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A B S T R A C T   

Currently, mobile laser scanning (MLS) systems can conveniently and rapidly measure the backscattered laser 
beam properties of the object surfaces in large-scale roadway scenes. Such properties is digitalized as the in-
tensity value stored in the acquired point cloud data, and the intensity as an important information source has 
been widely used in a variety of applications, including road marking inventory, manhole cover detection, and 
pavement inspection. However, the collected intensity is often deviated from the object reflectance due to two 
main factors, i.e. different scanning distances and worn-out surfaces. Therefore, in this paper, we present a new 
intensity-enhanced method to gradually and efficiently achieve the intensity enhancement in the MLS point 
clouds. Concretely, to eliminate the intensity inconsistency caused by different scanning distances, the direct 
relationship between scanning distance and intensity value is modeled to correct the inconsistent intensity. To 
handle the low contrast between 3D points with different intensities, we proposed to introduce and adapt the 
dark channel prior for adaptively transforming the intensity information in point cloud scenes. To remove the 
isolated intensity noises, multiple filters are integrated to achieve the denoising in the regions with different 
point densities. The evaluations of our proposed method are conducted on four MLS datasets, which are acquired 
at different road scenarios with different MLS systems. Extensive experiments and discussions demonstrate that 
the proposed method can exhibit the remarkable performance on enhancing the intensities in MLS point clouds.   

1. Introduction 

The intelligent technologies on automatically extracting the accurate 
road information are significant to facilitate the development of urban 
digital twins or smart cities (Luo et al., 2018; Rastiveis et al., 2020; Mi 
et al., 2021). Nowadays, Mobile Laser Scanning (MLS) systems equipped 
with survey-grade laser scanners can efficiently and rapidly perceive the 
surrounding road environment by actively emitting multiple laser beams 
to produce the point cloud data. The received energy response of laser 
beam, which is recorded as intensity value in point-cloud data, can be 
exploited to measure the reflectivity of object surface (Yang et al., 2012; 
Wen et al., 2019). As an extremely important information source, 
intensity-related information has been widely used in massive applica-
tions of Intelligent Transportation Systems (ITS), e.g. autonomous 
driving (Luo et al., 2021; Li et al., 2021; Wang et al., 2021; Fang et al., 

2021), transportation facility maintenance (Huang et al., 2017; Yu et al., 
2020; Mi et al., 2021), and high-definition (HD) maps (Yang et al., 2017; 
Pan et al., 2019; Ma et al., 2021; Ye et al., 2021). 

Although the intensity information plays an essential role in lots of 
ITS-related applications, the intensities acquired by MLS systems often 
cannot correctly reflect the real reflectance of the measured objects due 
to two main factors, i.e. different scanning distances and worn-out sur-
faces (Dias et al., 2002; Guan et al., 2014). Specifically, longer scanning 
distance means lower intensity value, which leads to the intensity 
inconsistency in the objects locating at different scanning distances, 
although such objects belong to the same category. In addition, road 
abrasion deteriorates the flatness of the road surface and influences the 
reflectivity of object surface, which may introduce the salt-and-pepper 
noise into the intensities in the collected point-cloud scenes. There-
fore, this paper mainly focuses on designing an efficient method to 
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correct the intensity values for achieving the intensity enhancement in 
the MLS point clouds. 

To mitigate the obtained intensities that deviate from the reflectivity 
of real objects, many researchers have attempted to solve the problem on 
two aspects: i.e. intensity correction (Fang et al., 2015; Wu et al., 2021) 
and intensity denoising (Schmitz et al., 2019). On one hand, previous 
studies on intensity correction in point-cloud scenes are either data- 
driven (Cheng et al., 2017) or model-driven (Ding et al., 2013). Those 
methods mainly focus on building a mathematical model to describe the 
direct mapping relationship between the intensity values and different 
influencing factors. Although these methods have successfully consid-
ered the relationship between intensity value and individual factor, they 
neglect to consider multiple factors into intensity correction like random 
noise and road surface situation. On the other hand, the past studies on 
intensity denoising of point clouds were focused on introducing the 
technologies successfully used in image denoising (Cheng et al., 2021). 
However, those studies often focus on suppressing intensity noise in the 
scenario with constant point density but ignore the scenario with 
different point densities. 

