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Abstract— Building region extraction from ALS point clouds
has been widely studied, whereas instance-level building map-
ping has been overlooked and remains unsolved. In this study,
we present a method to extract individual buildings from ALS
point clouds with the help of widely accessible polygonal foot-
prints. The key idea is to merge roof segments to a set of building
candidates, from which correct instances are selected by finding
optimal matches between polygonal footprints and building
candidates. The method has three steps: roof segmentation,
building candidate generation, and instance-polygon matching.
The method is tested on two large-scale scenes of different
building types and can generally achieve high instance-level
building mapping accuracy (around 90%) when there are large
positioning errors (6.0 m) among polygons. Future work will
focus on classification errors in preprocessing, shape inconsis-
tency between point clouds and polygons, and building footprint
delineation and updating in postprocessing.

Index Terms— Building footprints, instance-level segmentation,
OpenStreetMap (OSM), point clouds, polygon matching.

I. INTRODUCTION

S IGNIFICANT progress has been made in building extrac-
tion from remote sensing data, such as from aerial

images [1], [2] and airborne laser scanning (ALS) [3], [4].
Instance-level object detection or segmentation, which means
that segmented regions that have the same class labels should
be further separated into individual objects [5], is becom-
ing increasingly important in 2-D images. This also applies
to building instance mapping, which is the extraction of
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independent buildings from remote sensing data. Instance-level
building extraction is the basis of much research and many
applications. For instance, the number of buildings was
counted at instance level [6]. Kang et al. [7] proposed a
building type classification method for instance-level foot-
prints. In building footprint delineation [8], [9] or 3-D model
reconstruction [10], [11], input data should be point clouds of
one building object. Instance-level building objects are widely
used in change detection [12], building density analysis [13],
building clustering [14], and scene recognition [15].

As a positive remote sensing technology, ALS has been
widely used in building mapping. Previous studies [3],
[16], [17] have focused on building region extraction from
ALS point clouds, while instance-level building mapping has
received little attention. Nevertheless, there exist some related
studies that can be roughly grouped into rule-based and
rectangle-assumption-based methods.

In the first group, Cote and Saeedi [18] segmented aerial
images into homogeneous regions based on color information
and identified building instances according to predefined rules,
such as by roof sizes and shapes. Yu et al. [13] proposed an
individual building segmentation method for an ALS-derived
normalized digital surface model (nDSM), relying mainly on
the spatial distance between buildings after removing ground
and vegetation. Adjacent building instances are merged into
one instance. Wang et al. [19] proposed building instance map-
ping for closely packed buildings in ALS point clouds. They
divided point clouds into segments based on random sample
consensus (RANSAC), by which points connecting different
instances are believed to be eliminated. Separated segments
are merged into building instances based on predefined rules.
For example, two neighboring segments are merged into one
object if their convex hulls intersect. The main problem of
these methods lies in the definitions of rules, which may vary
by scene. Also, it is difficult to find optimal stop criteria to
terminate the segment-merging process if building instances
are tightly connected [19].

The second group of methods is based on the shape
priors of building outlines. Awrangjeb et al. [20] presented
an individual building detection algorithm using both ALS
data and aerial images. Their key idea to detect a building
instance is to connect line segments derived from the input
data (ALS and multispectral information) into a rectangle,
i.e., one rectangle corresponding to one building instance.
This assumption is simple but effective and has been adopted
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in other building mapping studies. A marked point process
model was applied to detect rectangular building instances
from ALS point clouds [21]. Yang et al. [22] used a marked
point process model to extract building outlines from ALS
point clouds, replacing the rectangular model with 3-D cubes.
The rectangle assumption was applied to group point clouds
in individual building instances in mobile laser scanning data
processing [23]. These methods have two limitations. The
assumption is too strong to cover nonrectangular buildings in
the real world and those whose outlines can be approximately
represented by rectangles. Protruding parts (e.g., a porch)
may be omitted by rectangular representations. These methods
cannot separate spatially connected buildings [22], which are
common in urban scenes.

In recent years, many deep learning frameworks have been
proposed for point cloud registration, classification, seman-
tic segmentation, and instance segmentation [24], [25]. The
objective of instance segmentation is to identify individual
objects at the point level. Thus, dividing ALS point clouds
into building instances can be viewed as a specific task of
instance segmentation. The existing instance segmentation
methods can be categorized into proposal-based methods and
proposal-free methods [26]. 3-D-BoNet [27] is a representa-
tive proposal-based instance segmentation method that first
predicts 3-D bounding boxes for object instances, and then,
pointwise labels are obtained via a classification branch.
Occuseg [28] is a proposal-free network for the instance
segmentation of point clouds. The key idea of this method is to
utilize the occupancy information of each instance. It uses the
UNet as the backbone network and combines feature, spatial,
and occupancy terms to learn embedding representations.
Finally, the instance-level segmentation results are obtained
by an instance clustering algorithm. PointGroup [29] also uses
the UNet architecture as the backbone network. The learned
features are fed to a semantic segmentation branch and an
offset prediction branch. After that, original and shifted point
clouds are grouped into instances via a clustering module.
The segmentation accuracy achieved by this method on an
international benchmark ScanNetv2 is around 64%. Although
there exist many frameworks for the instance segmentation of
point clouds, these methods are mainly proposed for indoor
point clouds and cannot be applied to outdoor large-scale point
clouds directly, as discussed in [30]. In fact, deep learning
frameworks are mainly applied to semantic segmentation in
large-scale LiDAR point cloud processing [31]–[34]. Thus,
the instance-level segmentation frameworks for large-scale
outdoor point clouds still lag behind.

