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Abstract— Finding robust and correct keypoints in images 

remains a challenge, especially when repetitive patterns are 

present. In this paper, we propose a universal two-step filtering 

method to solve the  mismatch problem in repetitive patterns. 

Having applied a mean-shift clustering algorithm to remove 

obvious mismatches, the proposed Confusion Reduction (CR) 

method uses a novel confusion index in a gridding schema to 

identify and filter out the remaining confusing keypoints. In both 

steps, the descriptors' statistical properties are evaluated using 

kernel density estimation. Various synthetic and real stereo pairs, 

along with multi-view image blocks were used to assess the 

performance of the presented algorithm. The results were also 

compared to those obtained by several state-of-the-art mismatch 

removal methods. The experiments showed that, on average, the 

proposed strategy improves the accuracy of matching by 10% and 

the accuracy of photogrammetric blocks by 20%-30%. 

 
Index Terms— Keypoint filtering, Image matching, Descriptor, 

Kernel density estimation, Mean-shift 

 

I. INTRODUCTION 

umerous photogrammetry and computer vision 

applications, such as 3D reconstruction [1], image 

registration [2], [3], change detection [4] and object 

recognition [5] require automatic keypoint detection and 

description. Various descriptors and feature matching 

comparison methods, such as brute force and Fast Library for 

Approximate Nearest Neighbors (FLANN), have been 

developed over the years. To construct feature matches 

appropriately, keypoints must be repeatable, discriminative, 

geometrically invariant and insensitive to brightness changes in 

the scene. In addition, computational efficiency should be 

considered in order to minimize memory consumption [6]. 

As an alternative to traditional hand-crafted methods, 

researchers have proposed learning-based descriptors using 

Convolutional Neural Networks (CNNs) [7]. LIFT (Learned 

Invariant Feature Transform) [8], Hard-Net [9], LF-Net (Local 

Feature Network) [10], Super-Point [11] and reinforced Super-

Point [12]are some examples of learning-based descriptors. 

However, learning-based methods usually lack invariance in 

many geometrical transformations like large rotation or low-
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overlapped image pairs, making them only suitable for limited 

applications [13]. 

In contrast, traditional hand-crafted descriptors vary greatly 

by application. They are classified as real (floating-points) or 

binary (bit-strings) based on processing and memory 

requirements [14]. Oriented FAST and Rotated BRIEF (ORB) 

[15], Robust Invariant Scalable Keypoints (BRISK) [16], Fast 

Retina Keypoint (FREAK) [17], Binary Online Learned 

Descriptor (BOLD) [18] are some popular examples of binary 

descriptors. Binary descriptors are a compact representation of 

an image patch or region in the form of a binary string. Floating 

descriptors, on the other hand, are mostly high-dimensional 

real-valued, which require extensive computation costs. 

Examples of well-known floating descriptors are SIFT [19], 

SURF [20], DAISY[21], Local Intensity Order Pattern (LIOP) 

[22], Distinctive Order Based Self-Similarity (DOBSS) [23], 

Adaptive Binning Scale-Invariant Feature Transform (AB-

SIFT) [24] and Radiation-variation Insensitive Feature 

Transform (RIFT) [25]. Binary descriptors, unlike non-binary 

descriptors, are often based on simple procedures that require 

less memory and correspond faster, making them suitable for 

real-time applications. Floating descriptors are the most widely 

used descriptors in photogrammetry applications [26]. 

Further to descriptor computation, feature matching methods 

look for descriptors that are similar in both target and source 

images. The Euclidean distance is usually used to compare 

descriptors [19]. When comparing distances between nearest 

and second-nearest neighbors, a match is only accepted if the 

second-best descriptor is significantly farther away than the 

best one, thereby avoiding selecting the incorrect target point. 

 As the main concern of this paper, repetitive patterns are a 

common and troublesome problem when trying to match 

keypoints in different images. Keypoints extracted from such 

visual patterns have almost identical descriptors. As a result, 

even with advanced algorithms, many points are matched 

incorrectly. Fig1 shows an example of some of such 

mismatches occurred using SIFT. 
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Fig. 1. An example of mismatches occurred in an image pair using the 

SIFT descriptor and due to repetitive patterns. (Other matches were 

omitted from the scene just to avoid clutter in the figure) 

 

Up until now, different methods have been proposed to reduce 

ambiguity in repetitive patterns and find more reliable matches, 

which work either prior to the keypoint detection and 

description step [27]–[29] or after the matching process. As will 

be shown in the following section, most existing methods suffer 

from different shortcomings. These include sensitivity to the 

high number of outliers within the initial putative set [30], 

inefficiency in images with serious geometric deformation or 

with wide baselines [6] and poor distribution of the matched 

keypoints. To resolve these problems, in this paper, we propose 

a new technique, namely Confusion Reduction (CR), which 

formulates the repetitive keypoints filtering as a two-step 

classification problem. Our main goal is to select the subset of 

keypoints that, in addition to being highly distinctive, are also 

well-distributed across the images.   First, we use a mean-shift 

clustering algorithm to remove obviously confusing keypoints.  

Then, using a novel Confusion Index (CI), we estimate how 

confusing each remaining keypoint is. The method is applied in 

a grid-based pattern to ensure a minimum of reliable keypoints 

are selected in each part of the image.  As will be shown, our 

method can be used by any detector\descriptor to improve its 

matching results; it is not sensitive to the number of outliers and 

ensures proper distribution of the matched points over the 

images.   

The main contributions of this study can be summarized as: 

• Development of an effective keypoint filtering 

approach based on kernel density estimation. As will 

be shown, our technique works at the descriptor level 

and, thus, is not sensitive to the number of outliers. 

Therefore, it performs well even when excessively 

repeating patterns.  

• Proposing a novel Confusion Index (CI), based on 

Probability Distribution Function, that indicates how 

confusing a keypoint and its equivalent descriptor are. 

CI is universal, i.e. it can be applied to different kinds 

of image pairs and can improve results obtained by any 

matching algorithm,  

• Ensuring even distribution of the keypoints: Unlike 

current algorithms, we employ a gridding strategy that 

enables our method to achieve the proper distribution 

of matched points. This is a very important issue for 

the accurate adjustment of photogrammetric image 

blocks. 

• Comprehensive testing of the proposed algorithm 

against several state-of-the-art mismatch removal 

methods.    In our experiments, in addition to standard 

tests, we have evaluated our results in 

photogrammetric adjustment of different real image 

blocks.    

 

The remainder of this paper is organized as follows: Section II 

provides a review of the related works dealing with the 

mismatch problems. Section III describes the proposed method 

and demonstrates how confusing keypoints are removed, and 

high-quality ones are selected using the explained confusion 

index.  Section IV explains the proposed algorithm's evaluation 

framework, and Section V describes the used datasets. Section 

VI presents and discusses the results obtained using both 

synthetic, real image pairs and multi-view data, followed by the 

performance evaluation. Finally, Section VII concludes the 

paper and suggests some research lines for future studies. 

II. RELATED WORK 

Mismatch removal can be classified as pre-processing, post-

processing or in-processing algorithms. Pre-processing 

methods consider the mismatch problem before the matching 

process. For example, symmetry analysis could be a simple 

approach to filtering out repetitive patterns in each image [27], 

[28], [31]–[33]. Such methods frequently assume that repetitive 

patterns are aligned horizontally and vertically [31] or lie on a 

planar structure on the image [34]. In other methods, descriptors 

like SIFT are used to represent image information such as 

shapes or colors to find repetitive patterns [35]. Recently, pre-

trained deep convolutional neural networks [27] with filters 

learned using natural images have been considered to find 

repeating patterns in images. Unfortunately, pre-processing 

approaches may not be suitable for photogrammetric purposes 

because they reduce image information contents and, thus, the 

number of extracted keypoints. 

Post-processing methods, on the other hand, aim to remove 

false matches after the matching process. Some of these, which 

constitute a large number of techniques in the literature, rely on 

either global or local constraints. Others may involve 

clustering, graph matching, or learning-based approaches. The 

methods using global constraints, can roughly be divided into 

parameter estimation [36] and non-parametric interpolation 

methods [37]–[39].   

Non-parametric methods learn a pre-defined model based on 

either prior knowledge or through a regression. As an example, 

Ma et al. [38], [39] proposed a non-parametric model for Vector 

Field Consensus (VFC) and applied it to mismatch removal. 

Their proposed Bayesian framework assigns each sample with 

a variable indicating whether it is an outlier or not. The 

Expectation-Maximization algorithm is used to solve the 

problem as a maximum posterior problem. Non-parametric 

methods use all of the points to identify the mismatches. 