In the collected intensity of point-cloud scenes, road abrasion often 
brings a large number of salt-and-pepper noises, which largely decrease 
the contrast of points with different intensities. It is observed that such 
salt-and-pepper noises in the point clouds are similar to the haze in 
images. To achieve the removal of the haze in a single image, He et al. 
(2010) integrated the haze imaging model with dark channel prior for 
the recovery of a no-haze image. Dark channel prior originates from the 
observation that local patches in the haze-free images often have some 
pixels with low intensity in at least one color channel (He et al., 2010). 
By removing the estimated haze from the hazy images under the dark 
channel prior, the visibility of the images and the low-contrast color shift 
can be largely improved. Therefore, the dark channel prior can be 
naturally introduced into achieving a high contrast in the points with 
different intensities. 

In order to achieve the intensity enhancement in MLS point clouds to 
benefit these intensity-based applications, this paper mainly focuses on 
proposing an efficient method to correct, transform and denoise in-
tensity by considering different influencing factors. Concretely, to 
rectify the intensity inconsistency caused by different scanning dis-
tances, the relationship between scanning distance and intensity value is 
modeled to correct the inconsistent intensity. To handle the low contrast 
between low-intensity and high-intensity points, we introduce the dark 
channel prior for obtaining a high contrast by transforming the intensity 
information. To accomplish the removal of the isolated intensity noises, 
different filters are integrated to achieve the denoising procedure in the 
point-cloud regions with different point density. Therefore, the main 
contributions of our paper are summarized as follows:  

(1) We propose a new method to achieve the intensity enhancement 
in MLS point clouds by considering different factors, i.e. the 
scanning distance, the point density, road abrasion. For each 
factor, an effective operation is proposed to enhance the intensity 
for the benefits of those intensity-based applications.  

(2) To achieve the high contrast between 3D points with different 
intensities, we propose to introduce the dark channel prior, which 
have gained popularity in image defogging, to transform the in-
tensity values. To adapt the dark channel prior to the task of in-
tensity transformation in different point-cloud scenarios, we re- 
design the dark channel prior used in dehazed images to self- 
adaptively obtain the optical transmittance and atmospheric 
light.  

(3) Extensive experiments are conducted on four datasets to evaluate 
the correctness and robustness of our proposed intensity- 
enhanced method. These datasets are built on large-scale point 
clouds, which are collected at different road scenarios by 
different MLS systems. Additionally, the ablation experiments are 

conducted to demonstrate the functionality of each component in 
our proposed method. 

We organize the rest of our paper as follows. Section 2 introduces the 
related researches on intensity enhancement in point clouds in detail. 
Section 3 expounds the workflow of our proposed intensity-enhanced 
method. Section 4 presents the extensive experimental results to 
demonstrate the effectiveness of our proposed method. Section 5 con-
cluds the paper. 

2. Related work 

To improve the quality of acquired intensities of point clouds, many 
researchers have focused on developing different technologies for in-
tensity enhancement in point clouds. In this section, we introduce the 
related works of intensity enhancement on the two aspects, i.e. intensity 
correction and intensity denoising in point clouds. 

2.1. Intensity correction in point clouds 

Many previous researches on intensity correction of point-cloud data 
mainly focused on analyzing the relationship between the measured 
intensity and the various factors, i.e., temperature (Thundathil et al., 
2021), humidity (Anttila et al., 2016), geometric characteristics (Höfle 
and Pfeifer, 2007; Luo et al., 2019), etc. Once the relationship is 
determined, the mathematical model is built to implement the task of 
intensity correction in point clouds. Höfle and Pfeifer (2007) systemat-
ically studied the intensity correction of point clouds and classified the 
related studies of intensity correction into two categories: data-driven 
methods and model-driven methods. Specifically, the model-driven 
methods mainly studied the mechanisms of laser scanning systems and 
attempted to establish the intensity-correction model according to the 
reflectivity of object surfaces or the laser attenuation during the trans-
mission (Li et al., 2016). The data-driven methods mainly focused on 
exploring homogeneous data to achieve the model fitting which is used 
to infer the relationship between intensity values and various factors for 
intensity correction in point clouds (Fang et al., 2015; Tan and Cheng, 
2016). For MLS systems, most methods on intensity correction are data- 
driven. Teo and Yu (2015) achieved the intensity correction by intro-
ducing a cubic polynomial function to fit the mapping relationship be-
tween the scanning distance and intensity value in MLS point clouds. To 
handle the unevenly distributed and strongly fluctuated intensities of 
road makings in MLS point clouds, Cheng et al. (2017) proposed a scan- 
angle-based intensity correction algorithm by introducing a function to 
map the incidence angle to the intensities. 