To sum up, the major challenge in previous studies lies
in the ambiguous definition of building instances in point
clouds. Compared with objectness measures based on various
features (e.g., salience, edges, and color contrast) in 2-D
images [35], there are far fewer clues in ALS point clouds.
Also, buildings in the real world often have complex structures
and are spatially connected. Therefore, it is difficult to give
universal definitions of building instances in ALS point clouds.
We do not aim to explore the definitions of building instances
or propose sophisticated rules to group building points into
individual objects. We propose a building instance mapping

Fig. 1. Two typical errors of building footprints in OSM: (a) alignment errors
between polygons (red) and real buildings and (b) shape differences between
polygonal footprints and corresponding building masks.

method for ALS point clouds aided by publicly accessible
polygonal footprints from various data sources, such as Open-
StreetMap (OSM).

The intuitive idea for footprint-aided instance segmentation
is to clip points by projecting existing polygons onto ALS
point clouds [36]. However, there are two significant prob-
lems with directly using existing footprints. First, significant
alignment errors always exist among open-access building
polygons [37], [38]. For example, there is a significant shift
between online maps and real buildings, as shown in Fig. 1(a).
In this situation, the offset polygons will lead to incorrect
clips in point clouds, especially for connected buildings.
The second is that building footprints may not have the
same shapes as in remote sensing data, and outlines are
often simplified [36]. For example, the outlines and sizes of
several building polygons in Fig. 1(b) differ greatly from the
real buildings. In this case, the extracted building instance
following the polygonal guidance will be incomplete, and
further refinements will be necessary. Thus, accurate matches
are necessary between polygonal data and ALS point clouds
before conducting instancewise point cloud clipping. How-
ever, in OSM data matching, most research has focused on
matching OSM data to vectorial objects, such as cadastral
maps [39]–[41], and there has been little study on matching
OSM data to discrete and unorganized ALS point clouds.
A method to register terrestrial point clouds to 2-D maps was
proposed, so as to estimate the unique transformation matrix
between point clouds and existing polygons by matching wall
planes [42]. This strategy is impractical for ALS point clouds.
The transformation matrices for building instances and their
corresponding polygons often vary; this problem is likely to
involve nonrigid rather rigid registration. Walls are always
missing in ALS point clouds, making it impossible to initialize
corresponding elements required in this method. Therefore,
new matching methods are needed for ALS point clouds and
polygonal footprints.

The meaning of instance-level building segmentation via
matching footprint polygons to ALS point clouds can be
illustrated from three aspects. First, as the definition of build-
ing instances in the real world remains unclear, utilizing
existing footprints is an alternative and effective way to extract
individual objects from ALS point clouds. Second, existing
building footprints can be updated and improved if existing
polygons and building instances in ALS point clouds are
matched [43]–[45]. Third, aligning footprint maps with ALS
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point clouds at the instance level is important for preparing
accurate training datasets in deep learning research. For exam-
ple, training datasets for the semantic segmentation of remote
sensing images were made based on OSM footprints [46], [47].
Thus, the alignment of OSM data and remote sensing images
has attracted more attention [48]–[50]. However, this related
research is proposed only for remote sensing images under
deep learning frameworks.

Overall, little research has been done in the field of
footprint-aided point clouds processing, and all the related
methods cannot handle spatially adjacent or connected build-
ing instances [51]. In this work, we are not trying to make
incremental progress based on the existing building instance
mapping frameworks. In fact, we aim to achieve instance-level
building segmentation results in ALS point clouds, guided
by the widely accessible polygonal footprints. The proposed
new solution does not rely on specific definitions of build-
ing instances and can deal with the connected and adjacent
buildings. Our main contribution is twofold.

1) We propose a new framework to extract building
instances from ALS point clouds. In our solution, indi-
vidual building candidates are generated by merging
point clouds automatically in a bottom-up manner. The
merging process needs no specific rules or oversim-
plified assumptions, which most of the existing 3-D
building mapping methods heavily rely on.

2) We present a robust matching model to register 3-D
building candidates and existing 2-D polygonal foot-
prints, while most of the existing matching methods can
only handle 2-D images, 2-D vectorized data, or 3-D
point clouds individually. The proposed model enables
the instance extraction in challenging scenes, such as
spatially connected and adjacent buildings, which all the
existing methods cannot.

