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A B S T R A C T   

Equipped with multiple channels of laser scanners, multispectral light detection and ranging (MS-LiDAR) devices 
possess more advanced prospects in earth observation tasks compared with their single-band counterparts. It also 
opens up a potential-competitive solution to conducting land cover mapping with MS-LiDAR devices. In this 
paper, we develop a cross-context capsule vision transformer (CapViT) to serve for land cover classification with 
MS-LiDAR data. Specifically, the CapViT is structurized with three streams of capsule transformer encoders, 
which are stacked by capsule transformer (CapFormer) blocks, to exploit long-range global feature interactions at 
different context scales. These cross-context feature semantics are finally effectively fused to supervise accurate 
land cover type inferences. In addition, the CapFormer block parallels dual-path multi-head self-attention 
modules functioning to interpret both spatial token correlations and channel feature interdependencies, which 
favor significantly to the semantic promotion of feature encodings. Consequently, with the semantic-promoted 
feature encodings to boost the feature representation distinctiveness and quality, the land cover classification 
accuracy is effectively improved. The CapViT is elaborately testified on two MS-LiDAR datasets. Both quanti
tative assessments and comparative analyses demonstrate the competitive capability and advanced performance 
of the CapViT in tackling land cover classification issues.   

1. Introduction 

Light detection and ranging (LiDAR) techniques have showcased 
remarkable progress and success in recent decades as one of the leading 
earth observation means. An advantageous feature of the LiDAR systems 
lies in that they can directly portray the three-dimensional (3D) topol
ogies and measure the spectral properties of targets in a fully active way. 
The exported data are usually stored with the format of 3D point cloud, 
which records both the real-world 3D coordinates and the backscattered 
spectral intensities. With the unprecedented increase in data volume and 
the strict requirement on interpretation efficiency and standard, there 
have burst a series of automated or semi-automated LiDAR data pro
cessing solutions developed for different application purposes (Ma et al., 
2018; Mirzaei et al., 2022; Yan et al., 2015). In comparison with single- 
channel LiDAR devices, the multispectral LiDAR (MS-LiDAR) counter
parts possess more powerful potentials in earth observation missions. To 

be specific, by sensing multiple spectral bands from different laser 
channels, abundant inherent attributes of targets can be attained, which 
significantly enrich the feature quantity and discriminability. Accord
ingly, MS-LiDAR data potentially provide an advanced solution to a 
variety of land cover mapping and environmental factor analysis tasks, 
such as land use survey, landmark recognition, precision agriculture, 
forest inventory, etc. Amongst, precise and regular land cover mapping 
means vitally to take control of the conditions and changes in environ
ment, society, and economy. Thus, it is absolutely necessary and prac
tically valuable to evaluate the applicability and reliability of MS-LiDAR 
data in diverse land cover mapping issues. 

In light of the state-of-the-art capability of transformer architectures 
in natural language processing, intent attempts have recently been taken 
to transfer and improve the transformer philosophies to serve different 
vision applications, including segmentation, detection, and classifica
tion, resulting in an emerging family of vision transformers (ViT) (Liu 
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et al., 2022). The milestone of the ViT model developed by Dosovitskiy 
et al. (2021) formulated a self-attention principle to focus on long-range 
global feature interactions. It performed excellently in coarse-grained 
classification tasks; however, the memory and computation consump
tions increased quadratically for tackling fine-grained detection or seg
mentation tasks. As optimized solutions to providing versatile and 
efficient prediction backbones, cross-shaped windows (CSwin) trans
former (Dong et al., 2022), shifted windows (Swin) transformer (Liu 
et al., 2021), focal transformer (Yang et al., 2021), pyramid vision 
transformer (PVT) (Wang et al., 2021a), cross-scale transformer 
(CrossFormer) (Wang et al., 2021b), multi-path ViT (MPViT) (Lee et al., 
2021), etc. were elaborately proposed to either explore local feature 
interactions, stripe feature interactions, multiscale feature interactions, 
or the combination of local and global feature interactions for the pur
pose of feature boosting and cost reducing. In addition, some hybrid ViT 
models (Guo et al., 2021; Peng et al., 2021) were also designed by 
stacking both the convolutional units and transformer blocks aiming at 
combining the local and global feature representation superiorities. Due 
to the predominant performance of ViT models in varying vision pre
diction tasks, they have been positively introduced to resolve remote 
sensing data interpretation issues, including target detection (Fang 
et al., 2022), image classification (Lv et al., 2022; Sun et al., 2022), 
instance segmentation (Chen et al., 2022), and semantic segmentation 
(Wang et al., 2022). 