2.2. Intensity denoising in point clouds 

The acquired point-cloud data inevitably contains intensity noise 
because of different factors, i.e. road abrasion, the accuracy of scanning 
systems, atmospheric environment, etc. These intensity noises largely 
impose an adverse impact on the performance of the intensity 
enhancement. To elliminate the adverse impact brought by intensity 
noises, the researches of intensity denoising in point clouds have been 
attracting wide attentions (Fang et al., 2015; Song et al., 2021). In the 
past decades, studies on image denoising have been investigated and 
made progress (Zhang et al., 2020). Naturally, some on-image filters 
were introduced and applied to the intensity denoising of point cloud 
data (Al-Shayea et al., 2020). Specifically, to eliminate the high- 
frequency intensity noises in point clouds, the median filtering, which 
is applied in image denoising, is introduced to implement the intensity 
denoising (Yan et al., 2016). To guarantee the intensity consistency in 
the homogenous objects, median filtering can effectively suppress the 
extreme point of the intensity and smooth the intensity of the points by 
considering the intensities of its neighboring points. The neighboring 
points were often determined according to the spatial distance in the 3D 
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cooridinate system. However, such neighboring points may not adapt to 
the scenarios with variations of point densities. Li et al. (2016) proposed 
a dynamic window median filter to adaptively remove the intensity 
noises and achieve the intensity enhancement of 3D points in the 
scanning line way. Although such a median filter can effectively sup-
press the discretely distributed intensity noise, it cannot achieve the 
denoising task among the regions with different point densities. 
Furthermore, the median filter cannot deal with the large area of noises 
caused by worn-out surface, which commonly occurs in different road 
scenarios. 

Although the studies of intensity correction and intensity denoising 
in MLS point clouds have gained the significant progress, there is no 
comprehensive study to solve the problem of intensity enhancement in 
MLS point clouds by considering multiple factor. 

3. Method 

The intensity acquired by MLS systems is often affected by various 

factors including scanning distance, point density, worn-out surface, etc. 
Our goal is to enhance the collected intensity recorded in point-cloud 
data by considering such various factors. In this paper, we propose to 
consider different factors with different models, and combine these 
models for gradually enhancing the quality of intensity. Fig. 1 presents 
the workflow of our proposed method on improving the quality of in-
tensity information. As shown in Fig. 1, the input MLS point clouds are 
first preprocessed by extracting the road points and dividing the road 
points into segments. Then, we conduct the intensity correction to 
rectify the intensity inconsistency by exploiting the relationship be-
tween the scanning distance and intensity value. After that, in order to 
enhance the contrast between high-intensity points and low-intensity 
points, we implement the transformation on intensity values by intro-
ducing the dark channel prior. Finally, we remove the points with the 
isolated noise intensity by integrating multi-filter to handle the regions 
with different point densities. 

3.1. Data preprocessing 

To improve the processing efficiency in large-scale point-cloud 
scenes, necessary data pre-processing is required to implement for 
extracting the points belonging to the road surface. In this paper, as 
shown in Fig. 2, we adopt the approaches proposed in (Yang et al., 2013) 
as the preprocessing steps. Specifically, according to the trajectory 
points, the whole point clouds collected by the MLS system are first 
partitioned into a set of consecutive road cross sections. In practice, the 
length of a cross-section is set at about 25 m. Then, for each road cross 
section, the road surface points are extracted by applying a moving 
window operator (Yang et al., 2013). This moving window operator 
aims to detect the road curb points by finding curb patterns in each 
scanning line. Once the curb points are detected, the road surface points 
can be determined. 

3.2. Intensity correction based on scanning distance 

The objects belong to the same category may have inconsistent in-
tensities because of the different scanning distances (see Fig. 3(a) and 3 
(b)). Such intensity inconsistency imposes an negative effect on the 
performance of intensity-based applications like road markings seg-
mentation (Mahmoudabadi et al., 2016). It is observed that the intensity 
value is inversely proportional to the scanning distance. But, the dis-
tance effect on intensity does not completely follow the inverse range 
function at a near or large range. The traditional ratio method is easy to 
cause over-correction at the near or edge range. Considering dynamic 
platform and instrumental factors of MLS systems, it is hard to finely 
define the behavior of near range or non-near range according to the 
distances. Therefore, we use the threshold θI instead of the range as the 
clue to choose the different range correction functions, which describe 
the relationship between the intensity value and the scanning distance 
for the elimination of the intensity inconsistency. To assure the intensity 
consistency, we re-calculate 3D point p’s intensity, Ir

p, as follows: 

Data Preprocessing

MLS Point Cloud Data

Intensity Correction 
Based on Scanning 

Distance 

Intensity Transformation 
Based on Dark Channel 

Prior

 Intensity Denoising via 
Multi-filter Integration

Point Cloud Data with 
Enhanced Intensity

Fig. 1. Flowchart of the proposed method on intensity enhancement in the MLS 
point clouds. 