Also, we find an L0 gradient minimization-based smoothing
method [52] helpful in separating connected flat roof planes.
Besides, our work also explores the potential of existing
polygonal maps and can help in producing datasets for deep
learning researches.

The rest of this article is organized as follows. Section II
presents our proposed methods to merge segments and
achieve instance-level roof extraction. Section III discusses our
experiments, parameter tuning, and comparison of methods.
Section IV summarizes our contributions, challenges, and
future work.

II. METHOD

The input of our framework is building regions in
ALS point clouds, which can be identified by many
methods [3], [16], [53]. We remove ground points from the
original ALS data via the cloth simulation-based algorithm
[54]. Building regions in the remaining data are further
extracted by a graph-cut aided method [53].

Fig. 2 shows a flowchart of our method. The basic idea is to
merge roof segments into instances. The input building points
are segmented by applying region growing [36]. Connected
and flat roofs that cannot be separated are divided into pieces

Fig. 2. Flowchart of the proposed building instance mapping method.

by smoothing and resegmentation. A graph of segments is
constructed based on their spatial adjacency relationships, and
candidates of building instances are generated according to the
segment graph. A new method to match building candidates
and polygonal footprints is proposed to divide ALS point
clouds into building instances.

A. Segmentation of Planar Roofs

Roof segmentation in ALS point clouds has been widely
studied [36], [55]–[57]. In this study, input building points are
divided into segments by a region growing-based method [36].
However, this method will fail to separate spatially connected
flat roofs, as shown in Fig. 3. The initial segments whose
width is large (e.g., ≥10.0 m) will be further segmented in
the following steps. As these roofs are always at different
heights, it is reasonable to use the region growing method with
the growing criterion on the height differences (dHs) between
neighboring points. However, the dHs of adjacent roofs are
often small, and the growing process is easily affected by noisy
points. Thus, it is necessary to smooth these roof segments
before further segmentation.

We find the L0 gradient minimization method [52], [58]
suitable, as it is good at preserving edges in the original data.
The core idea of this smoothing method is expressed as

min
R

|R − R̂|2 + λ · G(R) (1)

where R̂ is the input noisy data, R is the expected smoothed
data, G(R) is the gradient after smoothing, and λ controls
the importance of the gradient term. The gradient differences
between neighbors, as well as the differences between R̂ and
R, will generally be minimized if an optimal R is found.
In our application, planar segments are converted to 2-D and
smoothed by this method and then a region growing algorithm
that thresholding on dHs is further applied. Fig. 3 shows five
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Fig. 3. Flat roof resegmentation results: (a) after applying smoothing (d H =
1 cm); (b) without smoothing (d H = 1 cm); (c) after smoothing (d H = 2 cm);
and (d) without smoothing (d H = 2 cm). In each subfigure, the upper part is
the top view of the data, and the bottom part is the side view.

independent roofs to be separated. Fig. 3(a) and (b) shows
the segmentation results for smoothed and unsmoothed data,
respectively, using d H = 1 cm. The results in Fig. 3(a)
are clearly much better than those in Fig. 3(b), where many
small segments are detected. By increasing dH to 2 cm,
the segmentation results of smoothed [see Fig. 3(c)] and
unsmoothed [see Fig. 3(d)] data are close, while detected
segments in Fig. 3(c) are still larger than those in Fig. 3(d).
One significant advantage of imposing smoothing before seg-
mentation is that we can apply a small threshold to obtain
satisfactory results while avoiding oversegmentation.

B. Generation of Building Candidates

Individual objects in images can be formed by hierarchi-
cally merging segments [59]. Hence, we propose a segment
merging algorithm to obtain building candidates from previ-
ously extracted segments. This can be explained through a
toy example. Suppose that there are two building instances,
as in Fig. 4(a), and four segments are detected, as shown
in Fig. 4(b). The expected merging result should contain two
instances. The first is A ∪ B ∪ C, which corresponds to
building instance 1, and the second is D.

We define the number of segments to be merged for one
instance as the merging degree K . As merged instances may
have various K values, there is no feasible prior knowledge
to fix K in advance. To solve this problem, we enumerate
all possible combinations of these segments with different k
values and try to select a subset of these combinations as
potential instances. The set of building instance candidates is
defined as

S = {S1, S2, . . . , Sk} (2)

where Sk represents segment combinations when K equals
k. If there are n roof segments, then there will be

(n
k

)

combinations for a given k. It is obvious that many com-
binations, such as A ∪ B ∪ D in this example, cannot be
grouped into one object, as their segments are not spatially
connected. To remove these combinations, we construct a
graph of segments, as shown in Fig. 4(c). If the minimum
distance between two sets of points is small (e.g., 5.0 m),

Fig. 4. Toy example of segment merging: (a) outlines of two building
instances; (b) four segmented roofs in point clouds; and (c) graph of adjacent
map for (b).

