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A B S T R A C T   

Medical imaging techniques have been widely used in modern clinical disease diagnosis and treatment programs. 
The captured medical images can well reflect the conditions of the human body tissues, which are significantly 
helpful to the doctors to determine the existence or the severity of the disease. In this paper, we develop a hi
erarchical attentive high-resolution convolutional network (AttHRNet) for segmenting targets of interest from 
medical images aiming to improve the automated processing standard and the intelligent interpretation quality 
of the medical images. The AttHRNet is an improved version of the high-resolution network (HRNet) structure 
with three novel modules. First, built with an improved HRNet structure assisted by a multiscale context 
augmentation (MSCA) module as the feature extraction backbone, the AttHRNet can produce a set of high- 
quality, strong-semantic feature maps at different resolutions. The MSCA module functions to reduce the in
formation loss during feature downsampling. Second, designed with an effective feature attention principle, the 
feature encoding quality in each branch can be significantly promoted by concentrating on the informative and 
salient feature encodings across both channels and spatial locations. Furthermore, formulated with a hierarchical 
segmentation scheme, the output feature maps can be further augmented by including the semantic-level 
category exploitation (SLCE) module with a global perspective. The SLCE module allows the information from 
lower resolution segmentations to inform higher resolution segmentations. Through quantitative examinations, 
visual verifications, and comparative evaluations on four medical image datasets, we convince the promising 
applicability and competitive superiority of the AttHRNet in medical target segmentation issues.   

1. Introduction 

Medical images act as a crucial role in current clinical disease 
checking, diagnosis, and treatment programs, as well as in many health 
examinations for assisting in evaluating the physical conditions. They 
can visually reflect the situations and changes of the interior tissues of 
human bodies in a non-invasive way, which contributes significantly to 
the early detection of diseases and the supervision of therapeutic 
schedule formulations. The common techniques for medical image 
collection include computed tomography (CT), X-ray imaging, magnetic 
resonance imaging (MRI), ultrasonography, etc. The frequent use of 
these medical imaging equipment in daily inspections results in a large 
volume of different-type and different-pattern medical images, which 

cost the doctors considerable time and energy to read and analyze these 
images for disease diagnoses and severity estimations. As the impor
tance of medical images keeps growing, many researches have focused 
on the automated processing and interpretation of medical images 
aiming at providing the pre-analyzed results to improve the efficiency 
and accuracy of clinical disease diagnoses [1,2]. Thereinto, medical 
image segmentation, as a widely studied topic, dedicates to locate and 
segment the medical targets of interest, such as organs and lesions, 
which provides essential evidence to supervise the detection, determi
nation, observation, and evaluation of the diseases. 

In the literature, there are numerous works being conducted with 
increasing enhanced performances for medical image segmentation 
tasks. However, despite the success achieved so far in segmentation 
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accuracy, it still faces great challenges to attain human-level qualities 
[3] caused by the unique properties of the medical targets in the images 
captured with different imaging protocols, including heterogeneities in 
colors and textures, variations in sizes and shapes, low contrasts or 
similarities between the targets and the surrounding tissues, un
certainties resulted in by obscure borders, etc. Therefore, investigating 
advanced and effective techniques to promote the segmentation per
formance is greatly meaningful and significantly favorable to upgrade 
the detection and precision rates in clinical disease diagnoses. 

In this paper, aiming at upgrading the intelligent interpretation 
quality of the medical images for facilitating clinical disease diagnoses, 
we develop a novel attentive high-resolution convolutional network 
architecture. This architecture is an improved version of the high- 
resolution network (HRNet) structure with three novel modules for 
improving the medical image segmentation quality. This architecture is 
made of a multi-branch feature extraction backbone for extracting 
multiscale strong-semantic feature maps, a feature attention module for 
boosting the feature representation quality, and a hierarchical seg
mentation head for gradually producing a high-quality, high-resolution 
segmentation map. Benefitting from the powerful combination and ad
vantageous integration of these three functional components, the 
designed model behaves excellently in processing medical targets of 
different sizes and shapes, varying appearances and self-conditions, and 
diverse boundary properties and surrounding scenarios. To sum up, the 
contributions of this paper mainly consist in the following three parts. 
(1) An improved HRNet structure is built for extracting high-level 
semantically strong feature representations at different resolutions. To 
well alleviate the feature detail loss during feature downsampling, an 
effective multiscale context augmentation (MSCA) module is designed to 
supervise the cross-branch multi-resolution feature propagation. (2) A 
novel feature attention module is developed for repeatedly promoting 
the feature encoding quality at each feature resolution. To well highlight 
the informative feature semantics and weaken the contributions of the 
helpless ones, a channel-specific attention unit and a spatial-specific 
attention unit are cascaded to, respectively, emphasize the informative 
feature channels and the important spatial locations. (3) A hierarchical 
segmentation pipeline is designed to progressively refine the output 
feature maps with semantic-level contextual information for producing 
a high-quality segmentation map. To well characterize semantic-level 
properties and allow the information from lower resolution segmenta
tions to inform higher resolution segmentations, a semantic-level 
context exploitation (SLCE) module is proposed to provide a uniform 
semantic representation for each individual category with a global 
perspective. The specific contributions and their progresses in this paper 
are listed in detail in Table 1. 

2. Related work 

2.1. Handcrafted feature based strategies 

In the early days, prior knowledge, empirical rules, and handcrafted 
features were widely used to segment the medical targets of interest. 

Typical strategies included intensity thresholding schemes, edge detec
tion operators, and pixel classification models. Patra et al. [4] developed 
a multi-level intensity thresholding approach to locate breast lesions by 
considering the strong intensity contrast of the lesions. Chakraborty and 
Mali [5] applied the morphological reconstruction technique to suppress 
the noise interferences, followed by a block-based intensity binarization 
for lung region determination. The intensity-based approaches usually 
showed excellent processing efficiencies; however, their performances 
were easily to be affected by the variations of the target conditions and 
data sources. In addition, the intensity threshold was task and target 
sensitive. Wang et al. [6] combined the geometric active contour model 
and the Hough transform to segment vessel lumens. Specifically, manual 
intervention was selectively conducted to adjust inaccurate de
lineations. Likewise, an adaptive active contour model was designed in 
[7] for segmenting lung images. Lu et al. [8] developed a two-stage level 
set model constrained with shape priors to segment cardiac ventricles. 
First, regions of interest (ROI) were estimated through adjacent 
sequence subtraction and intensity thesholding. Then, Hough transform 
and level set were applied to detect endocardium and epicardium with 
circle primitives. The active contour models and Hough transform op
erations performed effectively to delineate the target contours. Never
theless, the contrast qualities between the targets and their surrounding 
background also affected the delineation accuracy. 

In order to provide a target-level feature interpretation, the raster 
images were converted into high-order structures and semantic models. 
Chen et al. [9] proposed an improved version of the graph cuts model, 
which was optimized with adaptive shape priors for supervising the 
accurate extraction of the target boundaries. Filali et al. [10] con
structed a graph formulation to rank the distinguishabilities between the 
skin and the lesion regions, which were eventually fused for lesion 
segmentation. Jia et al. [11] designed a hierarchical workflow 
comprising snake model, watershed, and shape fitting to segment cell 
instances. In this framework, snake model and watershed were coop
erated to provide initial segmentations, which were refined through 
shape fitting. Fan et al. [12] adopted an improved Mumford-Shah model 
to carry out medical target segmentation. Specifically, dimensionality 
reduction of the image was initially conducted to improve the processing 
efficiency and a Chambolle-Pock pairwise algorithm was applied to 
optimize the Mumford-Shah model. To handle the issue of limited labels, 
Huang et al. [13] proposed a Chan-Vese model for medical image seg
mentation with an unsupervised manner. It employed an iterative seg
mentation scheme with the cooperation of the weight maps generated by 
the Markov chain. An advantage of the high-order structures or semantic 
models lies in that the discrete low-semantic pixel primitives consti
tuting the foreground and background were selectively organized to 
improve the distinguishability and highlight the target components. 