Fig. 2. Illustration on the procedure of data preprocessing in our proposed intensity-enhanced method. (a) is the original point cloud scene acquired by the MLS 
system. Here, the black points represent the trajectory points; (b) is the partitioned point cloud sections according to the trajectory data; (c) is road surface points 
obtained by applying the moving windows operator. 
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f
(
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(
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)
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(1)  

f (R)= η0 + η1R+ η2R2 + η3R3 (2)  

ΔIp =
f (R̂)
f
(
Rp
)*Ip − (3)  

θI = max
p∊P

{
Ip

2

}

(4)  

where Ip is the point p’s intensity information collected by the MLS 
system. P denotes the set of 3D points in the point-cloud segment which 
is obtained from the data preprocessing. R̂ represents the reference 

value, which is computed as the minimum spatial distance between 
points in P and its corresponding trajectory. Rp represents the tridi-
mensional distance between the point p and its corresponding trajectory. 
Here, we assume that the relationship between intensity and scanning 
distance is non-linear. Therefore, a cubic polynomial function f(R) is 
introduced to model the relationship between intensity and scanning 
distance. The coefficients ηi(i = 0,1, 2,3) are determined by fitting the 
homogeneous regions in different scenarios. Concretely, the road sur-
faces with homogeneous intensities are randomly selected as control 
patches. Based on these selected control patches, the least square algo-
rithm (Teo and Yu, 2015) is applied to calculate the coefficients in Eq 
(2). In Eq. (1), when ΔIp is smaller than the threshold, θI, we increase the 

point p’s intensity value exponentially according to the ratio f(R̂)

f(Rp)
. On the 

contrary, when ΔIp is larger than the threshold θI, we increase the point 
p’s intensity value linearly according to the difference between f(R̂) and 

Fig. 3. Example of intensity correction based on scanning distance: (a) original point cloud scene, (b) distribution of scanning distance and intensity value in the 
original point cloud scene, (c) point cloud scene after intensity correction, and (d) distribution of scanning distance and intensity value after intensity correction. 

Fig. 4. Illustration of dark channel prior-based intensity transformation: (a) point cloud scene displayed in intensity value after only applying intensity correction, 
and (b) point cloud scene displayed in intensity value after applying both intensity correction and intensity transformation. 
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f
(
Rp
)
. Here, the threshold, θI, is self-adaptively determined on the 

maximum intensity among the intensities in the corresponding segment 
by Eq. (4). After rectifying the intensity values by applying Eq. (1), the 
intensity inconsistency can be effectively removed (see Fig. 3(c) and 3 
(d)). 

3.3. Intensity transformation based on dark channel prior 

Although the intensity inconsistency in collected point clouds can be 
eliminated by correcting the intensity values based on scanning dis-
tances, there is still a large amount of salt-and-pepper intensity noise 
caused by road abrasion. Such noise influences the intensity values and 
results in a low contrast among the points with different intensities (see 
Fig. 4(a)). To remove the influence caused by the salt-and-pepper noise, 
we introduce the dark channel prior to filter those noise by transforming 
the intensity values and enlarging the contrast in the points with 
different intensities (see Fig. 4(b)). The transformed intensities are 
beneficial to those intensity-based applications. 

The dark channel prior proposed by He et al. (2010) has been widely 
used to remove the haze in a single hazed image. The haze in images 
causes low brightness and clarity, which makes it difficult to identify 
object boundaries. Specifically, we treat the point cloud segment with 
the salt-and-pepper noise as a hazed image. The point-cloud scene, J(P), 
whose intensities have been transformed by dark channel prior, can be 
obtained as follows: 

J(P) =
Ir(P) − A

t(P)
+A (5)  

where Ir(P) denotes the intensity values of the point-cloud segment, P, 
which has a lot of the salt-and-pepper noise. A and t(P) represent the 
value of atmospheric light and optical transmittance, respectively. 
During the procedure of intensity transformation, t(P) should be set at a 
relatively small value. To make Eq. (5) meaningful, we constrain the 
value of t(P) larger than a given minimum value t0. Therefore, we 
rewrite Eq. (5) as follows: 

J(P) =
Ir(P) − A

max(t(P), t0)
+A (6) 

Here, the atmospheric light A can be calculated as follows: 

A = mode
p∊P

{Ir(p)} (7) 