Fig. 5. Demo for the adjacency matrix based on the example in Fig. 4.
(a) Adjacency matrix. (b) Second power of the adjacency matrix.

then an edge will exist between them in the graph. After that,
the adjacency matrix Ad j will be constructed based on the
graph. It should be noticed that the matrix diagonal elements
of Ad j are 1, which is different from the classical adjacency
matrix, where these elements should be 0. To check whether
segments in the graph are connected, we adopt the power of the
adjacency matrix [60]. If all elements in the matrix are greater
than zero, then this group of segments is labeled as connected
instances. Otherwise, they are not spatially connected.

For example, an adjacency matrix derived from the graph
in Fig. 4(c) is shown in Fig. 5(a). If two segments are adjacent,
the corresponding elements in the adjacency matrix are set
to 1; otherwise, the elements will be set to zero. As only spa-
tially connected segments can form building instances, invalid
building candidates can be removed in advance before the
model optimization. This validation process can be done based
on the adjacency matrix. Specifically, segments A and B are
first-order neighborhoods; thus, the elements indexed by (1, 0)
and (0, 1) in the matrix [see Fig. 5(a)] are larger than 0. On the
other hand, segments A and C or B and D cannot form valid
candidates as their corresponding elements in the matrix are
zero. After raising the adjacency matrix to the second power,
the second-order neighborhood is considered in the model
validation. As shown in Fig. 5(b), the elements indexed by
(2, 0) and (0, 2) in this matrix are larger than zero, indicating
that segments A and C can be grouped into one candidate
now. In this case, the elements indexed by (0, 3) and (3, 0)
still equal zero, meaning that segments A and D cannot appear
simultaneously in one building candidate.

C. Matching Model

Given a set of instance candidates and polygonal footprints
in a region, the instance-level building segmentation task can
be solved by finding the best matches between candidates
and footprints. Fig. 6 shows an example of this method. The
original roof points in Fig. 6(a) are segmented, as shown
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Fig. 6. Example of instance-level segmentation by our matching method.
(a) Input roof points. (b) Segmented roofs are colored differently, and the
corresponding adjacent graph (black lines). (c) Our matching results, where
extracted instances in the first row are colored differently. Polygonal footprints
are colored randomly, as shown in the middle. The bottom shows polygonal
instances corresponding to extracted buildings in the first row. Black lines
linking polygonal footprints and instances indicate matching relationships.

in Fig. 6(b). A set of building instance candidates can then be
generated by applying the method described in Section II-B.
Suppose that there are m candidates in S and a set (Y ) of
building polygons. To form initial matches, all the building
candidates in S and the input polygonal footprints in Y are
coarsely paired. Specifically, the z-nearest polygon neighbors
of each candidate in S are used to form potential matches.
A small z (e.g., 3) works for all the experiments in our work.
The lth match pl represents {xi ↔ y j}, where xi is the i th
candidate in S, and ↔ means that xi and one polygon y j in
Y are paired. Then, the instance-mapping task equals finding
the optimal subset from all the initial matches.

An objective function, as shown in the first line in (3),
is proposed to find optimal matches from potential matching
pairs. In this model, pl and xi are binary variables. If a
potential match is selected, then pl equals 1, and otherwise,
it is 0. Nl (xi) is the number of segments in an instance can-
didate xi , and xi forms a potential match pl . By maximizing
the objective function, we cover as many roof segments as
possible. Al(xi , yt ) is calculated based on (4), where S(xi , y j)
is the overlapping area between the instance candidate (xi )
and the polygonal footprint (yt ). S(xi) and S(yi ) are areas of
polygonal regions of xi and yt , respectively. If the overlapping
area is large, then Al(xi , yt), which measures the similarity
between polygonal footprints and instance candidates, will
be large. It should be noticed that big spatial shifts may
exist between instance candidates and footprints, as shown

Fig. 7. Constraints in (3). (a) Translating polygons before calculating
overlapping areas. (b) Two instance candidates formed by {A, B} and
{B, C} cannot be selected simultaneously. (c) Examples of conflicted matches.

in Fig. 7(a). Thus, a paired polygon should be translated
to make centroids of xi and yt overlap before calculating
Al(xi , yt)

max
n∑

l=1

(Nl (xi) · pl + Al(xi , yt) · pl)

s.t. ∀ pl = {xi ↔ yt} : pl ≤ xi

∀ {i, j}, if xi ∩ x j �= ∅ : xi + x j ≤ 1

∀ {l, m}, if pl ⊗ pm : pl + pm ≤ 1

pl and xi are binary variables. (3)

Al(xi , yt) = S(xi , yt)

S(xi )
· S(xi , yt )

S(yi )
. (4)