Aiming at promoting the feature representation quality and the 
target-specific feature semantic uniqueness, some machine learning 
approaches were developed accordingly to serve medical image seg
mentation tasks. To alleviate noise impacts, Tavakoli-Zaniani [14] pre
sented an improved fuzzy C-means model by weighted integrating the 
noisy and denoised images. Pereira et al. [15] integrated local binary 

Table 1 
Main contributions and their progresses in this paper.  

Contribution Function Progress Assumption 

MSCA module Reduction of feature detail loss during 
downsampling 

Preserved more feature details Importance of contextual properties to semantic targets 

Feature attention module Recalibration of channel and spatial feature 
semantics 

Highlighted feature significance Importance of channel and spatial feature saliencies 

SLCE module Exploitation of category-aware feature 
semantics 

Enhanced target semantic 
contrast 

Importance of target semantics from different categories 

Improved HRNet backbone Extraction of semantically-strong feature 
representations 

Promoted feature representation 
quality 

Importance of feature representation robustness and 
distinguishabilities 

Hierarchical segmentation 
strategy 

Augmentation of segmentation results Improved segmentation accuracy Importance of target details at different granularities  
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patterns into the k-means clustering approach for precisely determining 
the lesion borders in skin images. The extracted local binary pattern 
properties served to enhance the saliency of the lesion areas. Schneider 
et al. [16] designed a pair of Hough forest models to classify the image 
patch features to, respectively, segment vessel regions and extract vessel 
centerlines. The patch features were depicted using steerable filters at 
varying scales and orientations. Huang et al. [17] employed a bag-of- 
visual-words (BoVWs) model to represent the semantic regions, which 
were generated based on superpixel segmentation. These semantic re
gions were further recognized to segment the breast tumors through a 
BoVWs feature based classifier. In addition, dictionary learning [18], 
wavelet transform [19], feature vector [20], and random forest [21] 
were also investigated for medical image segmentation. 

Generally, the handcrafted feature based methods are easy to be 
implemented and show promising processing efficiencies. However, 
they are limited to specific applications and sensitive to the variations 
and qualities of the image data. 

2.2. Deep feature based strategies 

In recent years, deep learning architectures have encountered un
precedented prosperity in a broad range of vision tasks [22]. An ad
vantageous property of deep learning models is reflected in the 
automated abstraction of high-level feature representations. As a result, 
intensive attempts have also been made to introduce deep learning 
models into medical image segmentation tasks [23]. An and Liu [24] 
presented a convolutional neural network (CNN) with a feedback phi
losophy to conduct medical image segmentation. The feedback optimi
zation process was directed via a greed-based pruning and recovering 
strategy. Liang et al. [25] proposed a region-based CNN architecture to 
improve the target-level segmentation accuracy. In this architecture, 
guided anchoring techniques and fusioned box score measures were 
cooperated for obtaining tight boundaries between the adhered and 
clustered targets. Gu et al. [26] embedded a comprehensive attention 
scheme into the CNN to promote the feature semantics. The attention 
module comprised three parts for recalibrating the spatial, channel, and 
scale-level feature semantics, respectively. Zhang et al. [27] designed a 
fully convolutional network (FCN) architecture stacked by compressed 
dense blocks. Specifically, these blocks employed dilated convolutions 
to rapidly access large spatial contexts. Wang et al. [28] developed a 
hybrid network architecture, which involved three task-specific 
branches sharing the same encoder. Specifically, two of them func
tioned for pixel-level segmentation and the other one served for patch- 
level classification. With the gradual exploitation of the deep and 
high-level feature semantics, the CNN models performed promisingly in 
the medical image segmentation tasks. However, the output low- 
resolution feature representations used for prediction sometimes 
cannot meet the requirements of fine-grained segmentations. 

Aiming at improving both the quality and resolution of the output 
feature semantics, some modified architectures have also been elabo
rately developed. A representative was the U-Net architecture. Ronne
berger et al. [29] pioneered a U-Net architecture composed of a 
contracting pathway and a symmetric expanding pathway, resulting in a 
U-shape formulation. To be specific, the contracting pathway functioned 
to extract different-level feature semantics at different scales and the 
expanding pathway functioned to gradually recover a high-resolution 
feature representation augmented by the feature semantics from the 
contracting pathway. Yang et al. [30] presented a modified U-Net 
formulation to integrate multilevel feature encodings for improving the 
segmentation accuracy. In this network, residual and dilated blocks 
were leveraged for feature boosting. Similarly, aiming at enhancing the 
representation quality of the U-Net, Huang et al. [31] designed a hier
archical channel-oriented feature attention scheme. Badshah and 
Ahmad [32] extended the U-Net architecture by embedding the residual 
blocks, batch normalization, and bidirectional ConvLSTM to construct a 
ResBCU-Net architecture. Besides, asymmetric U-Net [33], ensemble U- 

Net [34], and UNet++ [35] were also designed for segmenting medical 
targets. To well handle blurred boundaries, Zhou et al. [36] suggested an 
encoder-decoder architecture to segment low-contrast targets. The 
encoder-decoder architecture can be viewed as a generalization and 
relaxation version of the U-Net architecture. In this network, multiscale 
skip connections and dilated connections were combined to achieve 
high-resolution feature representations. 

An alternative for multi-level feature fusion was the formulation of a 
feature pyramid network (FPN) architecture [37]. The FPN employed a 
bottom-up pathway to exploit multilevel and multiscale feature se
mantics, which were gradually fused through a top-down pathway, 
resulting in different-resolution promoted feature representations at 
different stages. Hsiao et al. [38] applied the FPN architecture to 
segment kidneys from CT images with a specifically-designed hyper
parameter optimization process. Gridach [39] proposed a pyramid 
dilated network (PyDiNet) to capture the small and complex variations 
in the medical images while preserving the spatial details. This was 
achieved by the integration of a multi-branch dilated convolution 
structure. As a novel architecture design paradigm, HRNet [40] adopted 
a parallel, rather than a cascade, feature exploitation structure. High- 
level feature semantics were concurrently extracted under different 
subspaces with the repeated exchanges among them for feature semantic 
augmentation. Wan et al. [41] developed a coarse-to-fine segmentation 
framework based on a capsule HRNet architecture, named as HR- 
CapsSegNet. Specifically, full attention mechanism and dilated convo
lution operations were embedded for boosting the feature representa
tion quality. 

Zhang et al. [42] stacked a generative adversarial network (GAN) to 
conduct lesion segmentation for COVID-19 analysis. This GAN employed 
a dense-block formulation and a multi-layer attention strategy for 
feature semantic augmentation. As improvements, unpaired GAN [43], 
one-shot GAN [44], and multiscale GAN [45] were also constructed for 
medical target segmentations. The superiority of the GAN-based archi
tectures lies in that they can also achieve surprising segmentation results 
even with limited samples. Pang et al. [46] presented a two-stage seg
mentation pipeline composed of two parallel networks for spine parsing. 
These two networks operated successively to, respectively, provide 
initial segmentations and conduct segmentation refinement. In addition, 
graph convolutional network (GCN) [47], mask R-CNN [48], capsule 
network (SegCaps) [49], feature fusion attention network (FFANet) 
[50], pairwise learning [51], multi-task learning [52], weakly super
vised learning [53], and transfer learning [54] models were also inten
sively exploited for medical image segmentation applications. 