In addition, we should consider the intensity noises caused by road 
abrasion when determining the value of t(P). Since pepper noises are 
associated with high values and wide distribution, we use the histogram 
statistical method to calculate intensity distribution and estimate the 
noise information caused by abrasion. Concretely, we divide the range of 
intensity values in the point cloud segment into M intervals. For each 
intensity interval m∊M, the number of points, nm, is calculated and the 

intensity frequency, Fm, can be computed as nm/|P|. Here, |P| gives the 
total number of points in the point set P. Hence, Fmp *Ir(p) can be used to 
denote the noise characteristics of point p. The transmittance tp for point, 
p is derived from the ratio of noise characteristics of each point to the 
maximum noise characteristic value in its corresponding intensity in-
terval mp ∈ M as follows: 

tp =
Fmp *Ir(p)
max
m∊M

{Fm}
(8) 

The greater the value of tp, the more serious noise characteristics. 
Once the point p’s optical transmittance, tp, is calculated, its transformed 
intensity,J(p), can be calculated as follows: 

J(p) =
Ir(p) − A

max
(
tp, t0

)+A (9) 

Through applying the intensity transformation to each point in MLS 
point clouds according to Eq. (9), the contrast among the points with 
different densities will be enlarged (see Fig. 4(b)). 

3.4. Intensity denoising via Multi-filter integration 

After applying the intensity correction and intensity transformation 
in the MLS point clouds, most of the inaccurate intensity information in 
the point-cloud segment can be corrected and enhanced. However, there 
are still some isolated intensity noises caused by measurement errors or 
the complex surrounding environment (see Fig. 5(a)). To remove those 
isolated intensity noises, we propose to integrate multiple filters for 
separately considering the regions with different point densities. 
Concretely, the distribution of noise points in the high-density region is 
relatively concentrated, while the isolated noises in the low-density re-
gions are sparsely distributed. Hence, the distribution of noise points 
makes it difficult to design a model to achieve denoising in regions with 
different point densities. In our proposed method, we divide the point- 
cloud segment into two regions, i.e., high-density region and low- 
density region. Here, a threshold thc is used to determine whether a 
region belongs to the high-density region or not. 

As for the high-density region, we filter the intensity noises and 
obtain the point p’s denoised intensity, If (p), as follows: 

If (p) = argmin
I(q),q∈Np

{
ΔIsumq

}
= argmin

I(q),q∈Np

{
∑

q’∈Np ,q∕=q’

|I(q) − I(q’)|} (10)  

where I(q) represents the point q’s intensity value. Np represent the 3D 
point p’s neighboring points which can be obtained by KDTree algo-
rithm. ΔIsumq computes the sum of intensity difference between point q 
and the points in Np. The Eq. (10) implies that the point p’s intensity 
should consider its contextual intensities. 

As for the low-density region, we use a bilateral filter (Elad, 2002) to 
remove the intensity noises and obtain the point p’s denoised intensity, 

(a)  Point clouds with isolated intensity noise (b)  Denoised point clouds

Fig. 5. Example of intensity denoising via multi-filter integration in MLS point-cloud scenario.  
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If (p), as follows: 

If (p) =
1

Wp

∑

q∈Np

Gσd (p, q)GσI (It(p), It(q))It(q) (11)  

Gσd (p, q) = exp
(

−

⃦
⃦p − q‖2

2

2σd
2

)

(12)  

GσI (It(p), It(q)) = exp

(

−
|It(p) − It(q)|2

2σI
2

)

(13)  

where the function Gσd (∙) and GσI (∙) compute the weights of spatial 
distance and intensity difference, respectively. σd and σI are the standard 
deviations of spatial distance and intensity difference in the low-density 
region, respectively. It(p) is the transformed intensity of the 3D point p. 
Np is the 3D point p’s neighboring points which can be obtained by 
KDTree algorithm. Wp is a normalization term which is calculated as 
follows: 

Wp =
∑

q∈Np

Gσd (p, q)GσI (It(p), It(q)) (12) 

After applying the bilateral filter, the intensities in low-density re-
gions will be smooth for the on-road objects, i.e. marking lines (see Fig. 5 
(b)). 

Table 1 
Description of the datasets used in the experiments.  

Datasets MLS 
systems 

Location Density 
(pts/m2) 

Length 
(km) 

Number of 
Points 

Datasets 
I 

Chchav 
Alpha3D 

Hangzhou, 
China 

110  1.24 9,259,200 

Datasets 
II 

Trimble Beijing, 
China 

253  0.7 20,504,300 

Datasets 
III 

RIEGL 
VMX-450 

Fuzhou, 
China 

297  0.46 41,590,228 

Datasets 
IV 

Lynx 
Mobile 
Mapper 

Hengyang, 
China 

162  1.27 17,205,416  

Table 2 
Parameter description.  

Parameter 
name 

Description Value 

t0  Minimum transmittance 0.1 
M  Intensity intervals 10 
thcrd  The threshold for distinguishing high-density areas from 

low-density areasA searching radius to find neighboring 
points 

95 cm  

Table 3 
The average time of our proposed method on processing a road section (Units: 
Seconds).  

