identify the exact geometry of each class
clearly. Fig. 1(a) shows the water surface and seabed points
at the breaking wave zone of very shallow water. Likewise,
the underwater points acquired with ALB are without RGB
values since the reflected green laser wavelength just captures
the geometry of each point, i.e., the spatial coordinates of the
features (x, y, z). This is one of the reasons why we chose to
use geometric separation. Fig. 2 shows the general framework
of semantic labeling for small indoor objects.

By breaking down the objects into simple meaningful parts
through simple geometric clusters, the model can separate the
object-parts more accurately and not cover other objects which
are part of different classes. Fig. 3 represents the semantic
labeling of seabed and water surface through ALB point cloud.
It can be seen the simple profile of a water surface and seabed
points at the shoreline where these points are very close to each
other. Referring to step (c) of Fig. 3, B1, B2, and B3 simply
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Fig. 3. Illustration of semantic labeling of seabed and water surface through
ALB point cloud. (a) VSP approach: (i) Superpoint takes a point cloud set;
(ii) creates a geometric set by using Voronoi tessellation; and (iii) this
geometric is then further directly processed as non-uniformly voxelization.
(b) Geometric division of the water surface and seabed points in shoreline.
(c) SPG and Superedge. (d) Embedding Network. (e) Final labeling of water
surface and seabed points.

illustrate the seabed points and B4, B5, B6, and B7 represent
the fluctuation of water surface points. Assume the input point
cloud C as a set of n 3-D point set: Pi , Pi , Pi , Pn ∈ Rd and
each point i ∈ C are defined by its 3-D position pi , and,
if available, other observations oi such as color or intensity.
For every point, we compute a set of dg geometric features
fi ∈ Rdg describing the shape of its local neighborhood.
We also compute the elevation of each point, defined as the
z coordinate of pi normalized over the whole input cloud.
The geometrically homogeneous partition is defined as the
following (as optimization problem):

arg min
g∈Rdg

∑

i∈C

�gi − fi �2 + μ
∑

(i, j)∈Enn

wi, j
[
gi − g j �= 0

]
(1)

where μ: regularization strength determines the coarseness of
the resulting partition. W : The edge weight; i, j : points (local
nodes); (gi, fi ): geometric features vector; Enn: adjacency
relationship between segments; [·]: the iverson bracket [8].
Equation (1) simplifies the geometrical components and is
defined as Superpoint in this letter.

C. Superpoint Structure

Referring to Section II-B for making relevant neighborhood
graphs and their relatives, the network creates a downsampled
version of the original point cloud. Note that our data are
simple geometric components so this allows us to utilize
the embedding networks as an abbreviated PointNet [8]. The
system architecture then learns embedding for each node
of the graph followed by recurrent modules which model
the relationships between different nodes. This amounts to
modeling the structural context of the scene.

The point cloud is represented via each big point defined
by oriented attributed graph G = (B, �, F). B is the set of
big points (Superpoints) or nodes and � is edges proximity
between Superpoints. The Superedges need to be annotated by
a set of d f features: F ∈ RE×d f characterizing the proximity
relationship between Superpoints [8]. In our dataset, we have
a mixture of dense and sparse components. One disadvantage
of Voronoi tessellation on large point clouds is that having
been based entirely on the Euclidean metric, Voronoi tessel-
lation fails to capture the structure of the point cloud. This

is especially true in our application where the seabed and
water surface points are very close to each other and maybe
grouped entirely together by the Voronoi tessellation, leading
to improper learning [16]. Indeed, geometric distinction plays
a key role in the success of segmentation. We, therefore,
adopted a different approach. We begin by subsampling the
point cloud based on the following two principles: 1) points
close to each other likely belong to the same class and 2) for a
small number of points where the seabed and the water surface
points meet each other, close points may belong to different
classes. We note that the above observations are based on our
dataset. Hence, we favor a nonuniform sampling. Nonuniform
sampling means the following steps: 1) sparse parts of the data,
which are in the far-end scope, are sampled more densely and
2) dense parts of the data are sampled more sparsely.

In large point clouds, (1) or (minimized partition functional)
cannot properly act well [8]. In this case, it can be a good
solution to find proximity with a few graph-cut iterations.
Therefore, we will have more constant big points (Superpoint)
in simple geometric components.