Comparatively, deep learning models are not only limited to specific 
segmentation tasks or data sources. Instead, they can be easily retrained 
and applied to different segmentation tasks and different data sources 
with little or even no architecture modifications. 

2.3. Feature attention mechanisms 

Aiming at further promoting the feature representation quality to 
improve the prediction accuracies of the vision tasks, many attempts 
have been recently made to strengthen the contributions of the useful 
feature semantics [55]. Roughly speaking, existing techniques generally 
focus on the recalibrations of the channel feature semantics to highlight 
the task-specific channels and the recalibrations of the spatial feature 
semantics to emphasize the task-specific regions. Hu et al. [56] devel
oped a squeeze-and-excitation (SE) block to adaptively recalibrate the 
channel feature semantics. The SE block determined the channel-wise 
significances by modelling the interdependencies among the channels. 
As a modification, Zhang et al. [57] proposed a pyramid squeeze 
attention (PSA) module for channel feature promotion under different 
scales. Specifically, the PSA module took the multiscale channel features 
as the input and accomplished feature recalibration based on the SE 
block. Differently, Qin et al. [58] presented a frequency channel atten
tion module to exploit channel features under different frequencies. In 
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this module, the feature semantics from different frequencies were 
concatenated and comprehensively considered to determine the channel 
feature saliencies. Hou et al. [59] designed a coordinate attention block 
by embedding positional attributes into channel attentions. The coor
dinate attention block investigated the feature significances along the 
horizontal and vertical directions, respectively, which were finally 
combined to form the position-aware feature encodings. To integrate 
both local and global contents, Zhong et al. [60] constructed a squeeze- 
and-attention (SA) module. Different from the SE block, the SA module 
employed a non-fully-squeezed scheme to parse the local feature details. 

To highlight spatial feature saliencies, Jaderberg et al. [61] pio
neered a spatial transformer network (STN) architecture to recalibrate 
feature semantics in the spatial domain. The STN contained three main 
components, including a localization net, a grid generator, and an image 
sampler, to determine an affine-transformation-invariant feature rep
resentation of the semantic target. Almahairi et al. [62] developed a 
dynamic capacity network (DCN) formulation to adaptively assign the 
feature significances to different image portions. The selection was 
determined based on a gradient-based attention mechanism. To improve 
localization accuracy, Mayo et al. [63] proposed a spatial embedding 
principle by using attention mechanisms. Through reinforcement 
learning, the built attention probability map was applied to infer the 
spatial information. Ulutan et al. [64] employed a spatial graph network 
structure to exploit the relative spatial and structural correlations be
tween the semantic objects. The spatial attention was achieved by 
learning the spatial interaction patterns between the object pairs. Aim
ing at realizing relative saliency encodings to highlight the foreground 
regions, Fang et al. [65] suggested a position-preserved attention 
strategy. The attention module comprised a position embedding stage 
for enriching the feature semantics with positional properties and a 
feature interaction stage for making use of the mutual features between 
object proposals. 

As a hybrid type of feature attention mechanisms, multiple feature 
attention schemes have been combined in some researches. Generally, 
they demonstrated more advantageous performances compared with 
those relying on a single feature attention mechanism. Woo et al. [66] 
designed a convolutional block attention module (CBAM) to simulta
neously attend to the semantic-related channel and spatial features. The 
two subparts were cascaded to sequentially recalibrate the channel and 

spatial feature semantics. As an alternative, Fu et al. [67] developed a 
dual-attention (DA) module by paralleling a position attention unit and 
a channel attention unit. These two units served, respectively, to 
emphasize the task-aware spatial and channel feature semantics, which 
were eventually fused to enhance the feature representation quality. 
Differently, Zhao and Wu [68] applied the channel and spatial attention 
mechanisms, respectively, to different levels of features to conduct 
feature recalibrations separately. The attentive multilevel feature se
mantics were finally combined for directing predictions. Chen et al. [69] 
combined the feature attention with the confidence attention to opti
mize the model robustness. Specifically, the confidence attention 
scheme was applied to formulate the loss function for supervising the 
model training. To model long-range dependencies, Wiles et al. [70] 
suggested a co-attention module to match feature semantics with precise 
spatial location evidences. The attention information was computed by 
comparing the similarities between feature pairs. In addition, residual 
attention [71], depth-sensitive attention [72], domain attention [73], 
and vision transformers [74] were also investigated to perform feature 
attentions. 

3. Method 

3.1. Architecture overview 

Fig. 1 presents the overview of the proposed attentive high- 
resolution convolutional network (AttHRNet) designed for medical 
image segmentation. The AttHRNet employs a fully convolutional 
network architecture and involves three primary functional elements: a 
feature extraction backbone, a feature attention module, and a seg
mentation head. To be specific, the feature extraction backbone follows 
an improved four-branch HRNet [40] structure to produce a set of 
multiscale high-level strong feature semantics. The feature attention 
module cascades two feature recalibration units to emphasize channel 
and spatial specific informative feature semantics for feature represen
tation quality promotion. The segmentation head adopts a bottom-up 
hierarchical formulation to progressively refine the multiscale feature 
maps with semantic-level augmentations for accurate segmentation map 
generation. 

Fig. 1. Overview of the designed attentive high-resolution convolutional network (AttHRNet). The AttHRNet consists of an improved HRNet structure as the feature 
extraction backbone and a hierarchical segmentation head. The novel additions to the AttHRNet involve the multiscale context augmentation (MSCA) module, the 
feature attention module, and the semantic-level context exploitation (SLCE) module, which serve to, respectively, reduce the feature detail loss, promote the feature 
representation quality, and improve the segmentation accuracy. 
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3.2. Feature extraction backbone 

Compared with the popularly used deep network architectures, such 
as U-Net and FPN, which depend on the low-resolution high-level 
feature maps to recover a high-resolution representation for providing 
per-pixel task-specific feature semantics, the development of the HRNet 
[40] innovates a novel network design paradigm. A unique property of 
the HRNet is reflected in the parallel formulation rather than the 
cascaded formulation. That is, it parallels multiple convolutional 
branches for concurrently exploiting high-quality feature representa
tions at varying scales. Specifically, it contains a high-resolution branch 
across the whole network to maintain the high-resolution feature rep
resentation. Besides, the multiscale features are repeatedly fused across 
the branches to augment the feature quality at each scale. Therefore, due 
to the advanced multiscale feature encoding characteristic of the HRNet, 
we formulate the feature extraction backbone as an improved HRNet 
structure aiming at producing strong feature semantics to improve per- 
pixel segmentation accuracy. 

As illustrated by Fig. 1, the feature extraction backbone includes four 
parallel branches serving for mining high-level feature representations 
at different resolutions. It is an improved version of the HRNet structure, 
which contains two novel modules for, respectively, reducing the feature 
detail loss during feature downscaling and promoting the feature rep
resentation quality by recalibrating the channel and spatial feature 
informativeness, and follows the same network architecture and the 
same dimensions in each branch as those of the original HRNet struc
ture. It begins with a high-resolution branch (Branch 1) and progres
sively connects up lower-resolution branches with a downscaling step of 
0.5. With the connection of the lower-resolution branches, larger con
texts can be accessed to exploit feature semantics from a broader 
perspective. Then, through cross-branch feature fusion, the feature se
mantics in each branch can be significantly augmented by comprehen
sively aggregating the different-resolution feature representations from 
all the branches. Noteworthily, the feature maps in each branch 

maintain the same size and spatial resolution, which can effectively 
alleviate the localization bias issue. To sum up, all the above novel 
design philosophies of the HRNet guarantee the remarkable feature 
representation capability and build up its position in pixel-wise seg
mentation tasks. 