Directly maximizing the objective function in (3) will result
in the selection of all n paired matches. Thus, the objective
function should be constrained before optimization. There are
three constraints. The first is pl ≤ xi , i.e., if a building candi-
date xi is not selected (xi = 0), then the corresponding match-
ing pair pl should also be discarded (pl = 0). The second is
that two building candidates that share the same segments,
as shown in Fig. 7(b), cannot be selected simultaneously,
that is, given two overlapping instance candidates xi and x j ,
xi + x j ≤ 1. The last constraint concerns conflicts between n
paired matches. Two situations are of concern. The first is that
two potential matches should not contain the same objects.
In Fig. 7(c), a double-headed arrow represents a potential
match. In this case, the matches in black and red should not
be selected at the same time. Neither should the black and
blue matches are selected simultaneously, as both contain the
red polygon. The second situation occurs when matches cross,
such as the red and blue ones in Fig. 7(c). We introduce the
⊗ symbol to indicate these two situations. This last group of
constraints can be expressed as “if pl ⊗ pm : pl + pm ≤ 1”
for two conflicted matches pl and pm. The constrained match-
ing pair selection model is expressed as (3). It is a linear
programming problem that can be solved by a branch and
bound algorithm [61].

III. EXPERIMENTS AND ANALYSIS

The proposed method was implemented in MATLAB and
tested on a personal computer with 16-GB RAM and an
i7-6700 CPU. We first discuss large-scale experiments con-
ducted on two typical scenes. We then focus on challeng-
ing regions where building instances are spatially connected.
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We analyze the robustness of our method, and then, we present
the selection of parameters, comparisons, discussion, and
limitations.

A. Large-Scale Experiments

Two typical sites from the publicly available DataPlus
dataset [47] were used in our experiments. The first site
(see Fig. 8) is in Arlington, MA, USA, which is a typical
suburban area. This site covers 540 m × 470 m and contains
1 215 060 points. The second site (see Fig. 9) is a typical urban
scene in San Francisco, CA, USA. This site has 129 651 ALS
points and covers a rectangular region that is 410 m × 280 m.
The point density in the Arlington dataset is 4.8 pt/m2, and the
point density in the San Francisco dataset is 1.2 pt/m2. The
ALS point clouds were collected by state and federal agencies,
with an average point spacing of around 0.5 m. The polygonal
building footprints were downloaded from the OSM. As shown
at the beginning of Section II, the ground points were removed
by a cloth simulation-based filtering method [54], and building
regions were extracted by a graph-cut-based method [53] in
preprocessing. To focus on our proposed method, significant
errors (e.g., points of one building instance are all mislabeled
as vegetation) are manually revised after preprocessing.

As polygonal footprints in these two sites are not largely
shifted from ALS point clouds, based on the conclusion that
most of the mean shifted error in OSM is within 4.0 m
[37], we added noise to OSM polygons to simulate difficult
and complicated situations. Specifically, we added uniformly
distributed errors in the range [−e, e] to X and Y components
of polygonal footprints, where the error e was set to 6.0 m at
these two sites, as the positioning errors of 90% of footprints
are below 6 m [37]. We found a value of 4 to be suitable for the
merging degree K at these two sites, and building segments
not merged into any instances were assigned to the closest
buildings. As shown in Figs. 8 and 9, our proposed method
can achieve instance-level segmentation results in large-scale
scenes.

B. Tests and Evaluations

As buildings in suburban areas (Arlington) are spatially
separated, polygonal footprints can often be assigned to their
nearest roof clusters, in which case our method is not required.
Thus, we focus on connected buildings. Three scenes were
extracted from the San Francisco site, as shown in Fig. 10.
There are 12 instances in scene I, 17 in scene II, and 23 in
scene III. These are all closely connected and cannot be
vertically separated. Following the procedure in Fig. 2, roof
points were segmented into small regions and merged to
make potential instances. By finding optimal matches between
instance candidates and polygonal footprints, roof points were
grouped into independent instances, as shown in Fig. 10. The
optimization of the matching model consumed little time in
these scenes. For instance, it took less than 0.02 s to solve the
model for scene III.

To demonstrate the robustness of our p method with posi-
tioning errors in polygonal footprints, we added pointing errors
(e) to polygons, with the range of 0–10 m. In Fig. 10,

Fig. 8. Instance-level building mapping results of the Arlington site.
(a) Mapping results are colorized. Ground points are ochre; vegetation is
green. Segmented building instances are colored randomly. (b) Corresponding
image of this site from Google Maps.

the segmentation performances when e equals 0.0, 6.0, and
10.0 m are shown from left to right. Precision, recall, and
F1 measure are introduced to our quantitative analysis and are
defined as follows:

Precision = TP

NSeg
(5)

Recall = TP

NGT
(6)

F1 = 2 · Precision · Recall

Precision + Recall
(7)

where TP is the number of correctly segmented instances, NSeg

is the number of segmented instances, and NGT is the number
of ground-truth instances. The values of precision, recall,
and F1 measure change with position error e and are drawn
in Fig. 11. This graph demonstrates that, with small shifted
errors (e.g., less than 3 m), our method can produce satisfying
results, in which all instances are correctly segmented. As the
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shifting error increases from 3.0 to 10.0 m, segmentation
accuracy drops from 1.0 to about 0.6. When the shifted error
is 6.0 m, the segmentation accuracy is close to 0.9, which
indicates that the method can handle most positioning errors
in polygonal footprints. Examining the details, wrong matches
are mainly caused by selecting wrongly merging instances.
If segments from more than one building instance are merged
into one object, then some polygonal footprints may not be
matched to any instances. This explains why recall is less
than the precision in our experiments. There is a big drop
in accuracy when the shifted error increases to 10.0 m.,
mainly because the initial potential matches may not contain
all correct pairs if the position error is too large.