Datasets Preprocessing Intensity 
correction 

Intensity 
transformation 

Intensity 
denoising 

Total 

Datasets 
I  

38.73  0.82  0.11  25.44  65.10 

Datasets 
II  

41.51  0.09  0.04  5.62  47.26 

Datasets 
III  

32.81  0.57  0.09  25.08  58.55 

Datasets 
IV  

10.19  0.08  0.02  3.40  13.69  

The num
ber of points

intensity valueintensity value intensity value intensity value

IIItesataDIItesataD Dataset IVO
riginal Intensty distribution

Intensity distribution after enhancem
ent

The num
ber of points

Dataset I

20 40 60 80 100 120 20 40 60 80

0

0.5

1

1.5

2

2.5

3

3.5

0

0.5

1

1.5

2

2.5

20 40 60 80 100 120 20 40 60 80 100

Fig. 6. The standard deviation of intensity before and after applying our proposed method on Dataset I-IV. Specifically, (a), (c), (e) and (g) are the intensity dis-
tribution and standard deviation of intensity in the original point clouds. (b), (d), (f) and (h) are the intensity distribution and standard deviation of intensity after 
applying our proposed method. 

Table 4 
Signal-Noise Ratio (SNR) before and after applying the proposed intensity 
transformation on datasets I-IV.   

Datasets 
I 

Datasets 
II 

Datasets 
III 

Datasets 
IV 

Original point clouds  6.64  5.00  5.05  0.95 
Point clouds after intensity 

transformation  
29.00  14.30  42.70  24.85  
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4. Experiments 

4.1. Study area and dataset 

In order to verify the capabilities of our proposed method on 
enhancing intensity in different MLS point-cloud scenarios, we conduct 
the qualitative and quantitative experiments on four different datasets, i. 
e. Datasets I-IV. The used datasets contain different road scenarios 
covering most road conditions. Specifically, point clouds in Dataset I are 
acquired at the highway in Hangzhou city, China, by equipping a 
minivan with the Chchav Alpha3D MLS system. The length of the ac-
quired point-cloud road is about 1.24 km, and some sections of its road 
surface and road marking are severely worn. Point clouds in Dataset II 
are obtained at a suburban road located in Beijing city, China, by using 
the Trimble MLS system. The length of the obtained point-cloud is about 
0.7 km. In the suburban road, the occlusions and road wear occur 
frequently, which causes the incomplete and damaged point-cloud road. 
Dataset III contains the point clouds collected at urban roads in Fuzhou 
city, China, by using RIEGL VMX-450 equipped with two VQ-450 laser 
scanners. The collected point clouds contain different and complex road 
conditions such as severe occlusion caused by road congestion, road 
abrasion, water stains on the road, etc. For Dataset IV, the point clouds 
are captured at the city road in Hengyang city, China, by a Lynx Mobile 
Mapper MLS system. The captured point clouds, whose length is 
approximate 1.27 km, have many different types of road markings. 
Additionally, the captured intensities are severely influenced by the 

scanning distances. More detailed information on the used datasets is 
provided in Table 1. 

4.2. Implemental details 

In this subsection, we detail the experimental settings of each step in 
our proposed intensity-enhanced method in Table 2. At the data pre-
processing step, we partition the captured point clouds into consecutive 
road sections with a length of about 25 m. Here, the length of the road 
section is experientially set for obtaining a proper processing efficiency 
according to our used hardware. At the intensity correction step, we use 
a cubic polynomial function to fit the point-cloud data of the road sur-
face with the consistent intensity. At the intensity transformation step, 
we experientially set t0 to be 0.1. In addition, the number of intensity 
intervals, M, is set to be 10. At the intensity denoising step, we set the 
threshold thc to be 9 for distinguishing whether a 3D point belongs to a 
high-density region or low-density region. The density of the 3D point is 
defined by calculating the neighboring points within a searching radius 
rd. Here, we set rd to be 5 cm. 

In the paper, all experiments were coded with MATLAB R2020b 
under the Window 11 operating system, and performed on an HP 
workstation with eight Intel core i7 processors of 2.9 GHz and a RAM of 
32 GB. The execution time of our proposed method on processing a road 
section was reported in Table 3. As shown in Table 3, our proposed 
method on accomplishing the intensity enhancement for a road section 
of 25 m takes approximately one minute. Most of the time is spent on the 

Fig. 7. Intensity enhancement results of our proposed method on a part of Dataset I. Specifically, (a) high-resolution image of the data location, (b) original MLS 
point clouds. (c) intensity-enhanced point clouds, (d) close-up views of region #1in (b), (e) close-up views of region #2 in (b), (e) close-up views of region in (c), and 
(g) close-up views of region #2 in (c). 
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steps of data preprocessing and intensity denoising. We believe that the 
processing time of our proposed method is acceptable for many 
intensity-based applications. 