3.3. Multiscale context augmentation module 

There is a fly in the ointment in the HRNet with regard to the feature 
downscaling operation either when connecting up a new lower- 
resolution branch or when conducting cross-branch feature aggrega
tion, as well as the feature addition operation when fusing the multi- 
resolution feature semantics. The feature downscaling operation might 
cause feature detail loss and the feature addition operation might sup
press the distinctions of the feature semantics from different resolutions. 
To solve this issue, we propose a multiscale context augmentation 
(MSCA) module to perform feature downscaling. As depicted by Fig. 2, 
the MSCA module comprises five parallel branches serving for exploiting 
contextual properties at different scales. Each branch (except the top 
branch) involves a channel reduction operation, a feature aggregation 
operation, and a context exploitation operation. To be specific, for each 
branch, a 1 × 1 convolution is first operated on the input feature map to 
perform channel reduction aiming at reducing the computation over
head. Then, the reduced feature map is concatenated and fused with the 
output feature map from the previous branch through a 1 × 1 convo
lution for feature semantic augmentation. Finally, a dilated convolution 
is applied to the augmented feature map to exploit contextual properties 
with different-size receptive fields. The aggregation of the output feature 
map from the previous branch can effectively promote the feature 
encoding quality by including the contextual information from the 
smaller-size receptive fields, thereby resulting in a multiscale perspec
tive in each branch rather than a single scale perspective. Specifically, 
the feature semantics with the original size of receptive field are well 
conveyed to the following branches by introducing a connection 

Fig. 2. Architecture of the multiscale context augmentation (MSCA) module. The MSCA module parallels five branches for exploiting contextual properties at 
different scales. The output feature semantics in each branch are conveyed downward for feature semantic augmentation to achieve a multiscale perspective in 
each branch. 
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between the first and the second branches. In our architecture, we apply 
a 3 × 3 dilated convolution with dilated rates {1, 2, 4, 8} to the last four 
branches. Next, the feature maps encoding different scales of contextual 
information from all the branches are concatenated and further inte
grated via a 1 × 1 convolution. Eventually, a max-pooling operation is 
applied to convert the feature map to the desired size. Based on the 
MSCA module for feature downscaling, the feature details from higher- 
resolution branches can be well maintained. 

As illustrated by Fig. 3(a), when paralleling a new lower-resolution 
branch, we first downscale the feature maps from the existing 
branches into the identical size expected by the new branch based on the 
MSCA module. Then, the downscaled feature maps are concatenated, 
rather than summed up like that in the HRNet, and aggregated via a 1 ×
1 convolution to produce the primary feature map in the new branch. By 
using concatenation operation, the feature semantic distinctions from 
different resolutions can be well maintained, thereby improving the 
feature representation quality. Similarly, as illustrated by Fig. 3(b) to 
(d), when carrying out cross-branch feature fusion, first, the feature 
maps from the remaining branches are downscaled or upscaled into the 
identical size desired by the target branch. Next, the scale-modulated 
feature maps alongside with the feature map in the target branch are 
concatenated and aggregated via a 1 × 1 convolution, resulting in a 
semantic-augmented feature representation in the target branch. Here, 
the downscaling and upscaling operations are, respectively, imple
mented by the MSCA module and the deconvolution operation. 

3.4. Feature attention module 

As demonstrated in the literature, the pure convolution operations 
individually behave less excellently to characterize the channel infor
mativeness and the spatial saliency, thereby going against to obtain 
high-quality robust feature representations [55]. In this paper, targeting 
at further upgrading the feature semantics in all branches of the feature 
extraction backbone, we design an effective feature attention module for 
emphasizing the important semantics and suppressing the helpless ones. 
The attentive feature map in each branch is further leveraged for cross- 
branch feature augmentation. As shown by Fig. 4, the feature attention 
module cascades a channel-specific attention unit and a spatial-specific 
attention unit. The channel-specific attention unit functions to empha
size the informative channels by exploiting the intra-channel correla
tions, while the spatial-specific attention unit functions to salient the 
important positions by exploiting the inter-channel dependencies. 

As shown by the first part in Fig. 4, the channel-specific attention 
unit first performs two 1 × 1 convolutions on the input feature map, 
resulting in two feature representations F1 ∈ RH×W×C and SW ∈ RH×W×1, 
where H, W, and C represent the height, width, and number of channels. 
The positions in F1 encode the feature responses corresponding to the 
same positions in the input feature map, while SW can be treated as a 
spatial weight map reflecting the feature significance of different 

positions. For facilitating exploiting channel-wise feature correlations, 
we reshape F1 into a feature matrix V1 ∈ RC×N and reshape SW into a 
column vector W ∈ RN×1, where N=H × W. Next, V1 is multiplied with 
W to produce a channel attention vector CA ∈ RC×1 by weighted 
aggregating the feature semantics in each channel with the compre
hensive consideration of their correlations. Specifically, W is activated 
with a softmax function before performing matrix multiplication to 
normalize the contribution of the feature semantic at each position. 
Here, being activated by a sigmoid function, the elements in CA encode 
the feature informativeness related to the channels in the input feature 
map. Eventually, by channel-wisely multiplying the input feature map 
with the channel attention vector CA, we attain the quality-enhanced 
feature representation FC ∈ RH×W×C, whose informative channels are 
explicitly attended and emphasized. 

As shown by the second part in Fig. 4, the spatial-specific attention 
unit takes the output of the channel-specific attention unit (i.e. FC) as 
the input to further attend to spatially salient feature semantics. 
Concretely, first, two 1 × 1 convolutions are performed on FC to produce 
two feature representations F2 ∈ RH×W×C and FQ ∈ RH×W×C. Then, a 
global average pooling (GAP) operation is operated on FQ, resulting in a 
feature vector CW ∈ R1×C by combining the channel-wise feature se
mantics. Similarly, the positions in F2 encode the feature responses 
corresponding to the same positions in FC, while CW can be treated as a 
channel weight map reflecting the feature importance of different 
channels. For facilitating exploiting cross-channel feature dependencies, 
we reshape F2 into a feature matrix V2 ∈ RC×N. Then, after being acti
vated with the softmax function for normalizing the contribution of each 
channel, CW is multiplied with V2 to comprehensively take into account 
the channel dependencies. Next, after conducting reshaping on the 
product matrix, we obtain the spatial attention map SA ∈ RH×W×1. Here, 
being activated by a sigmoid function, the elements in SA indicate the 
feature saliencies related to the positions in FC. Eventually, by element- 
wisely multiplying FC with the spatial attention map SA channel by 
channel, we attain the quality-enhanced feature representation, whose 
spatially salient feature semantics are explicitly attended and 
highlighted. 

3.5. Segmentation head 

As illustrated by Fig. 1, the feature extraction backbone outputs a 
group of feature maps having different resolutions to supervise the 
generation of the segmentation map. Generally, the low-resolution 
feature map can well suppress the impacts of the noises, thereby 
favorable to handle the interior texture heterogeneities of the medical 
targets. By contrast, the high-resolution feature map has excellent 
properties to characterize details, thereby beneficial to locate accurate 
boundaries of the medical targets. Hence, taking advantage of the multi- 
resolution feature maps, the segmentation head is formulated as a hi
erarchical structure to progressively refine the higher-branch feature 

Fig. 3. Illustration of (a) connecting a lower-resolution branch and cross-branch feature fusion to generate (b) high-resolution, (c) medium-resolution, and (d) low- 
resolution feature maps with the MSCA module and the deconvolution operation. 
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maps in a bottom-up manner based on the lower-branch predictions. To 
be specific, first, an initial prediction map is generated based on the 
feature map output by Branch 4. The prediction map involves two 
channels with a binary classification output: one for the foreground and 
one for the background. That is, for each position in the prediction map, 
the channel with the larger output indicates the category label of this 
position. Then, the prediction map alongside with the feature map from 
the current branch are fed into a semantic-level context exploitation 
(SLCE) module to produce a contextual category attentive semantic 
feature map. This feature map is further concatenated to and integrated 
with the feature map exported by the upper branch to serve feature 
augmentation. Afterwards, the augmented feature map is leveraged to 
produce a higher-resolution prediction map in the upper branch. As 
illustrated by Fig. 1, the above process is repeated bottom-up to grad
ually augment the feature maps in the upper branches. Eventually, a 
high-quality prediction map is produced in Branch 1 to produce the final 
segmentation output. 