To further illustrate the robustness of our method against
position errors, Fig. 12 shows a close view of the segmentation
results of scene II. There are ten building instances in this
demo, in which all polygons are correctly matched to building
instances. Although some polygonal footprints overlap and are
cluttered, our method can find their best matches and extract
independent roofs in this challenging scene.

C. Selection of K

The merging degree K is a key parameter in our method,
which controls the maximum number of segments that an
instance candidate can have. As buildings in suburban sites
are more complex in terms of structures than those in urban
areas, a subset of buildings at the Arlington site was extracted
to analyze the selection criterion for K . We changed K from
1 to 6 in our experiments and recorded the running time,
the number of candidates, and matching accuracy, as shown
in Fig. 13. Similar to the configuration in the large-scale test,
random position errors (e = 6.0 m) were added to polygonal
footprints.

The major differences when K changes from 1 to 6 are
in the running time and the number of instance candidates,
while the matching accuracy in this scene remains at 1.0.
Most computing cost is in guess generation and checking
connections between segments, as shown in Section II-B.
As shown in Fig. 13(a), the time consumed does not change
significantly until K is 6. The number of potential instance
candidates in Fig. 13(b) shows an upward trend as K increases
from 1 to 4 and remains stable as K changes from 5 to 6.
In Fig. 13(c), segments to be merged are colored randomly.
The segmentation results in Fig. 13(d)–(f) correspond to
K = 1, 4, and 6, respectively. It is clear that all building
instances are correctly extracted, while some are not complete
when K is small. For example, many small segments are
missed when K = 1, as shown in Fig. 13(d). It should be
noticed that the merging results in Fig. 13(e) and (f) are very
close to each other although a large K is applied in Fig. 13(f).
Based on these experiments, K = 5 reaches a good balance
between time cost and segmentation accuracy in this complex
scene, and for building instances with simple structures (e.g.,
in the San Francisco site), K = 3 is enough in most cases.
Notice that, in incomplete instances, we can assign missing
segments to their nearest building instances after matching.

It should be noticed that the proposed method has no limi-
tation on the K value, which means that K can be larger than

Fig. 9. Instance-level building mapping results of the San Francisco site.
(a) Mapping results are colorized. Ground points are ochre. Vegetation is
green. Segmented building instances are colored randomly. (b) Corresponding
image of this site from Google Maps.

6 at the cost of more computational resources. It is interesting
to discuss how to handle very complicated roofs with a small
K . Based on our analysis, there might exist two solutions.
The first one is ignoring small roof segments when generating
building candidates from original planar segments. By doing
so, a small K value will still work for all buildings. The second
solution may lie in merging small roof segments into larger
ones before constructing the graph of segments. Thus, the max
merging degree can also be reduced for extremely complex
roofs.

D. Discussion

1) Method Comparison: The aim of this work is to segment
ALS point clouds into independent buildings. As reviewed
in Section I, most of the existing studies focus on building
regions instead of building instances. There exist few studies
related to ALS building instance mapping, but none of them
can handle complex scenes, such as connected buildings. Thus,
the widely accessible polygonal maps (e.g., OSM) are utilized
for extracting building instances from ALS point clouds.

Authorized licensed use limited to: Jonathan Li. Downloaded on March 11,2022 at 03:10:24 UTC from IEEE Xplore.  Restrictions apply. 



5700813 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Fig. 10. Instance-level segmentation results in three scenes. Three rows correspond to three scenes. Three columns from left to right correspond to different
position shifting errors. (a) Scene I, e = 0.0 m; (b) Scene I, e = 6.0 m; (b) Scene I, e = 10.0 m; (d) Scene II, e = 0.0 m; (e) Scene II, e = 6.0 m;
(f) Scene II, e = 10.0 m; (g) Scene III, e = 0.0 m; (h) Scene III, e = 6.0 m; and (i) Scene III, e = 10.0 m.

Fig. 11. Quantitative evaluations of instance-level building segmentation for
different position errors.

It is interesting to compare our method with the existing
polygon-based object mapping methods.

The polygon-based object mapping researches can be
roughly summarized into three groups. The first one is match-
ing OSM polygons to vectorized objects [40]. However, it is
not an easy task to extract accurate and topological-correct
building outlines from ALS point clouds. Also, spatially

Fig. 12. Close view of instance-level segmentation results when e is set to
6.0 m.

adjacent or connected building instances cannot be separated
while reconstructing building outlines by modeling frame-
works [62]. Thus, this type of method can only handle
vectorized data and cannot be applied to discrete point clouds
directly.