Therefore, their precision decreases sharply when there are 

many outliers and/or independent moving structures in the point 

sets [30]. 

Parameter estimation methods attempt to obtain a subset of 

mismatch-free correspondence. The popular Random Sample 

Consensus (RANSAC) method [40] and its recent extensions 

such as Extreme Value RANSAC (EVSAC) [41], Graph Cut 

RANSAC(GC-RANSAC)[42] and Locality Preserving 

RANSAC (LP-RANSAC) [43] are widely used in this field. 

Parametric methods rely mainly on the hypotheses of sampling 
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consensus. This can be inefficient in matching image pairs 

having a wide baseline and a high percentage of outliers in the 

initial matching set [30]. 

Techniques that use local constraints perform a robust 

estimation of correct matching based on local structural 

consistency or piecewise consistency assumptions. Locality 

Preserving Matching (LPM) [45] is an example that uses the 

difference in local neighborhood structures of inliers and 

outliers to identify mismatches from a given putative set. This 

technique is sensitive to a high outlier proportion of the putative 

set due to the unreliability of neighborhood construction [46]. 

Moreover, Li et al. [47] proposed a support-line voting strategy 

based on the neighborhoods of correspondences and outliers 

filtering using affine-invariant ratios. The authors also proposed 

a local region descriptor based on a 4-point local structure [48]. 

These two methods consider both photometric and geometric 

properties inside a small local region, and their computational 

complexity is considerably high. In another effort, Li et al. [49] 

proposed a locality affine-invariant feature matching (LAM) 

method based on the concepts of local barycentric coordinates 

(LBCs) and matching coordinate matrices (MCMs). Similarly, 

Wang and Chen [50] proposed a Guided Local Outlier Factor 

(GLOF) algorithm for feature matching with gross mismatches 

under multi-granularity neighborhood structure-preserving. 

Generally, although methods based on local constraints are 

efficient, but their accuracy decreases when there are either 

local distortions or similar patterns in the scenes [30]. 

A recent approach has been to use clustering techniques to 

solve the matching problem when the putative matches include 

a large number of outliers. To eliminate the demand for the 

geometric constraints, Jiang et al. [51] proposed a DBSCAN-

based iterative spatial clustering approach (RFMSCAN) to 

solve the matching problem when the putative matches suffer 

from a large number of outliers. In their method, feature 

matching is formulated as a spatial clustering problem with 

outliers. The main idea is to adaptively cluster the putative 

matches into several motion-consistent clusters together with an 

outlier/mismatch cluster. However, this method is limited 

because it is sensitive to the clustering parameters, and obvious 

outliers could be retained [46]. 

Graph matching is also a post-processing technique used to 

fix mismatches. Several studies in this field have been reported, 

including spectral matching [52]–[55] and ABPF (Adaptive & 

Branching Path Following) [56]. They adapt well to 

transformation models and obtain good matching results. 

However, they can be affected by drawbacks of their non-

polynomial-hard nature that exponentially increases the 

required processing time when the dimension of the problem 

increases [46]. 

Learning-based approaches, which are usually combined with 

local neighborhood consensus, have recently been proposed as 

a type of post-processing method for mismatch removal. Ma et 

al. [57] developed the Learning for Mismatch Removal (LMR) 

approach, in which a general classifier is trained to evaluate the 

correctness of an arbitrary match. Then, using a multiple K-

nearest neighbor strategy, match representation is obtained by 

exploiting the consensus of the local neighborhood structure. 

Pang et al. [58] proposed a new weakly supervised Graph 

Convolutional Siamese Network Matcher (GCSNMatcher) for 

feature matching. It can work directly on unstructured keypoint 

sets and exploit geometric information within sparse keypoints. 

The method builds dynamic neighborhood graph structures to 

improve the feature representation of each keypoint. A similar 

approach to GCSNMatcher is documented by Li et al., 2019 

[46]. Overall, learning-based methods can usually be used in 

image pairs with slight geometrical deformations, such as 

medical image registration and binocular stereo matching. 

Nevertheless, a better understanding of their performance in 

wide baseline stereo images or image registration with serious 

geometric deformations is still needed [6]. 

 In contrast to the pre- or post- processing approaches, in-

processing techniques try to filter out mismatches during the 

actual matching process. For example, Mortensen et al. [59] 

enriched the SIFT descriptor with information about the global 

context of the image, inspired by shape contexts. The SERP 

(Surf Enhancer for Repeated Pattern) descriptor [60] uses 

mean-shift clustering [61] on SURF descriptors, where 

repetitive features are grouped into a single cluster and non-

repetitive features are given their own cluster. In order to detect 

Local Distinctive Features (LDFs), Chen et al. [62] proposed an 

interest point detector that considers both the geometric 

distinctiveness of an image pixel and the support region 

surrounding it.  Unfortunately, such detectors prevent the use of 

other classic detectors like SIFT and SURF that, if used, better 

results in photogrammetric adjustments could be achieved.  

An interesting in-processing algorithm is that by Royer et al. 

[14], which has been specifically developed to filter out 

confusing keypoints in repetitive patterns. Their method, so-

called CORE, ignores the visual property of the keypoints, 

which can vary by detectors. Instead, the descriptor's statistical 

properties are analyzed using kernel density estimation. A 

numerical value, namely confusion risk, is tied to each 

descriptor.  To extract the most distinctive subset of keypoints, 

a probability threshold value is computed for the confusion risk. 

Although CORE can be used by different algorithms, its 

threshold is highly affected by the acceptable confusion rate and 

probability of finding different descriptors between the images 

[14]. 

Looking at the above techniques, we can see that most post-

processing algorithms are ineffective for photogrammetric 

applications. Those that use a global/local pre-defined model 

have low performance in cases that are not characterized by the 

pre-defined transformation.  Since global techniques use almost 

all of the points, they work poorly where there are many outliers 

in the initial matching set. Furthermore, methods based on local 

information are also susceptible to local distortions or similar 

patterns in the scenes. Regarding the learning-based 

approaches, precision can drop dramatically when the baselines 

are wide or when the images include large geometric 

deformations. Furthermore, the more recent in-processing 

CORE algorithm has inconsistent correspondence performance 

in some cases. The main reason is that finding the best settings 

for the confusion risk threshold is completely difficult since it 

depends on the image context. More importantly, to the best of 

our knowledge, the spatial distribution of keypoints has not 

been adequately considered in current methods, which is crucial 

for accurate feature correspondence and successful image 

orientation. As a result, despite the promising results achieved 

by some of the existing algorithms, they cannot effectively 

match images with repetitive patterns for photogrammetric 
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applications. Thus, developing an effective and generic method 

to filter out confusing keypoints is still an important 

requirement in the photogrammetry pipeline.  

In this paper, we present a new Confusion Reduction (CR) 

method that is universal, is not subject to the number of outliers 

and ensures proper distribution of the keypoints across the 

images matched. Our solution adopts a two-step filtering 

approach that recognizes and classifies keypoints with similar 

vectors along a grid over the images. A confusion index is 

computed for each keypoint, using statistical properties of the 

associated descriptor to identify and filter out weak points in 

repetitive patterns. The proposed algorithm is described in 

detail below. 

III. METHODOLOGY 

Filtering repetitive keypoints is performed using a hierarchical 

method in two main steps: (1) removing obviously confusing 

keypoints and (2) selecting a subset of mismatch-free keypoints. 

The algorithm starts with keypoint extraction and description. 

Then it removes largely confusing keypoints using a mean-shift 

clustering algorithm. The idea behind descriptor clustering is that 

repeated descriptors be grouped in clusters relatively close to each 

other, and non-repeating descriptors form a separate cluster with 

fewer elements. Also, we use the mean-shift clustering since it does 

not require prior knowledge about the number of clusters, nor is 

constrained by their shape.  However, it may be difficult to tune the 

required parameters and thresholds in different images. Also, since 

mean-shift clustering does not control the distribution of removed 

keypoints, controlling the amount of eliminated keypoints and their 

distribution is impossible. Therefore, the proposed CR algorithm 

applies a selection strategy to the remaining keypoints (Step 2) to 

find a subset of high-quality keypoints that include fewer 

mismatches. A confusion index computed from Reiny entropy for 

each remaining keypoint controls the number of removed 

keypoints.  

In the following, these steps are described in detail. 