The SLCE module functions to aggregate the contextual properties 
from individual categories with a global perspective to provide a uni
form semantic representation for the individual categories across the 
entire feature map. As illustrated by Fig. 5, the SLCE module takes the 

current-branch prediction map P and feature map F as the input and 
outputs a contextual category attentive semantic feature map FS. First, 
two index sets ψF and ψB are defined to encapsulate the positions on the 
prediction map P that are predicted as the foreground and the back
ground categories, respectively. Then, to provide a uniform semantic 
representation for each category, we aggregate the semantic-level 
contextual properties in each category as follows: 

RF =
∑

k

eP[ψF [k],1]
∑

neP[ψF [n],1]
F[ψF[k]] (1)  

RB =
∑

k

eP[ψB [k],0]
∑

neP[ψB [n],0]
F[ψB[k]] (2)  

where ψF[k] andψB[k], respectively, denote the k-th element in the cor
responding index set; RF and RB represent the obtained semantic rep
resentations shown in Fig. 5 for the foreground and the background, 
respectively. Finally, these two semantic representations are leveraged 
to construct the semantic feature map FS as follows: 
{

FS[ψF[k]] = RF, k = 1, 2, 3,⋯
FS[ψB[k]] = RB, k = 1, 2, 3,⋯ (3) 

The semantic feature map FS output by the SLCE module will be 
upscaled to its twice spatial size to serve feature augmentation in the 
upper branch. 

3.6. Loss function 

As depicted by Fig. 1, the AttHRNet outputs a separate prediction 
map in each branch, which can generate an individual segmentation 
result at that resolution. Since the prediction map contributes to the 
feature augmentation in the upper branch to supervise the generation of 
a finer prediction map, the quality of the prediction map impacts 
significantly on the final segmentation performance. Thus, each branch 
of the AttHRNet should be explicitly supervised during the network 
optimization process. To this end, each branch is assigned with a binary 
ground-truth segmentation map, where the positions with a value of 1 
indicate the foreground areas and the positions with a value of 0 indicate 
the background areas. The loss function used to direct the optimization 
of the AttHRNet is formulated as the weighted summation of the losses 
from all the branches as follows: 

L =
∑4

i=1
2i− 4( Li

FL + Li
IoU

)
(4)  

where Li
FL denotes the focal loss [75] item defined by the softmax pre

dictions corresponding to the annotated ground truths in the i-th branch; 
Li

IoU denotes the intersection over union (IoU) loss [76] item between the 

Fig. 4. Structure of the feature attention module. The feature attention module cascades a channel-specific attention unit and a spatial-specific attention unit for 
highlighting the important channels and salient regions, respectively. 

Fig. 5. Structure of the semantic-level context exploitation (SLCE) module. The 
SLCE module takes the feature map and prediction map as the input to compute 
the semantic representations for both the foreground and the background cat
egories and outputs a contextual category attentive semantic feature map. 
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binary segmentation results and the ground-truth segmentation map in 
the i-th branch. Considering the size difference of the output in each 
branch, the weighting coefficient 2i-4 is introduced to balance the con
tributions of different branches to the summation of the total loss. 

3.7. Implementation details 

All branches of the AttHRNet were concurrently constructed using 
the Adam optimizer on a cloud computing platform equipped with a 
128-GB memory, ten 16-GB GPUs, and a 16-core CPU. The reason of the 
selection of the Adam optimizer is that it usually behaves promisingly 
with excellent convergence performance on the data with complex dis
tributions and at the saddle point. Before training, the network param
eters in each layer of the AttHRNet were initialized at random by getting 
parameters from a zero-mean Gaussian distribution with a standard 
deviation of 0.01. Then, 1000 epochs were intently optimized to 
construct the AttHRNet according to the loss function in Eq. (4) with six 
image patches per batch on each GPU. During training, the learning rate 
was initially configured to be 0.001 and gradually decreased by the 
coefficient of 0.1 every 400 epochs. Specifically, data augmentation was 
also conducted on the training data aiming at promoting the model 
robustness. First, each training patch was flipped horizontally to pro
duce a horizontal duality image. Then, the training patch alongside with 
its coupled horizontal duality image were, respectively, rotated anti
clockwise with a step interval of 90 degrees. Consequently, eight 
training samples were obtained for each training patch. 

4. Results and discussions 

4.1. Datasets 

To provide convincing evidence to examine the segmentation per
formance of the constructed AttHRNet, we conducted intensive confir
matory experiments on four publicly released medical image 
segmentation datasets, which are all suitable and large enough to 
construct and test deep learning models. 

The first dataset is the lung image database consortium and image 
database resource initiative (LIDC-IDRI) dataset [77]. The LIDC-IDRI 
dataset consists of 885 diagnostic and lung cancer screening thoracic 
CT scans, which were captured by using four different types of scanner 
models. Each scan involves hundreds of slices with thickness ranging 
from 0.6 mm to 5 mm and with marked-up annotations of the lung re
gions, as well as the marked lesions belonging to three nodule cate
gories. It was established collaboratively by eight medical imaging 
companies and seven academic centers. Each image in the LIDC-IDRI 
dataset has the identical size of 512 × 512 pixels. This dataset was 
used to conduct lung instance segmentation. 

The second dataset is the 2019 kidney and kidney tumor segmenta
tion challenge (KiTS19) dataset [78]. The KiTS19 dataset includes tens 
of thousands of CT scan images collected from 300 patients who were 
treated with partial or radical nephrectomy at the University of Min
nesota Medical Center between 2010 and 2018. All the cross sectional 
CT images, more than half of which were acquired across more than 50 
referring institutions, in the KiTS19 dataset have the same size of 512 ×
512 pixels and were manually annotated with semantic segmentation 
masks of the kidney areas and the kidney tumor regions. This dataset 
was used to conduct kidney instance segmentation. 

The third dataset is the Kvasir polyp segmentation (Kvasir-SEG) 
dataset [79]. The Kvasir-SEG dataset was collected from different 
colorectal cancer screening patients through colonoscopy by experi
enced gastroenterologists from Vestre Viken Health Trust in Norway. It 
comprises 1000 polyp image samples and the associated instance-level 
polyp annotations including the pixel-wise annotations of the polyp 
regions and the bounding box annotations of the polyp instances. The 
image size varies within the range of 332 × 487 pixels to 1920 × 1072 
pixels. This dataset was used to conduct polyp instance segmentation. 

The last dataset is the international skin imaging collaboration (ISIC) 
dataset [80]. The ISIC dataset comprises 2750 dermoscopy images 
collected with different devices in several international clinical in
stitutions for melanoma diagnosis. The image size varies within the 
range of 540 × 722 pixels to 4499 × 6748 pixels. All the images in the 
ISIC dataset were annotated with region-wise lesion masks and grouped 
into different categories of melanoma conditions. This dataset was used 
to conduct skin lesion segmentation. 