4.3. Experimental results 

In the experiments, both qualitative and quantitative evaluations are 
performed on Datasets I-IV for demonstrating the effectiveness of our 
proposed method. For the quantitative evaluation, we draw the curves 
where the number of points varies with the intensity values, and 
calculated the standard deviation of the intensity values of all the points 
in each dataset. As shown in Fig. 6, the standard deviations of the in-
tensity values on Dataset I-IV sharply decrease from (5954, 1546, 3856, 
176) to (31, 23, 11, 18), respectively. This demonstrates that our pro-
posed method can effectively eliminate the intensity noise and the in-
tensity inconsistency. Moreover, the curves in Fig. 6 (a), (c), (e) and (g) 
illustrate that the points are scattered at different intensity values 
because of intensity noise and intensity inconsistency. In contrast, the 
curves in Fig. 6 (b), (d), (f) and (h) demonstrate that the points are 
concentrated in a small range of intensity values. This further exhibits 
that our proposed method can achieve the intensity enhancement by 
implementing intensity noise elimination and intensity inconsistency 
correction in MLS point clouds. 

Moreover, the Signal-Noise Ratio (SNR) is introduced to quantita-
tively analyze the performance of our proposed method. The SNR of a 
point cloud scenes is calculated by 

SNR = 10*log
∑N

i=1(I
i
o)

2

∑N
i=1

(
Ii

o − Ii
t

)2 (13)  

where N represents the number of points in the point cloud scene.Ii
o and 

Ii
t are the intensity value of point pi in the input point clouds and the 

point clouds with no intensity noises, respectively. Here, we treated the 
final intensity-enhanced point clouds obtained by our proposed method 
as the point clouds with no intensity noises. Table 4 records the SNR 
before and after applying the intensity transformation on datasets I-IV. 
As shown in Table 4, we can see that the intensity transformation can 
largely increase the SNR values, which demonstrates the effectiveness of 
the dark channel prior in the proposed method. 

For the qualitative evaluation, we provide Figs. 7–10 to exhibit the 
intensity enhancement results of our proposed method on Dataset I-IV, 
respectively. To better show the experimental results of our proposed 
method in the top view, we only present the intensity-enhanced point 
clouds with road surface. Here, we use the grayscale information to 
represent the intensity value, where the darker color indicates the 
smaller intensity value. As exhibited in Figs. 7–10, the contrast in 
original point cloud scenes is much lower than intensity-enhanced point- 
cloud scenes, which indicates that the intensity correction and intensity 
transformation proposed in our intensity-enhanced method can perform 
well in improving the intensity quality in different road scenarios. In 
addition, the intensity values in the intensity-enhanced point-cloud 
scenes are much smoother than original point-cloud scenes, which re-
flects that our proposed method is able to deal with the intensity noise in 
different road scenarios. 

To further demonstrate the correctness of our proposed method, we 
provide the intensity-enhanced results on the scanning lines. Fig. 11 
demonstrates the comparison of the intensity distribution of the scan-
ning lines before and after applying our proposed method. The intensity- 

Fig. 8. Intensity enhancement results of our proposed method on a part of Dataset II. Specifically, (a) high-resolution image of the data location, (b) original MLS 
point clouds. (c) intensity-enhanced point clouds, (d) close-up views of region #1in (b), (e) close-up views of region #2 in (b), (f) close-up views of region in (c), and 
(g) close-up views of region #2 in (c). 
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enhanced effect in Fig. 11 can be commonly observed in the results 
obtained by our proposed method. As shown in Fig. 11, the intensity 
distributions of the intensity-enhanced scanning lines are much 
smoother than those of the original scanning lines. Additionally, the 
intensities of the points in the scanning lines are centrally distributed 
around several intensity values. The observations indicate that our 
proposed method can effectively accomplish the task of intensity 
enhancement in MLS point clouds. 