A. Outline of the proposed method 

Fig.2 shows the process of the proposed keypoint selection 

algorithm. Considering the initial keypoint location and scale, 

which are extracted using a keypoint detector in both reference and 

target image, the proposed strategy can be explained as follows: 

1) The initial keypoints are extracted using a detector. Then 

one of the floating descriptors (i.e., SIFT) is computed for 

each keypoint in both reference and target images. 

2) Mean-shift clustering is performed on all descriptors, and 

keypoints with close cluster centers (modes) are ignored 

based on the details explained in Section III-B. 

3) The Confusion value for each of the remaining keypoints 

is computed based on the probability density function and 

Renyi entropy, which is fully explained in Section III-C. 

4) The input reference image is divided into regular grid 

cells.  

5) The number of competences keypoint in each grid cell is 

computed, as described in Section III-D. 

6) Finally, for each grid cell, the initial keypoints are ordered 

based on their confusion value, and then the required 

number of keypoints with the lowest confusion value is 

selected within each grid cell. 
 

B. Mean-shift clustering 

As a non-parametric clustering technique, the mean-shift 

algorithm [61], [63] makes no assumptions about the 

distribution's shape or the number of clusters. It is based on an 

accurate analysis of feature spaces, which have different classes 

of shapes throughout the density estimation. In mean-shift 

clustering, cluster centers are equivalent to the modes obtained 

from an estimated density. In our method, mean shift is 

performed on all extracted descriptors and the modes to which 

each descriptor converges are determined.  

Analyzing the keypoints in the repeating pattern areas of 

images shows that the cluster centers with repetitive patterns 

are close together and contain several descriptors. Others are 

distant and contain fewer descriptors. As a result, computing 

similarity between modes (Euclidean distance) can separate 

clusters that contain repetitive pattern descriptors. Therefore, 

obviously, confusing keypoints could be eliminated. 

Let I be the image resulting from a specific scene, and I' to be 

another observation of the same scene which resulted from 

various transformations such as rotation, perspective changes, 

light modifications and so on. Supposing an input vector 𝑢𝑖 =
[𝑢1. 𝑢2. 𝑢3 … . 𝑢𝑑  ]  be d-dimensional descriptor computed for a 

keypoint. Now Let 𝑢𝑖 . 𝑖 𝜖{1.2 … . 𝑟} be descriptor vectors 

computed on r keypoints of the image I and let  𝑢𝑗. 𝑗 𝜖{1.2 … . 𝑠}, 

be the descriptor vectors in the image I'. The multivariate kernel 

density estimate obtained with kernel K(u) and window radius 

h is as follows: 

 

𝑓ℎ.𝑘(𝑢) =
𝐶𝑘.𝑑

𝑁ℎ𝑑
∑ k (‖

𝑢 − 𝑢𝑞

ℎ
‖

2

)

𝑁

𝑞=1

 (1) 

where, 𝐶𝑘.𝑑 is the normalization constant, N is the complete set 

of all descriptors in both images, h is the kernel window size, 

k(u) is the kernel function, and u is the d-dimensional vector of 

descriptors. 
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Fig. 2. Flowchart of the proposed CR algorithm. 

 

The modes of the density function are located at the zeros of 

the gradient function (i.e., ∇ f(u)=0), so: 

 

𝛻𝑓(𝑢) =
2𝐶𝑘.𝑑

𝑁ℎ𝑛+2 ∑(𝑢 − 𝑢𝑞 ) 𝑔 (‖
𝑢 − 𝑢𝑞

ℎ
‖

2

)

𝑁

𝑞=1

=
2𝐶𝑘.𝑑

𝑁ℎ𝑛+2 [∑ 𝑔 (‖
𝑢 − 𝑢𝑞

ℎ
‖

2

)

𝑁

𝑞=1

]

∙ [
∑ 𝑢𝑟

𝑁
𝑞=1 𝑔 (‖(

𝑢 − 𝑢𝑞

ℎ
)‖

2

)

∑ 𝑢𝑟
𝑁
𝑞=1 𝑔 (‖(

𝑢 − 𝑢𝑞

ℎ
)‖

2

)

− 𝑢] 

(2) 

where 𝑔(𝑢) = −𝑘′(𝑢). The first term is proportional to the 

density estimate at u computed with kernel 𝐺(𝑢) = 𝐶𝑔.𝑑 ∙

𝑔(‖𝑢‖2)  and the second term is the mean-shift. The mean-shift 

vector always points towards the direction of the maximum 

increase in density. Then, the coordinates of the cluster centers 

m(u) are calculated by: 

𝑚ℎ(𝑢) =
∑ 𝑢𝑟

𝑁
𝑞=1 𝑔 (‖(

𝑢 − 𝑢𝑞

ℎ
)‖

2

)

∑ 𝑢𝑟
𝑁
𝑞=1 𝑔 (‖(

𝑢 − 𝑢𝑞

ℎ
)‖

2

)

− 𝑢 (3) 

As previously mentioned, the similarity between modes is 

determined by measuring the Euclidean distance (d) between 

cluster centers as follows: 

𝑑(𝑚(𝑢𝑘). 𝑚(𝑢𝑤)) = √∑(𝑚(𝑢𝑘
𝑖 ) − 𝑚(𝑢𝑤

𝑖 ))2

𝑑

𝑖=1

 (4) 

A threshold value can be considered for the cluster centers 

Euclidean distance (d) to extract descriptors in repetitive pattern 

areas. Our experiments show that the threshold value would be 

different based on the descriptor type and a distance threshold 

equal to 0.7 and 0.02 is suitable for SIFT and SURF descriptors, 

respectively (see Parameter Analysis Section). 

Unfortunately, mean-shift clustering method is strongly 

affected by kernel window size [60].  This sensitivity can be 

problematic when either all the descriptors are accumulated in 

a single cluster, or each descriptor becomes a separated cluster. 

Therefore, the mean-shift method suffers from the limitation 

that the number of clusters depends on the selection of the 

kernel size. Therefore, we develop a new confusion index to 

solve this problem in the second step of our method (selection 

step), which is explained in the next section. 

C. Keypoints confusion index (CI) computation 

It can be assumed that each descriptor vector in an image is 

subject to slight variations that could be assimilated as 

randomness in the image. Doing so, 𝑢𝑖 could be assumed as 

random vectors, and an index associated with each keypoint of 

the image I could be defined that characterizes the confusion 

level. For each keypoint i of image I, we define an index  𝐻𝑖 , 

called “Confusion Index” which indicates how distinctive the 

selected keypoint is. This index is computed using Euclidean 

distance between descriptors, a Probability Distribution 

Function (PDF) and Rényi's entropy and performs as an 

efficient tool for separating high confusion risk keypoints.  

As explained, 𝑢𝑖 and 𝑢𝑗 are considered as the descriptors of 

the extracted keypoints in the first and second image, 

respectively. For each extracted descriptor of keypoint i on the 

first image, the Euclidean distance between descriptors in the 

second image can be written as follows: 

𝑋𝑟×𝑠 = √∑(𝑢𝑖
𝑘 − 𝑢𝑗

𝑘)
2

 

𝑑

𝑘=1

       ∀ 𝑖 𝜖{1.2 … . 𝑟}; ∀ 𝑗𝜖{1.2 … . 𝑠} (5) 

where 𝑋𝑟×𝑠 is the vector of Euclidean distance between d-

dimensional descriptors of 𝑢𝑖 and 𝑢𝑗, respectively. 

For each 𝑋𝑞×𝑠 . 𝑞 = 1.2 .3. … 𝑟 vector, the Probability 

Distribution Function (PDF) can be calculated using 𝐾ℎ  kernel 

as follows: 
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𝑓𝑞(𝑥) =
1

𝑟
∑ 𝐾ℎ |𝑥 − 𝑥𝑝|

𝑟

𝑝=1

 (6) 

where 𝑓𝑞(𝑥)  is the PDF of the Euclidean distance vector given 

the keypoint number. It is assumed that numerous reasons cause 

to vector |𝑥 − 𝑥𝑝| variation, which is either of natural origin or 

may be regarded as such [14]. Therefore, it makes sense to 

consider the vector  𝑋𝑞×𝑠  behavior to be Gaussian. With this 

assumption, 𝐾ℎ  can be defined as the classical D-dimensional 

Gaussian Kernel: 
 

𝐾ℎ|𝑥 − 𝑥𝑝| = (
1

𝜎√2𝜋
)

𝐷

𝑒𝑥𝑝(
−|𝑥 − 𝑥𝑝|

2𝜎2
)2 (7) 

 

where 𝑥𝑝  is each element of  𝑋𝐷×𝐾  vector and σ determine 

the width of the Gaussian kernel. Given the above, the PDF for 

each descriptor vector is written as: 
 

𝑓𝑞(𝑥) =
1

𝑁
∑ (

1

𝜎√2𝜋
)

𝐷

𝑒𝑥𝑝(
−|𝑥 − 𝑥𝑝|

2𝜎2 )2
𝑁

𝑖=1
 (8) 

 

In order to evaluate the amount of information constituted by 

the probability distribution function computed using Eq. (8), for 

all calculated descriptors on the image, a measure of entropy 

and, more specifically Rényi's entropy is conventionally used 

[64]. This measure could be used to assess the degree of 

confusion present in the set of descriptors. The Rényi's entropy 

is detailed below. 