4.2. Quantitative evaluation metrics 

To provide quantitative verifications on the segmentation perfor
mance of the proposed AttHRNet when dealing with different medical 
image segmentation tasks, we employed the following four widely used 
quantitative assessment indexes: precision, recall, Jaccard index (JI), 
and Dice coefficient (DC). Thereinto, precision and recall indexes, 
respectively, examine the capabilities of the segmentation model in 
correctly reducing the background interferences and in completely 
retrieving the foreground contents. JI and DC indexes measure the 
segmentation model from an overall perspective by comprehensively 
evaluating its capability in the suppression of both the false negatives 
and false positives. These four quantitative assessment indexes are 
computed as follows: 

precision =
TP

FP + TP
× 100\% (5)  

recall =
TP

FN + TP
× 100\% (6)  

JI =
TP

FP + FN + TP
× 100\% (7)  

DC =
2 × precision × recall

precision + recall
× 100\% (8)  

where the numbers of true positives, false positives, and false negatives 
are, respectively, denoted by TP, FP, and FN. 

4.3. Medical image segmentation 

The medical image segmentation results on the four test datasets 
quantitatively evaluated by the four indexes are recorded in Table 2. As 
reflected in Table 2, the AttHRNet attained excellent and competitive 
performance in segmenting different types of medical targets on the four 
test datasets. Specifically, a segmentation accuracy with a precision of 
98.91 %, a recall of 98.52 %, a JI of 97.46 %, and a DC of 98.71 %, 
respectively, was obtained on the LIDC-IDRI dataset in segmenting 
lungs. A segmentation accuracy with a precision of 98.52 %, a recall of 
97.94 %, a JI of 96.52 %, and a DC of 98.23 %, respectively, was ach
ieved on the KiTS19 dataset in segmenting kidneys. For the Kvasir-SEG 
dataset, a segmentation performance with a precision, a recall, a JI, and 
a DC of 93.13 %, 94.87 %, 88.66 %, and 93.99 %, respectively, was 
obtained in segmenting polyps. For the ISIC dataset, a segmentation 
performance with a precision, a recall, a JI, and a DC of 90.35 %, 95.98 
%, 87.06 %, and 93.08 %, respectively, was achieved in segmenting skin 
lesions. Comparatively, the best segmentation performance appeared on 
the LIDC-IDRI dataset with a DC of 98.71 %, while the worst segmen
tation performance appeared on the ISIC dataset with a DC of 93.08 %. 
Nevertheless, the proposed AttHRNet still behaved promisingly with an 
acceptable segmentation accuracy on the ISIC dataset due to the 
remarkably challenging and complex conditions of the skin lesions in 
comparison with the medical targets in the other three datasets. Note 
that, for the LIDC-IDRI and KiTS19 datasets, the value of the precision 
index was slightly higher than that of the recall index, whereas the value 
of the recall index was slightly higher than that of the precision index on 
the Kvasir-SEG and ISIC datasets. In fact, the precision index indicates 
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the rate of the falsely identified background elements. That is, the higher 
the value of the precision index, the less the false positives. In contrast, 
the recall index indicates the rate of the correctly identified foreground 
elements. That is, the higher the value of the recall index, the less the 
false negatives. Thus, comparatively speaking, the AttHRNet generated 
more false negatives on the LIDC-IDRI and KiTS19 datasets, while 
introducing more false positives on the Kvasir-SEG and ISIC datasets. 
The false negatives generated on the LIDC-IDRI and KiTS19 datasets 
were mainly caused by the presence of large-size nodule-like structures 
inside the lung and kidney regions or due to the blurred boundaries 

exhibiting quite low contrasts at some sections. As a result, the in
tegrities of these targets were not well maintained, thereby leading to 
the decline of the recall index. On the contrary, the false positives 
generated on the Kvasir-SEG and ISIC datasets were mainly caused by 
the indistinguishable borderlines or the extremely similar textural 
properties of the targets to their surroundings. As a result, some back
ground elements were falsely recognized as the foreground, thereby 
leading to the decline of the precision index. Even so, the proposed 
AttHRNet still performed effectively on the four test datasets as reflected 
by the overall quantified assessment results with respect to the JI and DC 
indexes. 

To sum up, the challenging conditions of the four test datasets were 
reflected in the following aspects. (1) The medical targets vary greatly in 
size and shape within the same dataset, such as the polyps in the Kvasir- 
SEG dataset (Fig. 8) and the skin lesions in the ISIC dataset (Fig. 9). 
Specifically, some polyps and skin lesions have very small sizes. (2) The 
same type of medical targets exhibits severe appearance inconsistencies 
with different colors and textural properties, such as the greenish, red
dish, yellowish, or whitish polyps (Fig. 8) and the blackish, reddish, 
brownish, or purplish skin lesions (Fig. 9). (3) Some medical targets 
show extremely low contrasts with their surrounding tissues, such as the 
polyps in the Kvasir-SEG dataset (Fig. 8) and the skin lesions in the ISIC 
dataset (Fig. 9). Specifically, some polyps and skin lesions show quite 
similar appearances in color and texture to their surrounding tissues. (4) 
Some medical targets present considerably obscure boundaries. For 
instance, some skin lesions exhibit a fade-away pattern at the border 
areas (Fig. 9) and some polyps are directly connected to the intestine 
with a protuberance with no borderlines (Fig. 8). (5) Some medical 
targets suffer from interior anomaly contaminations, such as the nodule- 
like structures in the lung (Fig. 6) and kidney images (Fig. 7) and the 
hairs in the skin lesion images (Fig. 9). (6) Some background regions 
have similar properties to the medical targets, such as the folds of the 
intestines in the polyp images (Fig. 8). All of the above issues bring about 
remarkable ordeals to the correct localization and accurate segmenta
tion of the medical targets, thereby impeding the upgradation of the 
segmentation performance. Fortunately, the proposed AttHRNet still 
behaved excellently with competitive segmentation accuracies when 
processing the different types of medical images towards instance seg
mentation. The segmentation superiority of the proposed AttHRNet 
benefitted from the following factors. First, by stacking an improved 
HRNet structure augmented with the MSCA module as the feature 
extraction backbone, a set of multiscale high-level feature maps with 
strong and spatially accurate semantics are obtained for supervising the 
segmentation map generation. Second, by designing an effective feature 
attention module and integrating it into all branches of the feature 
extraction backbone, the feature encoding quality can be repeatedly 
promoted by simultaneously attending to the informative feature 
channels and the salient spatial locations. Last but not least, by 
employing a hierarchical strategy as the segmentation head, the multi- 

Table 2 
Segmentation performances of different models.  

Model Dataset Precision 
(%) 

Recall 
(%) 

JI(%) DC 
(%) 

AttHRNet LIDC-IDRI  98.91  98.52  97.46  98.71 
KiTS19  98.52  97.94  96.52  98.23 
Kvasir- 
SEG  

93.13  94.87  88.66  93.99 

ISIC  90.35  95.98  87.06  93.08 
CA-Net [26] LIDC-IDRI  97.54  97.03  94.71  97.28 

KiTS19  97.46  96.98  94.59  97.22 
Kvasir- 
SEG  

90.86  92.68  84.78  91.76 

ISIC  87.90  93.97  83.21  90.83 
MultiResUNet [30] LIDC-IDRI  96.88  96.31  93.41  96.59 

KiTS19  96.62  96.15  93.02  96.38 
Kvasir- 
SEG  

89.03  91.36  82.12  90.18 

ISIC  85.23  93.34  80.34  89.10 
HMEDN [36] LIDC-IDRI  93.06  91.33  85.51  92.19 

KiTS19  92.98  91.27  85.39  92.12 
Kvasir- 
SEG  

83.15  89.41  75.70  86.17 

ISIC  79.24  91.97  74.11  85.13 
PyDiNet [39] LIDC-IDRI  96.56  95.88  92.71  96.22 