Superedge: To make Superpoint B and T adjacent, either
B or T must be at one end; with one edge in Evor, (2). The
Evor and C are called symmetric Voronoi adjacency graph for
the whole input point cloud [8], [17]

� = {
(B, T ) ∈ B2 | ∃(i, j) ∈ Evor ∩ (B × T )

}
(2)

(B, T ): the set of Superpoints, Evor: edge of Voronoi adjacency
graph. Equation (3), distinguishes the important features of
Superedge B and T as a set of offsets δ(B, T )

δ(B, T ) = {(pi − p j) | (i, j) ∈ Evor ∩ (B × T )}. (3)

Every Superpoint Bi is embedded into a vector zi of fixed-size
dimensionality dz . Then contextual information is provided by
the graph convolutions.

D. Segmentation

Classifying each big point with its meaningful surrounding
is the final step of the segmentation task in this section.
In image segmentation, classification acts based on informative
context and finds the relationship of the nearby pixels (neigh-
borhood). For 3-D big points with three coordination, graph
convolution networks (GCNs), is used. The general idea is to
update the embedding of each Superpoints according to pieces
of information transmitted through Superedges. In this regard,
gated recurrent unit (GRU) [8] is used as retaining embedded
information for each Superpoint. Then over iteration GRU
updates itself by incoming messages mi

t .

III. EXPERIMENTS AND RESULTS

A. Dataset

Dataset was recorded by a 3-D Bathymetry LiDAR sensor
mounted on a moving air-vehicle passing through various
coastal-urban scenes of Tampa Bay, Florida, USA, on October
15, 2015. The maximum altitude flight was about 504.617 m
(latitude 27◦53�35��N, longitude 82◦51�06��W). Figs. 4 and 5
show the study area and original bathymetry point clouds
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Fig. 4. Study area - The coastal urban area, Tampa Bay (Florida, USA).

Fig. 5. Some bathymetry point clouds. Cross section of point cloud shows
on the right side. Buildings, trees, and beachside can be seen. Points with
different reflection intensities are rendered in different colors.

respectively. As shown in Fig. 1(b), a RIEGL VQ-880-G scan-
ning system which integrates green laser scanners, infrared
laser scanner, RGB camera, and inertial navigation devices
are installed on traveling aircraft to capture 3-D point clouds.
The total number of ALB point cloud at shallow water are
around five million points by 1.2 km × 1.8 km. The average
point cloud density is 1–3 points/m2 for the sparse part of
the data, in particular for high depth seabed (>4 m) and
5–8 points/m2 for dense part of the data.

B. Georeference and Complexity Computation

For geo-referencing of the captured data, we adjust the
dataset with the national oceanic and atmospheric admin-
istration (NOAA) benchmark, which is around 33 ground
control points. These ground control points also include the
bathymetric points in the shallow part of the dataset. All
experiments were performed on CentOS 8 with Intel Xeon
Gold CPU and 192-GB RAM with four NVIDIA V100 GPU
cards. The training process for 2 41 780 points consumed
31 308 s with over 50 epochs. This part of data is including
very shallow water. This time excludes time spent on data
pre-processing and loading.

C. Experimental Results

Referring to the addressed challenges, the comparisons
are conducted with five state-of-the-art deep-learning-based
methods; PointNet [3], PointNet++ [6], Dynamic Graph CNN
(DGCNN) [18], RandLA-Net [19], SPG [8], and our proposed
method on the ALB dataset. Note that, still lack of enough
ALB datasets, limited us for further comparisons with other
similar datasets. The performance comparisons and validation
accuracy of different methods of our dataset are reported in
Table I. Fig. 6 compares semantic labeling results of water
surface and seabed on very shallow water. The water depth
is 0.8 to 1 m. Since the ALB system captures the geome-
try of underwater features (seabed features) in unstructured
space, point cloud doesn’t have additional information such
as RGB. Moreover, superimposed echoes in very shallow
water results in unreliable extraction of the sea-bottom part

TABLE I

PERFORMANCE COMPARISONS ON THE VALIDATION SET OF OUR DATA.
INTERSECTION OVER UNION METRIC FOR THE CLASSES OF OUR

DATASET. MIOU REFERS TO THE UNWEIGHTED

AVERAGE OF IOU OF EACH CLASS

from waveform analysis. Therefore, we conducted the related
point-based methods. PointNet operates on each point inde-
pendently through permutation invariant and then applies a
symmetric function to accumulate features. However, this
point-independency approach leads to inattention of the geo-
metric relationships among points.