Assuming X is a random variable with constant distribution 

as 𝑓𝑥(𝑥), the Rényi's entropy of order α, where 𝛼 ≥ 0 and   𝛼 ≠

1; 𝛼 ≠ 0 as discussed in [64] can be calculated as follows: 

𝐻(𝑋) =
1

1 − 𝛼
𝑙𝑜𝑔 (∫(𝑓𝑥(𝑥))𝛼 𝑑𝑥) (9) 

The entropy of a probability distribution can be interpreted 

as a measure of both uncertainty and information content. As α 

approaches zero, the Rényi entropy increasingly weighs all 

possible events equally, regardless of their probabilities. In the 

limit for α→0, the Rényi entropy is just the logarithm of the size 

of the support vector of X. The limit for α→1 is the same 

Shannon entropy. As α approaches infinity, the Rényi entropy 

is increasingly determined by the events of the highest 

probability. Rényi entropy of order α provides more weight for 

data with lower probability and could be used as a practical tool 

to measure the information content in each record. Therefore, it 

can be used to distinguish special descriptors from normal ones 

in our matching task. In fact, this entropy reveals the distinction 

between descriptors derived from repeating elements and other 

descriptors. 

By substituting Eq. (8) into Eq. (9), the Renyi entropy for 

each 𝑋𝐷×𝐾 vector could be calculated by 
 

𝐻(𝑋) = 

1

1 − 𝛼
𝑙𝑜𝑔 [∫ (

1

𝑁
∑ (

1

𝜎√2𝜋
)

𝐷

𝑒𝑥𝑝
−|𝑥 − 𝑥𝑖|2

2𝜎2

𝑁

𝑖=1
)

𝛼

𝑑𝑥] 
(10) 

 

The entropy function is considered with 𝛼 = 2. In this way, 

the value of the function is increased for small probabilities, and 

a higher weight is assigned. Our final “confusion index”  𝐻𝑖 , 

could be computed by 

 
 

𝐻(𝑋) = 

−𝑙𝑜𝑔 [∫ (
1

𝑁
∑ (

1

𝜎√2𝜋
)

𝐷

𝑒𝑥𝑝
−|𝑥 − 𝑥𝑖|2

2𝜎2

𝑁

𝑖=1
)

2

𝑑𝑥] 
(11) 

 

As mentioned before, the higher the “Confusion value” for 

each keypoint, the higher the probability of mismatching in the 

image matching process. By labeling each keypoint with its 𝐻𝑖  

value, the prerequisites for the proposed Confusion Reduction 

(CR) algorithm are easily achieved. 

D. Keypoint selection strategy 

Since a numerical Confusion index is associated with each 

keypoint, a quick method to extract a subset of keypoints could 

be to sort them according to their Confusion value and only 

keep the nth first. However, such a solution lacks the capability 

to control the number and distribution of the remaining 

keypoints, which is crucial in photogrammetric applications. 

Therefore, a regular gridding strategy is applied to achieve an 

even distribution of keypoints in the spatial space to control the 

number and distribution of remaining keypoints. In the previous 

section, the “Confusion value” was computed for each 

keypoint. As shown in Fig.2, the input image is firstly divided 

into regular grid cells. The existing initial keypoints are then 

determined for each cell, and therefore the number of required 

keypoints in each grid cell 𝑁𝑐𝑘, is computed by: 
 

𝑁𝑐𝑘 = [((1 −
𝐻̅𝑘

∑ 𝐻𝑘
𝑇𝑐𝑒𝑙𝑙𝑠

𝑘=1

) +
𝑁𝑘

∑ 𝑛𝑘
𝑇𝑐𝑒𝑙𝑙𝑠
𝑘=1

) . 𝑛𝑘] 

1,2,3,...,k Tcells=  

(12) 

where 𝑇𝑐𝑒𝑙𝑙𝑠 is the number of regular grid cells,  𝐻𝑘 is the 

average of the Confusion values of all initial extracted keypoint 

in the kth cell. Finally, the initial available keypoints of each 

grid cell are ordered based on their Confusion values measures, 

and the 𝑁𝑐𝑘 of the keypoints with the lowest confusion values 

are selected within each grid cell. 

IV. EVALUATION FRAMEWORK OF THE PROPOSED ALGORITHM 

The performance of the proposed CR method was tested on 

both synthetic and real datasets.  The CR method was first 

evaluated with synthetic images to test the matching efficiency. 

Additional assessments were also conducted using real image 

datasets. Then the SfM pipeline and image blocks were used to 

evaluate the effect that the CR method can have on the 

orientation results. 

In the following, the evaluation methodology adopted in both 

synthetic (Section IV-A) and real images (Section IV-B) is 

described. Then, the quality measures used to evaluate the 

results are explained in (Section IV-C). 

A. Evaluations using synthetic data 

For the first phase of evaluation, a synthetic dataset was 

created. The synthetic dataset was designed to remove the 

influence of image content and texture quality on matching the 
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results of the proposed algorithm. Also, the stability of the CR 

keypoint selection algorithm could be tested under similar 

imaging conditions since radiometric differences are ignored. 

One image is used as a reference in this dataset, and another is 

generated using a known geometric transformation. To generate 

the synthetic dataset, two geometric transformations, including 

rotation and scale, were applied according to the following 

equation: 

[
𝑥𝑘

𝑦𝑗
] = [

𝑠𝑥

𝑠𝑦
] ∙ [

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] ∙ [
𝑢𝑞

𝑣𝑝
] (13) 

where, 𝑢𝑞 and 𝑣𝑝 are the coordinate of a pixel in the input image 

and the 𝑥𝑘 and 𝑦𝑗 are the coordinates of the output pixel. 𝑠𝑥 and 

𝑠𝑦 are positive-valued scaling coefficient and θ is the counter-

clockwise rotation angle with respect to the horizontal axis of 

the input image.  

After keypoint extraction using SIFT, four well-known 

descriptors, including SIFT, SURF, DAISY and LIOP, were 

computed for each of them. After that, the proposed CR 

algorithm was performed to select high-quality keypoints. 

Finally, to determine the performance of the CR methods, 

selected keypoints were matched using Euclidean distance.  

B. Evaluations using real images 

In the second phase of the evaluation, real image pairs are 

used to evaluate matching results.  

First of all, some representative pictures are plotted from real 

image pairs datasets to visualize the performances of our 

algorithm. Then, to investigate the quantitative evaluation of 

our method, three tests are carried out as follows: 

1) Comparison with CORE algorithm:  

The result of the CR method is compared to the original 

descriptor and also the CORE algorithm. For this test, image 

keypoints are extracted from each test image pair using SIFT 

and SURF descriptors. The keypoints are then filtered using the 

proposed CR method and also the CORE algorithm. Finally, a 

brute-force matcher using Euclidean distance is used to match 

the filtered descriptors and results for both methods are 

compared. 

2)Comparison with other mismatch removal algorithms: 

In this test, the performance of the proposed CR-SIFT 

method is compared to the other mismatch removal methods. 

The traditional and basic techniques of RANSAC [40], as well 

as four state-of-the-art methods, including LPM [45], LMR 

[57], RFMSCAN [51] and GLOF [50], are chosen for 

comparison. In particular, RANSAC is a classical resampling 

method, LPM and GLOF are neighborhood preserving 

methods, LRM is a learning method, and RFMSCAN is a 

clustering-based technique. We tried to pick an algorithm from 

each type of state-of-the-art mismatch removal technique 

presented in the Related Work Section to have a comprehensive 

comparison. These algorithms are implemented based on their 

publicly available codes, with their parameters set according to 

their literature’s suggestion. 