The second group is aligning the extracted building outlines
from remote sensing images to the existing building polygons.
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Fig. 13. Selection of K : (a) time cost when increasing K from 1 to 6;
(b) number of instance candidates when increasing K from 1 to 6; (c) segments
colored differently in a residential region; (d) instance extraction results when
K = 1; (e) instance extraction results when K = 4; and (f) instance extraction
results when K = 6.

The deep learning model is applied to predict building masks
and displacements between segmented buildings and existing
polygons [48]. However, this deep learning framework is
proposed for remote sensing images that contain plentiful
spectral and textural information that ALS point clouds lack.
Also, these proposed deep learning frameworks cannot handle
irregular and unordered ALS point clouds.

The objective of [42] is the closest to ours, which matches
the existing polygons to point clouds captured by terrestrial
laser scanning. However, their method cannot be applied to
ALS point clouds. Their proposed method heavily relies on
wall planes, which can be viewed as edges of polygonal
footprints after the data projection. Yet, most ALS data lack
wall points. Besides, the proposed method in [42] follows the
rigid-body registration strategy, which uses a few paired planes
to estimate the registration parameters for the whole scene.
However, as shown in Fig. 12, building polygons may have
various displacement values, making the polygon matching
problem in ALS point clouds more likely to be a nonrigid
matching one that the framework in [42] cannot handle.

Overall, the existing polygon-guided building instance map-
ping methods are proposed for vectorized data and remote
sensing images, not discrete point clouds. Furthermore,
the matching between polygons and roofs in ALS point clouds
is a nonrigid registration problem instead of the rigid-body
registration one. Compared with the existing methods, our
proposed framework deals with discrete ALS point clouds,
and different building instances are allowed to have different
matching parameters.

To further demonstrate the necessity and advantages of
our proposed method, we compare our method to the direct
clipping method (DCM) that segments points into instances
by direct clipping guided by polygonal footprints. Two typi-
cal demonstrations are introduced for comparisons. The first

Fig. 14. Comparisons of DCM and proposed method in residential area.
(a) Input building points are colored blue. (b) DCM results. Unassigned
points are black. Points belonging to different instances are colored differently.
(c) Input segments are organized by six adjacent graphs. (d) Segmented results
achieved by our method. Different colors indicate various instances.

Fig. 15. Comparisons of DCM and the proposed method in the urban area.
(a) Top-down view of DCM results. Unassigned points are black. Different
colors indicate various instances. (b) Side view of DCM results. (c) Top-down
view of results of the proposed method. (d) Side view of results of the
proposed method.

contains six building instances that are not spatially connected,
as shown in Fig. 14. The second also contains six instances,
which are connected, as shown in Fig. 15. Polygonal footprints
are all biased in these two demos.

In the first demo, the results extracted by DCM are shown
in Fig. 14(b). It is clear that segmented building instances
by DCM are biased and even contain points from adjacent
buildings. If labeled (black) points in Fig. 14(b) are assigned
to their nearest neighbors, then many extracted instances
will contain points from other instances. Segments and
OSM-guided merging results are shown in Fig. 14(c) and (d),
respectively.

These figures clearly demonstrate that segment-based
merging and matching are not sensitive to positioning
errors. In more challenging cases, such as the example
in Fig. 15(a) and (b), the position errors of polygonal foot-
prints still lead to large errors when applying DCM. The
proposed method still achieves satisfying results, as shown
in Fig. 15(d) and (e). Comparison of these two demos clearly
demonstrates the superiority of our framework.
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Fig. 16. Building instance mapping in high-rise building blocks. (a) Original
point clouds. (b) Matched roof candidates. (c) Final instance mapping results.

2) Robustness Analysis: Based on the experiments and
analysis, the difficulty of mapping building instances with
polygons is mainly determined by the similarity between
adjacent buildings. The more similar the structures of adjacent
buildings, the more difficult the instance mapping is. In the
previous experiments, low buildings are chosen for various
tests due to the high roof similarity among neighbors in
these datasets. Specifically, the geometric shapes, sizes, and
elevation of roof components of these buildings are quite
close. The geometric shapes of roof components may still be
similar for high-rise buildings, but their sizes and elevations
are always different. Thus, compared with low and connected
buildings in the previous experiments, separating connected
high-rise buildings is often less challenging. To further verify
this idea, the proposed framework is also tested in point clouds
of high-rise buildings.

As shown in Fig. 16(a), the original ALS point clouds of
high-rise buildings are colored blue. This dataset is made up
of around 100k points and consists of six connected building
instances. The tallest one in the middle is about 120-m high,
which is surrounded by five building instances whose heights
range from 12 to 40 m. After applying the roof segmentation
and merging, six roof candidates are generated and matched
with the existing building polygons, as shown in Fig. 16(b).
The matched roof instances are colored differently, and black
lines indicate the matched pairs. Finally, the original point
clouds are assigned to their closest roof instances. As shown
in Fig. 16(c), the input building block is segmented into six
building instances. This test demonstrates that the proposed
building instance mapping framework is also applicable in
high-rise buildings.