KiTS19  96.12  95.67  92.11  95.89 
Kvasir- 
SEG  

88.74  91.05  81.62  89.88 

ISIC  84.92  93.11  79.90  88.83 
HR-CapsSegNet  

[41] 
LIDC-IDRI  98.72  98.34  97.10  98.53 
KiTS19  97.94  97.21  95.26  97.57 
Kvasir- 
SEG  

92.50  94.66  87.91  93.57 

ISIC  89.76  95.31  85.96  92.45 
SegCaps [49] LIDC-IDRI  97.22  96.74  94.14  96.98 

KiTS19  97.13  96.66  93.98  96.89 
Kvasir- 
SEG  

89.37  91.54  82.55  90.44 

ISIC  86.59  93.62  81.77  89.97 
FFANet [50] LIDC-IDRI  93.79  92.05  86.76  92.91 

KiTS19  93.58  91.96  86.50  92.76 
Kvasir- 
SEG  

85.71  90.33  78.51  87.96 

ISIC  80.41  92.83  75.71  86.17  

Fig. 6. Segmentation results on the LIDC-IDRI dataset. (a) Test images and (b) overlaid segmentation results.  
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resolution feature maps can be progressively refined to focus more on 
the task-specific semantic regions, thereby producing a high-quality 
segmentation output. 

For qualitative inspection purposes, Figs. 6 to 9 present a subset of 
medical target segmentation illustrations from the four test datasets. As 
shown by these figures, the medical targets of different types and 
varying self and background conditions were nicely located and 
segmented with a very small quantity of missing detections and incor
rect identifications. The outlines were well delineated and the bound
aries were nicely adhered. Specifically, as shown in Figs. 6 and 7, the 
disturbances of the small-size nodule-like structures inside the lung and 
kidney regions were well suppressed, guaranteeing the solidness of these 
instances. As shown in Figs. 8 and 9, the polyps and skin lesions were 
excellently distinguished from their surrounding tissues without intro
ducing too many false positives in spite of the obscure boundary prop
erties. Moreover, the small-size polyps and skin lesions were also 
correctly recognized and promisingly segmented. However, as shown in 
Figs. 6 and 7, some lungs and kidneys contained quite large-size nodule- 

like structures in some slices, which formed quite strong color contrasts 
and showed extremely similar texture properties to the background. 
Consequently, the completeness of these instances was not successfully 
guaranteed, resulting in hole-like phenomena in the segmentation re
sults. Overall speaking, through quantitative and qualitative verifica
tions, it confirmed the promising performance of the proposed AttHRNet 
in medical image segmentation tasks. 

4.4. Comparative studies 

Aiming at providing more convincing evidences to testify the feasi
bility and effectiveness of the proposed AttHRNet in medical target 
segmentation tasks, we also performed a group of intensive segmenta
tion tests using the recently developed state-of-the-art deep learning 
models. The models involved in the comparative analyses included the 
comprehensive attention network (CA-Net) [26], the dilated multi
residual blocks network (MultiResUNet) [30], the high-resolution mul
tiscale encoder-decoder network (HMEDN) [36], the PyDiNet [39], the 

Fig. 7. Segmentation results on the KiTS19 dataset. (a) Test images and (b) overlaid segmentation results.  

Fig. 8. Segmentation results on the Kvasir-SEG dataset. (a) Test images and (b) overlaid segmentation results.  

Fig. 9. Segmentation results on the ISIC dataset. (a) Test images and (b) overlaid segmentation results.  
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HR-CapsSegNet [41], the SegCaps [49], and the FFANet [50]. Amongst 
these models, the MultiResUNet and SegCaps employed the U-Net ar
chitecture with a contraction pathway for feature abstraction and an 
expansion pathway for segmentation map recovery. However, the 
MultiResUNet was constructed with scalar primitives, whereas the 
SegCaps was constructed with capsule primitives. They represented two 
different styles of the U-Net architecture. The CA-Net, HMEDN, and 
FFANet followed a general encoder-decoder architecture with different 
network architecture styles and functional modules. Specifically, a high- 
resolution pathway stacked by residual dilated convolution blocks was 
designed in the HMEDN for feature skip connection. Attention mecha
nism was positively integrated into the CA-Net for feature semantic 
promotion, and multi-level feature fusion techniques were leveraged in 
the FFANet for feature semantic augmentation. The PyDiNet and HR- 
CapsSegNet were formulated with the FPN and HRNet architectures, 
respectively, for integrating multilevel feature semantics. To achieve fair 
comparisons on the same baseline, all these models were optimized and 
tested on the four datasets used in this paper. Likewise, the same 
quantitative evaluation indexes were leveraged to examine and analyze 
their segmentation performances. The detailed segmentation results of 
these models are quantitatively reported in Table 2. 

As reflected in Table 2, superior segmentation performances were 
achieved on the four test datasets by the HR-CapsSegNet, CA-Net, Seg
Caps, MultiResUNet, and PyDiNet with respect to the overall indexes JI 
and DC. By contrast, relatively lower segmentation accuracies were 
obtained by the FFANet, and HMEDN. To be specific, the HR- 
CapsSegNet outperformed the other models, while the HMEDN 
behaved less effectively than the other models. Besides, for all the 
models, the best segmentation performance appeared on the LIDC-IDRI 
dataset, whereas the worst segmentation performance appeared on the 
ISIC dataset. The advantageous performance of the HR-CapsSegNet was 
achieved by employing the HRNet architecture for semantically-strong 
feature extraction under multiple resolutions. The performance gains 
of the CA-Net benefitted from the design of the three types of attention 
modules used for recalibrating the feature semantics at channel, spatial, 
and scale levels, thereby significantly boosting the feature representa
tion quality. The superior performance of the SegCaps consisted in the 
use of the tensor-form capsule primitives for abstracting high-order 
entity-aware feature representations. In addition, the advantageous 
performance of the MultiResUNet owed to the dense residual blocks and 
the dilated convolutions for contextual feature exploitation and feature 
semantic promotion. However, compared with the segmentation per
formances of these seven models, our proposed AttHRNet showed 
significantly competitive and distinctly advantageous segmentation 
performances on all the four test datasets with regard to the overall 
indexes JI and DC. This performance superiority convinced the powerful 
architecture of the AttHRNet, which was built with the improved HRNet 
backbone for multi-resolution feature extraction, the effective feature 
attention module for feature semantic promotion, and the advanced 
hierarchical formulation for segmentation map generation. In conclu
sion, according to contrastive analyses, we confirmed that the developed 
AttHRNet provided a feasible and effective solution to medical image 
segmentation tasks. 