3) Evaluating the CR method using multi-view real images: 

This test evaluates the performance of the proposed method 

using multi-view image blocks and the SfM pipeline. These 

tests evaluate the influence of CR method on image orientation 

results. As previously explained, the proposed algorithm affects 

the number and distribution of matches. This phase of the 

evaluation examines how the CR method affects the image 

orientation results. The first step is to extract and describe the 

keypoints using SIFT. Then the CR algorithm is used to filter 

the extracted keypoints. Afterwards, the filtered keypoints are 

matched, and finally, the bundle adjustment is started. The 

results are then compared to the original SfM pipeline. Fig.3 

summarizes the whole process. 

 
Fig. 3. The keypoint filtering module in the SfM pipeline 

C. The quality measures 

Five criteria, including recall, precision, positional accuracy, 

number of correct matches (NCM) and spatial distribution 

quality, are used to evaluate the capability of the keypoint 

selection method. The precision and recall criteria are computed 

using the following equations: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐶𝑀

𝑇𝑀
 (14) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐶𝑀

𝐶𝑀 + 𝐹𝑁
 (15) 

where Correct Match (CM) and False Match (FM) are the 

numbers of correctly and falsely matched keypoint pairs in the 

matching results, respectively, and TM is the number of total 

matches. False Negative (FN) is the number of existing 

correctly matched pairs which are incorrectly rejected. 

The relationship between each image pair should be known 

in order to compute the CM, FM and FN parameters. The CM, 

FM and FN values could be automatically computed in the 

synthetic image dataset due to the known geometrical 

relationship between each image pair. We used a spatial 

threshold equal to 1.5 pixels to separate correct matches from 

false matches, as suggested by [76]. 

For the real image dataset, the fundamental matrix is 

computed to find the relationship between two images. To this 

end, an expert operator manually selected 40–60 control points 

for each image pair and calculated the fundamental matrix. 

Similarly, a spatial threshold equal to 1.5 pixels is used to detect 

false matches. 

Since the location accuracy of the matched keypoints is 

critical in most photogrammetric computations, the positional 
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accuracy of each method is computed using the Root-Mean-

Square Error (RMSE). The RMSE value is calculated using the 

location of correctly matched keypoints and their computed 

location determined by the known transformations. To evaluate 

the distribution quality, the global coverage index (α), which is 

based on Voronoi diagrams, is computed by: 

𝛼 =
∑ 𝐴𝑖

𝑛
𝑖 = 1
𝐴𝑇𝑜𝑡𝑎𝑙

 (16) 

where 𝐴𝑖 is the area of the ith Voronoi cell, n is the number of 

Voronoi cells and 𝐴𝑇𝑜𝑡𝑎𝑙 is the area of the whole image. The 

larger the α value, the better the spatial distribution of the 

matched pairs. 

As no ground control/truth was available, following [73] and 

[74], four criteria at the end of bundle adjustment were analyzed 

for comparisons of the real multi-view image orientation results 

as follows: 

a) Average re-projection of the bundle adjustment: This 

criterion expresses the re-projection error of all 

computed 3D points  

b) Average number of rays per 3D point: It shows the 

redundancy of the computed 3D object coordinates. 

c) Visibility of 3D points in more than three images: It 

indicates the number of the triangulated points which 

are visible in at least three images in the block. 

d) Average intersection angles per 3D points: This 

criterion shows the intersection angle of 3D points, 

which are determined by triangulation. A higher 

intersection angle of homologous rays provides more 

accurate 3D information. 

 

V. DESCRIPTION OF DATASETS 

As mentioned above, we have used synthetic and real images 

to evaluate our algorithm. Fig.4 shows the synthetic images (S2 

to S6) created using scale and rotation transformations.  In this 

dataset, scale coefficients vary from 1.2 to 2 and rotation angles 

changes from 15° to 55° by a difference of 10° at each step.    

As for the real image datasets, 12 image pairs were selected 

from three image databases for testing, as shown in Fig.5. Eight 

stereo image pairs (RP1 to RP8) with the size of 640×480 are 

used from the Zurich image datasets. These images were 

selected as their filtering results using CORE were also 

available [18]. Furthermore, three image pairs (RP9 to RP11) 

are selected from the PSU database [79] with a size of 

1024×768, which contain completely regular and near-regular 

textures. Finally, one image pair ( RP12) is selected from the 

VGG image database [67] with different viewpoints. 

     

 (Original Image)  (S1)  (S2)  (S3) 

 

  

 

  (S4)  (S5)  

Fig. 4. The synthetic image dataset: the original image and the generated images applying five different transformations (S1 to S5). 
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(RP1) (RP2) 

    
(RP3) (RP4) 

    

(RP5) (RP6) 

    

(RP7) (RP8) 

    
(RP9) (RP10) 

    

(RP11) (RP12) 

Fig. 5. The employed real image pairs datasets  

Moreover, five multi-view image blocks were used, which 

were captured with different cameras at different locations (Fig. 

6 and Table 1).  These datasets are characterized by different 

image resolutions, varying overlap and a number of images. 

 

TABLE I 

THE SPECIFICATIONS OF THE MULTI-VIEW IMAGE DATASETS 

Dataset No. of Images Camera Model Sensor size (mm) Resolution (pixel) Pixel size (µm) Focal length (mm) 

RMV1 6 Canon Power Shot SX50 HS 6.17×4.55 4000×3000 1.50 4.3 

RMV 2 10 Canon EOS 30D 22.5×15 3504×2336 6.41 28.0 

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2022.3188931

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on July 08,2022 at 01:03:56 UTC from IEEE Xplore.  Restrictions apply. 



 

10 

 

RMV 3 27 KODAK M590  6.23×4.68 2880×2160 2.16 6.4 

RMV 4 29 KODAK M590 6.23×4.68 2880×2160 2.16 6.4 

RMV 5 25 KODAK M590 6.23×4.68 2880×2160 2.16 6.4 

 

 Sample images Camera Network 

RMV1 

 
 

 

RMV2 

 

 

 

RMV3 

 

 

 

RMV4 

 

 

 

RMV5 

 

 
 
 

 

 

Fig. 6. Real multi-view datasets with their sample images (left) and the corresponding camera network (right) 

VI. EXPERIMENTAL RESULTS AND DISCUSSION 

This section presents the results of evaluating the proposed 

method's performance on synthetic and real image datasets. To 

produce these results, SIFT detector was computed using the 

VLFeat toolbox [68] and SURF, DAISY and LIOP descriptors 

were implemented in MATLAB (R2017b). The CORE 

algorithm is also implemented in python. For the image block 

analysis, the open-source toolbox DBAT was used to run the 

photogrammetric image orientation process in MATLAB, 
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applying the Levenberg-Marquardt algorithm.  

In order to perform the tests, the CR thresholds/parameters 

regarding each of the above descriptors need to be set up. For 

this, we performed a parameter analysis.  In the following, first, 

this parameter analysis is described. Then, the results of each 

test on synthetic and real images are shown and discussed.  

A) Parameter Analysis: 

There are three main parameters in our algorithm: window 

radius (h), clusters Euclidean distance (d) and size of the regular 

grid cells (g), which need to be set. This section describes how 

we did this. The parameter study and sensitivity analysis were 

performed on three real image pairs.  Three independent 

experiments were designed to learn parameters h, d, and g for 

both SIFT and SURF descriptors. In each experiment, only one 

parameter was considered as a variable, with the others fixed. 

The experimental setup details are summarized in Table II. For 

each parameter, precision and NCM are considered as the 

evaluation metrics.  The experimental results are reported in 

Fig7∼Fig9. 

 
TABLE II: THE DETAILS OF PARAMETER SETTINGS FOR EXPERIMENTS 

Experiment Variable Fixed parameters 

Parameter 

h 

Sift: 

h=[0.001,0.05,0.1,0.2,0.3,0.4,0.5

,0.8,1,1.3,1.5,1.8,2.5] 
Sift: d=0.7 

Surf: d=0.02 

g=40pixels 
Surf: 

h=[0.001,0.05,0.1,0.15.0.2,0.25,

0.30,0.350.40,0.50] 

Parameter 

d 

Sift: 

d=[0.1,0.3,0.5,0.7,0.9,1.1,1.3,1.5

,1.7,1.9] 
Sift: h=0.3 

Surf: h=0.3 

g=40pixels 
Surf: 

d=[0.009,0.01,0.02,0.03,0.04,0.0

5,0.06,0.07,0.08,0.1] 

Parameter 

g 
g=[10,20,40,60,80,100,120] 

Sift:  d=0.7 

h=0.3 

Surf: d=0.02 

h=0.3 

 

1) Window radius (h): as can be seen in Fig 7, the results of 

mean-shift clustering is strongly affected by kernel window 

radius. Depending on the window radius, the resulting clusters 

could be quite different. An extremely small radius (smaller 

than 0.1 for SIFT and 0.2 for SURF) will result in each point 

having its own cluster. So no keypoints are removed in the 

removal step, and the results of image matching do not change. 