In SPG, the validation accuracy after 60K iterations is
a 69.89% which is substantially higher than the 49% of
accuracy with PointNet++. This shows the less effectiveness
of using the Pointnet++ method for the large-scale point
cloud data. RandLA-Net use the random sampling approach
to decrease point density of large-scale datasets. Random
sampling selects K points from the whole original points.
Although RandLA-Net when compared with other point sam-
pling approaches such as farthest point sampling (FPS) has low
memory cost. However, in our dataset, because of the mixture
of dense and sparse components, particularly in very shallow
water, this approach cannot capture the water surface and
seabed points accurately. Therefore, we propose an approach
to overcome the bathymetry dataset which is a mixture of
dense and sparse components without RGB values.

Voxel-sampling preprocessing (VSP) allows us to use effec-
tive deep learning tools which would not be able to handle the
large-scale data. Fig 7 shows some visual experimental results
of sparse and dense parts of the dataset with DGCNN [18],
RandLA-Net [19], and SPG with VSP (Ours).

Water surface and seabed points are very close to each
other in the very shallow water of shoreline and Euclidean
metric is not able to capture the structure of the point
cloud. We solve this by nonuniform sampling. We carry
out nonuniform sampling on 70% of the data selected as
a training set and train the system as per normal loss
functions of Superpoint. We then validate the performance
of the remaining 30% of the data. Fig. 8 illustrates the
classified semantic labels of water surface and seabed in
different water depths with SPG + VSP approach. Fig. 9
shows some comparison of semantic labeling results as a
cross section of very shallow water. The water depth range
is 0.8 to 6 m. Our method significantly improves accuracy
comparing PointNet, PointNet++, DGCNN, RandLA-Net,
and SPG on our dataset. We obtain a per-point accuracy
of 72.45%.

IV. CONCLUSION

In this letter, we presented the application of deep learning
for seabed semantic segmentation of large-scale ALB point
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Fig. 6. Comparison of semantic labeling results of water surface and seabed on very shallow water. The water depth is 0.8 to 1 m. (a) PointNet++,
(b) Dynamic Graph CNN (DGCNN), (c) RandLA-Net, (d) SPG, and (e) SPG with VSP on the ALB point cloud.

Fig. 7. Examples of semantic labels of water surface and seabed on the ALB dataset at dense and sparse parts. For each set, Left: Sparse part of data. Right:
Dense part of data. (a) and (b) dynamic Graph CNN (DGCNN) results, (c) and (d) RandLA-Net results, and (e) and (f) SPG with VSP results (ours).

Fig. 8. Classified semantic labels of water surface and seabed in different
water depth via SPG with VSP. (a) Shows the semantic label with depth of
0.8 to 1.5 m in shoreline. (b) Shows the semantic label with depth of more
than 2.5 m.

Fig. 9. Compare semantic labeling results of cross section of shallow water
in the shoreline on ALB point cloud. (a) Raw point cloud of water surface
and seabed. The water depth is between 0.8 and 6 m. (b) Groundtruth. Water
surface is in blue color and seabed is in light blue color. Semantic label with
(c) DGCNN, (d) RandLA-Net, and (e) SPG + VSP (ours).

cloud based on VSP approach. We proposed an approach to
overcome the challenges of 3-D large-scale ALB point cloud
dataset which is a mixture of dense and sparse components.
We showed that VSP allows us to use effective deep learning
tools and able us to handle the large-scale ALB point cloud
data. Our method significantly improves accuracy when com-
paring PointNet, PointNet++, DGCNN, RandLA-Net, and
SPG on the ALB dataset. We obtained a per-point accuracy
of 72.45%. Our work infers implicit relationships to improve
regimentation results. Indeed, additional information such as
underwater images, more labeled data and data integration
with 3-D LiDAR point clouds will improve the performance
of DNN approaches on sub-surface semantic segmentation
task.
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