4.4. Discussion 

To discuss the effects of each component in our proposed method on 
the intensity enhancement, we conducted the ablation experiments on 
Datasets I-IV. We compared our proposed method with six different 
methods, i.e., IC method, IT method, ID method, IC + IT method, IC + ID 
method, and IT + ID method. Specifically, Intensity Correction (IC) 
method only executes the intensity correction based on scanning dis-
tance. Intensity Transformation (IT) method only implements the in-
tensity transformation by applying the dark channel prior. Intensity 
Denoising (ID) method only conducts the intensity denoising approach 
introduced in Section 3.4. The IC + ID method combines the IC method 
with the ID method. The IC + IT method combines the IC method with 
the ID method. The IT + ID method integrates the IT method with the ID 
method. Fig. 12 exhibits the comparative results of different methods on 
intensity enhancement at five different point cloud scenarios. As shown 
in Fig. 12, the road abrasion exists in the scenes 1, 2 and 3. Moreover, 
there is a water body in scene 5 because of the rainy day. The road 
abrasion and water body causes the intensity noises in the obtained 

point clouds. After applying the IC method, the intensities of the points 
belonging to the same category remain consistent. The intensity contrast 
of the points with different intensities gets enhanced after applying the 
IT method. In addition, isolated intensity noises are removed after 
applying the ID method. The results of the IT, IC, and ID methods 
demonstrate that intensity correction, intensity transformation, and in-
tensity denoising play different roles in intensity enhancement of MLS 
point clouds. 

To analyze the impact of intensity interval M on the results of in-
tensity transformation, we have implemented the proposed method at 
the following configurations: 5, 10, 15 and 20. Fig. 4 presents the results 
of intensity transformation on the different configurations of intensity 
interval M. As shown in Fig. 13, when the intensity interval M is set to 5, 
15 and 20, the road markings are not clear and many intensity values of 
the road markings are inaccurately transformed. When the intensity 
interval M is set to 10, most of the intensity values of road makings are 
correctly transformed and the intensity contrast can be used to accu-
rately distinguish the points belonging to road markings or not. There-
fore, we set the value M at 10 in the experiments. 

Although our proposed method can achieve a satisfactory perfor-
mance on the task of intensity enhancement in MLS point clouds, there 
are still some failure cases in the complex scenarios. These failure cases 
are shown in Fig. 14. Concretely, in the first failure case, when the 
manhole cover is too small, it may be treated as intensity noise, which 
may be eliminated at the intensity denoising step. In the second failure 
case, when the relectance of the road surface is similar to that of the 
heavily-worn road markings, the intensity transformation may fail to 
recover and enhance the intensities of the road markings. In the third 

Fig. 9. Intensity enhancement results of our proposed method on a part of Dataset III. Specifically, (a) high-resolution image of the data location, (b) original MLS 
point clouds. (c) intensity-enhanced point clouds, (d) close-up views of region #1in (b), (e) close-up views of region #2 in (b), (f) close-up views of region in (c), and 
(g) close-up views of region #2 in (c). 
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failure case, the intensities of the heavily-worn road markings may 
sometimes be over-enhanced. Despite these failure cases, our proposed 
method can still perform well on executing the intensity enhancement in 
the heavily worn road scenarios. 

5. Conclusions 

To effectively enhance the intensities in MLS point clouds for various 
intensity-based applications, this paper proposes a novel method 

composed of three components, i.e. intensity correction based on scan-
ning distance, intensity transformation based on dark channel prior, and 
intensity denoising via multi-filter integration. Particularly, to remove 
the pepper-and-salt noise caused by the road abrasion, the dark channel 
prior is introduced and adapted to transform the intensities for effec-
tively enhancing the intensity contrast among the points with different 
intensities. Evaluations have been conducted on four datasets where 
point clouds are collected by different MLS systems at different road 
scenarios. The qualitative results have exhibited that the proposed 

Fig. 10. Intensity enhancement results of our proposed method on a part of Dataset IV. Specifically, (a) high resolution image of the data location, (b) original MLS 
point clouds. (c) intensity-enhanced point clouds, (d) close-up views of region #1in (b), (e) close-up views of region #2 in (b), (f) close-up views of region in (c), and 
(g) close-up views of region #2 in (c). 

Fig. 11. Intensity distributions in the scanning lines: (a) the scan lines in the original point clouds; (b) intensity distributions in the scanning lines of original point 
clouds; (c) the scan lines in the intensity-enhanced point clouds; (d) intensity distributions in the scanning lines of the intensity-enhanced point clouds. 
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Fig. 12. Comparisons of different methods on intensity enhancement at five different point cloud scenarios.  

Fig. 13. The impact of different M values used in our proposed method on intensity transformation. Here, the red rectangle emphasizes the intensity variations in 
different configurations. 
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method can largely reduce the standard deviations of the intensities 
from (5954, 1546, 3856, 176) to (31, 23, 11, 18) for Dataset I-IV, 
respectively. This reflects the remarkable performance of our proposed 
method on intensity enhancement. In addition, the quantitative results 
have further demonstrated that our proposed can achieve the task of 
intensity enhancement in various road scenarios. 
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