On the other hand, a large value for window radius (larger than 

1.5 for SIFT and 0.4 for SURF) will result in a limited number 

of the cluster containing the data points. Therefore, a larger 

number of keypoints are removed in the removal step, and 

image matching results significantly degrade. Therefore, a 

suitable window radius parameter is very important. 

Considering these results, which are almost similar in different 

datasets, we set h around 0.3 for both SIFT and SURF. 

 

 

 
 

 

 
(a) 

 
(b) 

Fig. 7. The results of window radius parameter, (a): SIFT, (b): SURF 

 

2) Clusters Euclidean distance (d): This parameter computes 

the similarity between cluster centers and can separate clusters 

that contain repetitive pattern descriptors. A large threshold for 

clusters Euclidean distance (larger than 1.3 for SIFT and 0.06 

for SURF) removes more clusters and, thus, will result in fewer 

NCM. On the other hand, a small threshold will remove a 

limited number of clusters and does not improve the precision. 

Therefore, we set d to 0.7 for SIFT and 0.02 for SURF. 
 

 
(a) 
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(b) 

Fig. 8. The results of clusters Euclidean distance, (a): SIFT, (b): 

SURF 

. 

 
(a) 

 
(b) 

Fig. 9. The results of grid cell size, (a): SIFT, (b): SURF 

 

3) Size of grid cells(g): this parameter indicates the size of 

regular gridding which is applied to achieve an even 

distribution of keypoints in the spatial space. As our 

experiments show in Fig9, if the grid cell is too small (smaller 

than 20 pixels), the NCM is relatively low. In contrast, if the 

grid cell is large, NCM is relatively higher but the distribution 

of selected keypoints degrades. Therefore, to take into account 

both the matching performance and distribution of keypoints in 

CR, we set g to 40 pixels. 

Similar experiments were also conducted for other 

descriptors, and parameters were also set for them. Table III 

summarizes all parameters set. 

 
TABLE III. THE PARAMETERS SET FOR EACH DESCRIPTOR IN CR 

METHOD 

 SIFT SURF DAISY LIOP 

Clusters Euclidean 

distance (d) 
0.7 0.02 1.6 0.4 

Window Radius (h) 0.3 0.3 0.5 0.3 

Regular grid Size (g) 

(Pixel) 
40 40 40 40 

 

B.  Evaluations using synthetic images 

This section describes the proposed method's capabilities for 

five levels of geometric transformation. Fig.10 shows the 

experiment's precision, recall, RMSE, and α for all five 

synthetic image cases and descriptors. As can be seen, the 

DAISY descriptor is not invariant to scale and rotation changes 

and thus fails as the scale and rotation values in images change. 

In all other cases, the proposed CR algorithm outperforms the 

original SIFT, SURF, DAISY, and LIOP descriptors for 

precision and recall criteria in all levels of transformations. 

As shown in Fig.10, the capability of all of the descriptors is 

degraded with increasing in the geometric difference level, 

especially for DAISY descriptor, which is not invariant to scale 

and rotation changes. As shown in Fig. 10 (a), when the 

proposed CR algorithm is used, the performance of descriptors 

increases in terms of precision and recall criteria. Selecting 

keypoints based on the CR method enhances the performance 

of SIFT descriptor with an average increase of 12% in terms of 

precision. The average precision increase for CR-DAISY, CR-

SURF and CR-LIOP descriptors are 9.4%, 10,4% and 9.25%, 

respectively. 

As shown in Fig.10(b), the applied filtering method 

outperforms the original descriptor in all experiments. The 

recall results for the CR-DAISY and CR-LIOP descriptors are 

improved around 6% and 11%, respectively comparing to the 

original ones. CR-SIFT descriptor performs the best, with an 

average recall of 96.2%. 

As illustrated in Fig.10(c), the average RMSE value of the 

matched keypoints for all descriptors is very close together; 

however, the accuracy of the CR-DAISY is slightly better than 

the other methods. Therefore, we can reveal that the positional 

accuracy of the matched keypoints extremely depends on the 

type of detector applied to extract keypoints, and descriptors are 

not specifically effective in this regard. 

As shown in Fig.10(d), the spatial distribution of the selected 

matched keypoints confirms the capability of the proposed 

method to find well-distributed matched points. It should be 

noted that although the proposed CR algorithm removes highly 

confusing keypoints at the first step and selects a subset of high-

quality keypoints from the remaining. However, the distribution 

of the selected keypoint is not degraded in comparison to the 

conventional method. The results indicate that the distribution 
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of the selected keypoints is averagely 2.21% decreased when the proposed CR algorithm is applied to the dataset. 

 

  

(a) (b) 

  

(c) (d) 

Fig. 10. Matching results for different descriptors in synthetic dataset: (a) Precision, (b) Recall, (c) RMSE and (d) Global coverage. 

 

 

(a) 
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(b) 

  

(c) 
Fig. 11. Examples of the proposed filtering results in real image pairs: (a) initial extracted keypoints (in yellow), (b) removed keypoints (in 

red), (c) kept keypoints (in green). 

 

C. Evaluations using real images 

The performance evaluation of the proposed CR method on 

real image datasets is presented in this section. In the first part 

of the experiments, the results of the CR method against the 

original descriptor and the CORE algorithm are reported. Then 

the performance of our proposed method is compared with 

other mismatching removal methods. 

Prior to discussing the results, Fig.11 illustrates a direct 

application of the proposed CR filtering algorithm for SIFT 

detector and descriptor. The initial extracted keypoints are 

shown in yellow. Keypoints that have been removed from 

images are highlighted in red, while the ones that have been 

selected are highlighted in green. The results indicate that the 

majority of keypoints (in red) that have been removed are 

located in areas with repetitive patterns. 

It can also be noted that despite the removal of keypoints in 

the sky using the CR filtering algorithm, some of them still are 

remained. This is because these points are not eliminated 

during  the removal process but are retained during the selection 

process to maintain the keypoint distribution. However, as can 

be seen, the CR method still has outperformed SIFT in areas 

with homogeneity in texture. This is an important issue that 

needs to be tackled in future studies. 

1) Comparison with CORE algorithm: 

Comparisons of the results for three different approaches of 

original SIFT descriptor, SIFT+CORE algorithm and CR-SIFT 

algorithm are summarized in Table IV (left columns). 

Furthermore, the results for three different approaches of 

original SURF, SURF+CORE algorithm and CR-SURF 

method are also illustrated in Table IV (right columns). The best 

results for each image pair are highlighted. 

As it is shown in Tables IV, the proposed reduction method 

globally improves the correct matching ratio in almost all 

experiments. Comparing the precision results of CR-SIFT 

algorithm to the original SIFT descriptor, an increased average 

precision value of 17.8% and recall of 10.2% for the real image 

datasets is obtained. Similarly, the CR-SIFT algorithm 

outperforms the CORE algorithm with an average precision and 

recall increase of 15.3% and 12.8% respectively. 

Findings in Table IV show that the CR-SURF algorithm 

significantly outperforms SURF and SURF+CORE algorithms 

in all real image cases. Furthermore, the matching results on the 

real image cases are superior to the other methods. As can be 

seen, the CR-SURF algorithm with an average increase of 5.0% 

in precision and 20% for recall outperforms the original SURF. 

Similarly, the proposed method with an average increase of 

6.3% in precision and 30.23% for recall value surpasses the 

SURF+CORE algorithms. 

The results of the spatial distribution (α) analysis in Tables IV 

confirm that keypoint removal and selection processes in the 

proposed CR algorithm do not negatively influence the 

distribution of the matched keypoints. As can be seen, for the 

CR-SIFT algorithm, the distribution of matched keypoints is 

almost equivalent to the original SIFT results, with an average 

decrease of 2% to 5%. Similarly, the distribution of matched 

keypoints using the CR-SURF algorithm slightly differ from 

the original SURF algorithm. 

Based on the experimental results, it can be seen that the 

proposed CR algorithm increases matching performance and 

improves spatial distribution.  The results of α indicate that the 

distribution of the selected keypoints is effectively controlled 

during the selection process, along with a better precision 

performance of the proposed keypoint filtering method. 