The previous tests mainly focus on the most com-
mon shifting errors in polygonal footprints. However, other
polygon-related errors, such as data redundancy and data miss-
ing, may also exist. The data redundancy means that the poly-
gon number is larger than the number of building instances to
be matched. In this case, it is possible to obtain oversegmented
buildings based on the proposed framework. For example,
as shown in Fig. 17(a), there are six building instances in
point clouds, while seven building polygons are used in the
matching process. Based on the proposed framework, five
building instances in point clouds are segmented correctly.
However, the leftmost building instance is oversegmented into
two objects corresponding to the two polygons on the left.

Fig. 17. Roof matching examples for footprint redundancy and missing.
(a) Example of data redundancy. (b) Example of polygon missing.

On the other hand, if some of the building polygons are
missing, the matching process may fail. An example of the
polygon missing is shown in Fig. 17(b). There are five building
polygons and six building instances in this demo. The results
show that only one polygon on the rightmost is correctly
matched to the building instance in point clouds, while the
rest four polygons are paired mistakenly. Although the match-
ing performance is poor, four out of six building instances
are segmented correctly. The reason for this phenomenon is
that the adjacent building polygons are quite similar, and thus,
the mismatched pairs can still provide proper guidance for
the roof merging. Overall, beyond the common shifting errors
that are deeply studied in this work, other footprint errors,
such as data redundancy and data missing, will also influence
the instance segmentation accuracy. However, the mismatches
between polygons and roofs may not always lead to wrong
mapping results.

E. Challenges

Although the effectiveness and robustness of our proposed
method have been demonstrated, there still exist two chal-
lenges. First, our method relies on the quality of data pre-
processing, such as building point classification. For instance,
vegetation between houses is misclassified as buildings and
assigned to detected building instances in Fig. 18(a). This
may not affect instance-level matching, but it will affect post-
processing, such as map updates. Second, polygonal footprints
and building instances in ALS points often have quite different
shapes because polygonal footprints are often simplified, and
OSM footprints and ALS data are often collected at different
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Fig. 18. Problems in instance-level building matching. (a) Misclassified
vegetation points are assigned to building instances. (b) Enclosures and
protruding parts of buildings can be wrongly assigned.

times, during which building outlines may change. For exam-
ple, protruding parts between two houses [see Fig. 18(b)] may
not be contained in polygons. This may affect matching, as the
polygonal guidance is not consistent with ALS data.

Last but not least, we think that the ideal way for tackling
this challenge is to extract building instances from point
clouds directly. Currently, the state-of-the-art framework for
the point-level instance mapping is based on deep learning, and
the instance segmentation accuracy in the indoor benchmark is
around 70% [29]. Furthermore, most of the existing instance
mapping frameworks are proposed for indoor point clouds
and cannot be directly applied to large-scale outdoor point
clouds due to the massive data volume and complex scenes
[30]. In short, there is still a long way to go before getting
high instance mapping accuracy (over 90%) in large-scale
point clouds. Therefore, the proposed framework provides
a practical solution for this challenging task. Besides, large
amounts of labeled point clouds at the instance level are
the basis for deep learning studies. However, preparing the
ground truth is both time-consuming and labor-intensive, and
the existing outdoor benchmarks are only labeled for semantic
segmentation [26]. Thus, the proposed framework may also
help in preparing the instance-level benchmarks of ALS point
clouds.

IV. CONCLUSION

A small number of studies have been conducted in the
extraction of building instances from ALS point clouds. As the
existing methods always need specific rules or empirical
assumptions, they cannot achieve high instance-level mapping
accuracy in large-scale datasets or deal with complicated
scenes, such as spatially connected or adjacent buildings.
To handle these challenges, we present a new building instance
mapping framework for ALS point clouds guided by polygonal
building footprints. The key idea is to generate potential
building instances by merging ALS points into segments
hierarchically. Then, the selection of correct building instances
is realized by registering building candidates and 2-D poly-
gons. The proposed method is mainly tested in three scenes
(residential regions, urban regions, and high-rise buildings)
with various building architectures. The experimental results
show that our framework can still achieve high instance-level
mapping accuracy even if there are large positioning errors
among polygons. Furthermore, compared with the existing
solutions, the proposed method also performs much better in
challenging scenes. These detailed experiments demonstrate
that it is feasible to extract large-scale building instances with

high accuracy from ALS point clouds aided by the widely
accessible polygonal footprints.

Future work will address the reduction of the effects of clas-
sification errors in preprocessing and inconsistency between
ALS point clouds and polygonal footprints. We have focused
on building instance extraction from ALS data and have not
addressed the delineation of extracted instances and updating
of polygonal footprints. This also requires further study.
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