4.5. Ablation studies 

To further evaluate the effectiveness of the key modules in the 
AttHRNet, we also conducted a group of ablation studies with a series of 
modified models based on the AttHRNet. As the first set of ablation 
studies, we examined the contributions of the MSCA module, the feature 
attention module, and the SLCE module to the performance gains of the 
AttHRNet. To this end, first, we removed the MSCA module in the 
feature extraction backbone and used the original strided convolutions 
in the HRNet to perform feature downscaling. We named the modified 
architecture as the AttHRNet-1. Second, we removed the feature atten
tion module in the feature extraction backbone to cancel the channel 

and spatial feature recalibrations. We named the modified architecture 
as the AttHRNet-2. Third, we removed the SLCE module along with the 
hierarchical segmentation structure, and directly applied the feature 
map generated in Branch 1 to predict the segmentation result. We 
named the modified architecture as the AttHRNet-3. Finally, as a 
simplified version of the hierarchical segmentation structure, we 
removed the SLCE module and directly upscaled the prediction map in 
the lower resolution branch and concatenated it with the feature map in 
the upper branch to serve feature augmentation. We named the modified 
architecture as the AttHRNet-4. The quantitative evaluation results of 
these modified models on the four test datasets are reported in detail in 
Table 3. As reflected in Table 3, obviously, with the removals or the 
simplification of these key modules, all the modified models performed 
less promisingly with significant lower segmentation accuracies 
compared with the AttHRNet. For the AttHRNet-1, without the MSCA 
module, the feature detail loss caused by the strided convolutions 
affected the quality and informativeness of the resultant feature se
mantics in the lower resolution branches. For the AttHRNet-2, without 
the feature attention module for channel and spatial feature recalibra
tions, the important channels and salient regions were not well high
lighted, thereby affecting the extraction of high-quality and distinctive 
feature representations. Note that, the AttHRNet-4 behaved better than 
the AttHRNet-3. It indicated that the inclusion of the information from 
lower resolution segmentations to inform higher resolution segmenta
tions meant significantly to provide valuable evidences to upgrade the 
segmentation accuracy. For clear visual comparisons, Fig. 10 also show 
the feature saliency maps generated with and without these key mod
ules. Obviously, the MSCA module was beneficial to the identification of 
the small-size targets, the feature attention module functioned excel
lently to adhere tighter boundaries of the targets with low contrasts, and 
the SLCE module performed promisingly to suppress the impacts of the 
textural inconsistencies. In conclusion, we confirmed that the MSCA 
module, the feature attention module, and the SLCE module contributed 
positively and significantly to the performance gains of the AttHRNet by, 

Table 3 
Segmentation performances of different modified models.  

Model Dataset Precision(%) Recall(%) JI(%) DC(%) 

AttHRNet-1 LIDC-IDRI  98.58  98.17  96.80  98.37 
KiTS19  98.21  97.55  95.85  97.88 
Kvasir-SEG  92.78  94.48  88.01  93.62 
ISIC  89.94  95.53  86.31  92.65 

AttHRNet-2 LIDC-IDRI  96.92  96.35  93.49  96.63 
KiTS19  96.67  96.21  93.12  96.44 
Kvasir-SEG  89.11  91.42  82.23  90.25 
ISIC  85.33  93.46  80.52  89.21 

AttHRNet-3 LIDC-IDRI  97.68  97.28  95.08  97.48 
KiTS19  97.65  97.14  94.92  97.39 
Kvasir-SEG  91.67  93.51  86.19  92.58 
ISIC  88.62  94.57  84.33  91.50 

AttHRNet-4 LIDC-IDRI  98.04  97.66  95.79  97.85 
KiTS19  97.84  97.22  95.18  97.53 
Kvasir-SEG  92.23  93.94  87.05  93.08 
ISIC  89.26  95.06  85.30  92.07 

AttHRNet-SE LIDC-IDRI  97.61  97.22  94.96  97.41 
KiTS19  97.58  97.14  94.85  97.36 
Kvasir-SEG  91.35  93.23  85.67  92.28 
ISIC  88.31  94.46  83.96  91.28 

AttHRNet-CA LIDC-IDRI  97.75  97.34  95.21  97.54 
KiTS19  97.70  97.18  95.01  97.44 
Kvasir-SEG  91.74  93.62  86.34  92.67 
ISIC  88.76  94.73  84.58  91.65 

AttHRNet-CBAM LIDC-IDRI  97.55  97.10  94.79  97.32 
KiTS19  97.52  97.03  94.69  97.27 
Kvasir-SEG  90.88  92.71  84.82  91.79 
ISIC  87.94  94.08  83.33  90.91 

AttHRNet-DA LIDC-IDRI  98.36  97.91  96.34  98.13 
KiTS19  97.95  97.26  95.32  97.60 
Kvasir-SEG  92.57  94.23  87.60  93.39 
ISIC  89.68  95.27  85.86  92.39  
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respectively, reducing the information loss, promoting the feature rep
resentation quality, and improving the segmentation accuracy. 

As the second set of ablation studies, we further analyzed the supe
riority of the proposed feature attention module by comparing it with 
some existing popularly used feature attention mechanisms. The 
following four attention mechanisms were considered: SE block [56], 
coordinate attention [59], CBAM [66], and DA module [67]. To be 
specific, we substituted the proposed feature attention module in the 
AttHRNet with the SE block, coordinate attention, CBAM, and DA 
module, respectively, to construct four modified architectures. These 
modified architectures were named as the AttHRNet-SE, AttHRNet-CA, 
AttHRNet-CBAM, and AttHRNet-DA, respectively. The quantitative 
evaluation results of these modified models on the four test datasets are 
reported in detail in Table 3. As reflected in Table 3, the AttHRNet-DA 
achieved the best segmentation performance among the four modified 
models, whereas the AttHRNet-CBAM behaved less promisingly. Be
sides, the AttHRNet-CA performed slightly better than the AttHRNet-SE 
due to the embedding of the spatial position information when 
exploiting the channel feature saliencies. The performance advantage of 
the AttHRNet-DA benefitted from the simultaneous consideration and 
integration of both the channel and spatial feature significances like that 
in our proposed feature attention module, thereby effectively promoting 
the feature representation quality. Nevertheless, the AttHRNet with the 
proposed feature attention module demonstrated significant segmenta
tion accuracy improvement compared with these four modified models, 
which convinced the effectiveness and superiority of the proposed 
feature attention module. Moreover, designed with a lightweight ar
chitecture, the proposed feature attention module also showed a higher 
efficiency than the DA module, which required a set of complex matrix 
multiplication operations. 

5. Conclusion 

This paper has built an advanced network architecture, termed as 
AttHRNet, for segmenting targets of interest from medical images. The 
AttHRNet employed a one-stage semantic segmentation pipeline and 
consisted of three primary components, including a feature extraction 
backbone, a feature attention module, and a segmentation head. The 
progresses of the AttHRNet lied in the MSCA module for preserving more 
feature details, the feature attention module for highlighting significant 
feature semantics, the SLCE module for exploiting category-aware 
feature semantics, the improved HRNet backbone for generating high- 
quality feature representations, and the hierarchical segmentation 
scheme for improving segmentation accuracies. To be specific, the 
feature extraction backbone followed an improved HRNet architecture 
functioned with the MSCA module for reducing the feature detail loss 
during the cross-branch feature propagation process, thereby favorable 
to provide multiscale high-level feature maps with strong and spatially 
accurate semantics. The feature attention module cascaded a channel- 
specific attention unit and a spatial-specific attention unit for explic
itly attending to the informative feature channels and the task-specific 
spatial locations, thereby beneficial to promote the feature encoding 
semantics in each branch of the feature extraction backbone. The seg
mentation head was designed as a hierarchical structure for progres
sively augmenting the output feature maps with semantic-level 
contextual properties, thereby finalizing a high-quality prediction map 
to improve the per-pixel segmentation accuracy. The AttHRNet has been 
intensively examined on four medical image datasets towards medical 
target segmentation. Quantitative assessments and visual verifications 
showed the promising and competitive performance of the AttHRNet in 
segmenting different-type medical targets with varying self-conditions 
in diverse background scenarios. Furthermore, comparative analyses 
with the state-of-the-art models and ablation experiments also demon
strated the significant advantages of the AttHRNet in medical image 

Fig. 10. Illustrations of feature saliency maps generated with different models. (a), (b), and (c) Sample images and feature saliency maps generated (d) with the 
MSCA model, (e) with the feature attention module, (f) with the SLCE module, (g) without the MSCA module, (h) without the feature attention module, and (i) 
without the SLCE module. 
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segmentation tasks. 
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