Filtering the confusing keypoints and selecting a subset of well-

distributed keypoints increases matching accuracy and 

robustness in images with repetitive patterns effectively. 
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TABLE IV 

EVALUATING PERFORMANCE OF CR METHOD AGAINST THAT OF ORIGINAL DESCRIPTOR AND CORE ALGORITHM  

Dataset  

Original 

SIFT 

descriptor 

SIFT 

descriptor 

+CORE 

CR-SIFT 

Original 

SURF 

descriptor 

SURF 

descriptor 

+CORE 

CR-SURF 

RP1 

NCM 133 108 100 108 52 78 

Precision (%) 65.04 62.67 85.47 72.48 71.23 78.00 

Recall (%) 54.06 62.06 65.78 66.10 45.44 96.18 

α (%) 65.72 66.06 66.23 49.01 42.07 47.95 

RP2 

NCM 114 90 96 148 71 127 

Precision (%) 79.17 76.92 93.20 72.90 63.39 75.59 

Recall (%) 77.43 78.31 81.35 71.43 23.96 86.39 

α (%) 49.52 49.16 49.16 64.93 61.80 59.74 

RP3 

NCM 94 127 69 154 56 110 

Precision (%) 56.97 80.37 88.46 63.63 51.37 66.66 

Recall (%) 42.35 53.21 58.47 74.76 21.27 82.91 

α (%) 41.40 61.42 39.87 61.28 58.49 55.31 

RP4 

NCM 113 69 113 136 47 86 

Precision (%) 63.48 71.13 86.25 53.12 77.14 74.78 

Recall (%) 52.36 62.41 65.69 73.37 36.72 91.57 

α (%) 78.30 75.69 78.40 69.17 66.28 68.87 

RP5 

NCM 435 307 291 342 254 287 

Precision (%) 76.72 78.92 97.32 63.92 63.65 64.78 

Recall (%) 68.35 72.74 77.64 53.54 35.48 77.50 

α (%) 68.49 67.57 67.13 71.50 68.04 69.50 

RP6 

NCM 812 489 462 639 453 509 

Precision (%) 89.53 90.89 97.88 86.35 82.06 87.75 

Recall (%) 82.14 85.13 91.18 76.96 80.32 96.65 

α (%) 76.28 73.75 77.21 72.40 74.72 72.15 

RP7 

NCM 449 69 357 370 342 300 

Precision (%) 82.69 71.13 97.54 77.24 78.28 83.57 

Recall (%) 78.36 80.42 83.71 36.17 53.15 69.33 

α (%) 79.87 75.69 79.84 76.61 74.35 72.04 

RP8 

NCM 310 282 202 153 125 137 

Precision (%) 83.33 85.47 95.28 67.70 73.65 77.84 

Recall (%) 71.35 75.32 87.44 32.62 43.58 59.21 

α (%) 43.94 42.38 40.15 52.20 50.25 51.52 

RP9 

NCM 35 35 37 17 15 13 

Precision (%) 12.28 24.38 32.45 8.46 7.35 18.68 

Recall (%) 33.25 36.19 42.04 19.77 20.42 25.12 

α (%) 47.03 40.58 47.83 33.90 32.28 37.12 

RP10 

NCM 12 13 15 1436 1258 744 

Precision (%) 7.36 2.34 41.66 95.23 93.57 95.75 

Recall (%) 25.41 27.52 37.50 39.14 53.47 72.52 

α (%) 49.33 50.32 54.65 85.70 81.76 81.92 

RP11 

NCM 459 405 397 587 325 284 

Precision (%) 83.91 86.50 98.75 93.32 92.37 98.95 

Recall (%) 79.24 74.28 86.68 44.70 57.85 75.15 

α (%) 78.67 77.21 76.55 78.00 71.37 75.68 

RP12 

NCM 1143 753 803 318 217 104 

Precision (%) 99.48 99.21 99.62 77.18 71.35 78.82 

Recall (%) 90.28 93.24 99.50 75.00 81.27 83.20 

α (%) 75.34 73.43 75.93 82.22 78.69 75.39 
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2) Comparison with other mismatch removal algorithms: 

In this section, the performance of the proposed CR method 

is tested and compared with other feature matching methods.  

The number of inliers, precision and recall statistics, and 

RMSE and spatial distribution of the five algorithms are 

reported in Table V, and the best results are shown in bold. As 

it shows, the proposed CR algorithm can effectively remove the 

mismatches before the matching stage and achieve an effective 

result even when the repeating areas are covered all over the 

image and the image quality is low. 

The precision and recall of the proposed method have always 

been the highest in all experiments. Using our proposed CR 

method to filter out the mismatches, the highest precision and 

recall are achieved. In addition, when there are a few outliers in 

the initial matching set, like in RP1 to RP8, all algorithms can 

achieve good results. However, when there are many outliers, 

such as in RP  9 and RP  10, the results of other methods will 

deteriorate sharply. The accuracy of RANSAC will decrease to 

below 15% because it estimates the transformation matrix and 

is efficient with a large number of outliers. It is worth noting 

that although the accuracy and recall of RANSAC are not as 

well as other methods, its RMSE is smaller than others. 

The LPM and LMR methods are both based on the spatial 

consistency among the putative  matches.  The accuracy of LPM 

and LMR is not satisfactory in images with lots of outlier points 

(RP 9 and RP10) because these methods are very suitable for 

the situation with a few outlier points and sensitive to a large 

proportion of outliers; and thus, the neighborhood construction 

will be unreliable. 

In the case of high outliers, the recall of RFMSCAN is better 

than other algorithms. The reason is that as the outlier ratio 

increases, a small part of outliers may have weak motion 

consistency and then form one or more false inlier clusters, 

leading to a decrease in precision. In contrast, the inliers in 

general, always have motion consistency that is seldom affected 

by outliers,  and hence it can achieve a large recall even in the 

case of a large outlier ratio. 

From the statistic comparisons of LMR and GLOF in the 

above experiments, LMR outperforms many tested approaches 

since it is a learning-based matching method with many 

powerful machine learning models such as neural networks, and 

the trained classifier can get a good generalization ability even 

facing the complex image transformations in the training data.

 
TABLE COMPARISON OF THE NUMBER OF CORRECT MATCHES(NCM), PRECISION, RECALL, RMSE AND SPATIAL DISTRIBUTION OF THE TEST 

DATASETS

Dataset  RANSAC LPM LMR RFMSCAN GLOF CR-SIFT 

RP1 

NCM 11 130 136 160 159 100 

Precision (%) 78.57 83.33 85 66.67 72.27 85.47 

Recall (%) 4.47 52.84 55.28 65.04 64.63 65.78 

RMSE (pix) 1.11 1.059 1.03 1.06 1.06 1.15 

α (%) 4.78 63.53 65.33 65.72 65.72 66.23 

RP2 

NCM 31 113 111 114 108 96 

Precision (%) 86.11 88.98 90.24 80.28 92.31 93.20 

Recall (%) 21.53 78.47 77.08 79.17 75.00 81.35 

RMSE (pix) 0.45 0.53 0.51 0.54 0.54 0.55 

α (%) 26.35 49.52 49.52 49.52 41.28 49.16 

RP3 

NCM 20 77 83 94 93 69 

Precision (%) 86.96 87.50 88.30 63.09 83.78 88.46 

Recall (%) 12.12 46.67 50.30 56.97 56.36 58.47 

RMSE (pix) 1.06 1.03 1.04 1.06 1.07 1.09 

α (%) 13.26 24.82 35.12 41.39 39.17 39.87 

RP4 

NCM 36 90 85 113 105 113 

Precision (%) 92.31 78.26 85.86 66.86 71.92 86.25 

Recall (%) 20.22 50.56 47.75 63.48 58.99 65.69 

RMSE (pix) 0.59 0.87 0.89 0.86 0.85 0.86 

α (%) 62.21 78.09 78.25 78.30 78.09 78.40 

RP5 

NCM 227 422 414 435 416 291 

Precision (%) 89.37 93.57 95.83 77.96 87.95 97.32 

Recall (%) 40.04 74.43 73.02 76.72 73.37 77.64 

RMSE (pix) 0.30 0.46 0.45 0.47 0.45 0.48 

α (%) 56.54 64.80 66.07 68.49 67.06 67.13 

RP6 

NCM 479 796 805 812 801 462 

Precision (%) 96.96 96.72 96.64 89.82 97.33 97.88 

Recall (%) 52.81 87.76 88.75 89.53 88.31 91.18 

RMSE (pix) 0.89 0.95 0.95 0.95 0.95 0.92 

α (%) 68.99 74.61 76.25 76.28 75.67 77.21 

RP7 
NCM 159 429 435 449 434 357 

Precision (%) 97.55 97.72 97.53 90.16 95.81 97.54 

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2022.3188931

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on July 08,2022 at 01:03:56 UTC from IEEE Xplore.  Restrictions apply. 



 

17 

 

Recall (%) 29.28 79.01 80.11 82.69 79.93 83.71 

RMSE (pix) 0.22 0.44 0.43 0.47 0.43 0.47 

α (%) 70.85 79.32 79.68 79.77 79.77 79.84 

RP8 

NCM 134 299 295 310 284 202 

Precision (%) 93.05 94.32 93.65 88.57 93.73 95.28 

Recall (%) 36.02 80.38 79.30 83.33 76.34 87.44 

RMSE (pix) 0.31 0.43 0.43 0.46 0.41 0.43 

α (%) 36.95 43.62 43.24 43.94 41.21 40.15 

RP9 

NCM 14 24 22 45 43 47 

Precision (%) 13.34 18.18 14.81 13.01 16.02 32.45 

Recall (%) 1.40 4.91 4.21 12.28 11.58 42.04 

RMSE (pix) 0.60 1.27 1.01 1.13 1.15 1.07 

α (%) 5.86 11.75 8.51 47.03 44.07 47.83 

RP10 

NCM 13 17 17 22 21 25 

Precision (%) 9.67 31.82 17.95 8.05 13.25 41.66 

Recall (%) 0.61 4.29 4.29 7.36 6.75 37.50 

RMSE (pix) 2.67 1.38 1.59 1.49 1.41 1.27 

α (%) 12.47 22.52 28.28 49.33 49.33 54.65 

RP11 

NCM 249 453 457 459 456 397 

Precision (%) 96.13 97.00 97.03 87.93 97.02 98.75 

Recall (%) 45.52 82.82 83.55 83.91 83.36 86.68 

RMSE (pix) 0.67 0.90 0.89 0.89 0.89 0.91 

α (%) 78.32 78.67 78.47 78.57 78.66 76.55 

RP12 

NCM 1044 1134 1145 1062 1142 803 

Precision (%) 99.42 99.47 99.50 99.44 99.48 99.62 

Recall (%) 90.86 98.69 99.21 92.43 99.39 99.50 

RMSE (pix) 0.35 0.36 0.33 0.33 0.37 0.37 

α (%) 74.78 75.02 75.85 66.23 75.34 75.93 

3) Results of image block orientation 

In this section, the proposed CR method is applied to blocks 

of real images. As the experiments in previous sections have 

shown, the number of extracted keypoints is decreased using 

the proposed keypoint filtering method. The reduction of 

keypoints can lead to either orientation failure due to the 

inadequate number of tie points or incorrect orientation results. 

Therefore, the experiments in this section evaluate the impact 

of the CR algorithm on the results of the image orientation as 

follows. 

 

1) Average re-projection error of the bundle 

adjustment: 

The re-projection error of all computed 3D points is 

shown in Fig.12(a) for all datasets. This metric is not 

only affected by the matching accuracy but also by the 

accuracy of the external parameters. As shown, the 

proposed CR algorithm has a better performance 

compared to the original SIFT in each dataset. The 

proposed CR-SIFT algorithm averagely decreases 20% 

to 30% of the re-projection error. However, the re-

projection error in the proposed CR-SIFT method is still 

large. Although the CR-SIFT tries to select well-

distributed keypoints, the selected keypoints are still at 

large scales, leading to lower spatial resolution. The 

lower spatial resolution of the keypoints causes large re-

projection errors in the bundle adjustment. 

 

 

 

2) Average angles of intersection: 

Since 3D points are calculated by triangulation, a higher 

angle of intersection of similar rays provides more 

accurate 3D details. Fig.12(b) shows that the intersection 

angles in the R2 dataset do not change significantly using 

the proposed CR algorithm; however, an average 

improvement of 14% in the intersection angles is 

achieved. Thus, for R1 and R4 datasets with higher 

overlapping images, the average intersection angles are 

relatively smaller. In this respect, the CR-SIFT is slightly 

performing better because the keypoints are better 

distributed.  

3) Average rays per 3D point: 

As the number of images and their overlap increases in a 

dataset, more accurate 3D object coordinates are 

expected. As shown in Fig.12(c), higher average 

multiplicity for the tie-points is achieved in the R4 

dataset with higher overlapping images. The larger 

multiplicity belongs to the original SIFT for all datasets. 

However, the average multiplicity of the proposed CR 

algorithm, despite keypoint removal in the process, is 

close to the original SIFT with an average of 2% to 4% 

decrease.  
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(c) (d) 

Fig. 12. Results for the real image block orientation. (a): Re-projection error of bundle adjustment for each dataset; (b): Average intersection 

angles; (c): Average rays per computed 3D points; (d): The visibility of the derived 3D points in more than 3 images. 

 

4) Visibility of 3D points in more than 3 images: 

Fig.12(d) shows the visibility of 3D points that are 

normalized with respect to all extracted points for each 

dataset. The visibility results indicate that an average of 

30% of the triangulate points using the SIFT are visible 

in three images in all datasets. The proposed CR-SIFT 

has slightly weaker performance in this regard, with an 

average of 27% of visible points in more than three 

images.  

 

As can be seen, our CR algorithm outperforms the original SIFT 

in terms of average re-projection error and average intersection 

angles but has a lower performance in visibility and average ray 

issues. However, it should be noted such issues are not as 

important as the first two issues. This is because average re-

projection error and average intersection angles play an 

important role in defining the geometry of the image network, 

whereas visibility of 3D points in more than three images and 

average rays per 3D point only refers to the number of points. 

Obviously, compared to the geometry of the imaging network, 

this is less important, and thus, its value is of less concern. 

D. Computational cost 

 The proposed CR algorithm seems to imply a significant 

computational cost to the matching process. Since the mean-

shift clustering is used in the first step of the proposed 

algorithm, it can be computationally expensive for a large 

number of keypoints because it needs to iteratively follow the 

procedures for each descriptor vector in a given image. 

Therefore, a straightforward implementation of mean-shift 

should have a complexity of O(N2), where N is the number of 

keypoints in the image. Fig.13 shows the computational cost of 

the proposed algorithm with respect to the number of keypoints. 

The experiments were performed on a PC with a 2.6 GHz Intel 

Core i5-3230 processor and 6GB of RAM. As shown in Fig.13, 

the mean-shift algorithm used in the proposed method is very 

computation-intensive. It is clear that the processing time will 

grow quadratically as the number of points to be processed 

increases.  However, since the removal stage of CR method is 

very suitable for parallel computing, an implementation based 

on parallel computing on a GPU architecture could significantly 

reduce the time complexity. 
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Fig. 13. The computation cost of the proposed approach by the 

number of keypoints 

VII. CONCLUSION 

Image matching is a critical task in a wide variety of 

photogrammetry applications [69]-[71]. This study introduced 

a novel filtering algorithm to address the keypoints confusion 

problem. By removing highly confusing keypoints, the 

proposed algorithm extracts a smaller subset of initial keypoints 

that are less prone to confusion. The mean-shift clustering 

algorithm and a novel confusion index with a gridding strategy 

are used to ensure the quality of the selected keypoints. The 

proposed method was implemented and compared with four 

conventional descriptors: SIFT, SURF, DAISY, and LIOP and 

also extensive experiments on different real image pairs were 

performed using several state-of-the-art mismatch rejection 

methods. The proposed method resulted in more discriminant 

keypoint subsets than the original descriptors and the CORE 

algorithm. Better results are obtained when compared with that 

of several other popular methods, especially in terms of 

robustness to outliers. Additionally, the proposed CR algorithm 

outperformed the CORE algorithm in nearly all experiments 

and significantly improved matching accuracy and robustness 

through the use of evenly distributed keypoints. Furthermore, 

compared to the state-of-the-art mismatch rejection methods, 

the proposed CR algorithm can effectively remove the 

mismatches before the matching stage and achieve an effective 

result even when the image quality is low and repeating areas 

are covered all over the image.  As our experiments show, the 

thresholds in our method are independent of the image context. 

Besides, the results of the newly developed method on the 

accuracy of multi-view image pose estimation were compared 

to those of the conventional SIFT algorithm, which 

demonstrated an average improvement of 20% to 30% in image 

bundle adjustment results. 

We will investigate how the proposed algorithm can be 

coupled to binary descriptors such as BRIEF in future work. 

Furthermore, the performance of the CR method in areas with 

homogeneity in texture (like sky) should be deeply analyzed. 

Additionally, the proposed method makes use of the mean-shift 

clustering with a significant time complexity; further research 

to speed up the clustering strategy based on parallel computing 

implementation is suggested as additional research work.  
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