In this paper, for the objective of improving the map-level land cover 
mapping accuracy, we design a novel cross-context capsule vision 
transformer (CapViT) model for land cover classification by taking 
advantage of the rich geometrical and spectral properties of the MS- 
LiDAR data. The CapViT is composed of three streams of capsule- 
based transformer encoders that dedicate to investigate long-range 
global feature semantics at different context scales. The cross-context 
feature semantics are finally integrated and comprehensively inter
preted to direct land cover type prediction. The CapViT demonstrates 
competitive classification performances on two MS-LiDAR datasets. 
Thus, the developed CapViT provides an effective solution to the land 
cover classification tasks. Moreover, the work in this paper also enlarges 
the application domains of the MS-LiDAR data and examines the feasi
bility and effectiveness of the MS-LiDAR data in handling the land cover 
classification issues. In summary, the contributions mainly involve the 
following. (1) A capsule-based vision transformer architecture is stacked 
to obtain high-quality and entity-aware feature encodings. (2) A cross- 
context vision transformer formulation is proposed to investigate 
global feature interactions with different context details for supplying 
strong and distinctive feature semantics. (3) A transformer block with 
dual-path multi-head self-attention modules is designed to take into 
consideration both spatial token correlations and channel feature in
terdependencies for promoting the feature embedding quality. 

2. Related works 

2.1. Feature image-based strategies 

A common strategy for processing MS-LiDAR data is to convert them 
into top-view feature images based on the data attributes like intensities 
and elevations. Such a strategy can represent the discrete, unstructured 
3D points as gridded image formulations, which can well improve the 
interpretation efficiency. Specifically, it is suitable for map-level land 
cover analyses. However, the localization accuracy might be slightly 
affected caused by the image rasterization operations. Matikainen et al. 
(2017) trained a random forest (RF) classifier cooperated with histo
gram analysis to conduct land cover classification. The features fed into 
the RF involved mainly the segment-based intensity-derived and 
elevation-derived properties. Likewise, Morsy et al. (2017) designed a 
maximum likelihood classifier (MLC) by combining the intensity map 
with the height map. Except for intensity and elevation features, Huo 
et al. (2018) constructed a support vector machine (SVM) model by 

including also vegetation indices and morphological profiles for urban 
area mapping. The vegetation indices were computed by using the in
tensity properties in different laser channels. Ghaseminik et al. (2021) 
proposed a segment-directed RF (SRF) inference formula by slicing the 
feature images into semantic segments to investigate spectral and 
geometrical characteristics. To abstract deep feature encodings, Pan 
et al. (2019) formulated a deep Boltzmann machine (DBM) classifier, 
which was stacked as a multi-layer perception (MLP) architecture. In 
their following work (Pan et al., 2020), a convolutional neural network 
(CNN) structure was designed to classify land covers. This structure 
involved convolutional blocks for local feature extraction and linear 
connections for category prediction. Yu et al. (2020) developed a hybrid 
capsule network (HCapsNet) structure that comprised a fully-connected 
stream to extract global features and a convolutional stream to exploit 
local features. The feature semantics were significantly promoted to 
supervise more accurate predictions. As an improvement, Yu et al. 
(2022) embedded an efficient self-attention (ESA) unit and an adver
sarial learning scheme into the capsule network, namely ESA-CapsNet, 
to further enhance the feature representation capability. To be spe
cific, the ESA module realized feature attention by considering the 
channel and spatial feature saliencies. Karila et al. (2017) evaluated the 
feasibility of road extraction by using MS-LiDAR data. In their frame
work, image segments were first generated and a set of features were 
obtained accordingly. The localization of roads was finalized using an 
RF classifier. Lindberg et al. (2021) applied MS-LiDAR data to conduct 
tree species categorization missions. Similarly, statistical properties 
were computed based on a cell rasterization pattern and further pro
cessed through linear discriminant analysis (LDA) for species type 
determination. Chen et al. (2018) also quantified the carbon storage by 
analyzing the tree distributions in urban areas. In addition, some other 
studies dedicated to fuse the MS-LiDAR data with other data types, such 
as hyperspectral images, optical images, single-band LiDAR, and 
waveform LiDAR, to well enhance the land cover mapping accuracy 
(Hänsch and Hellwich, 2021; Hong et al., 2020; Jin and Mountrakis, 
2022; Matikainen et al., 2020). 

2.2. LiDAR point-based strategies 

As another land cover mapping strategy, LiDAR points are directly 
interpreted with individual semantic labels. Such a strategy can nicely 
preserve the spatial topologies of targets and conduct mapping at a real- 
world scale, especially beneficial to the delineation of the lower-storey 
or shielded targets. Thus, it is suitable for the semantic understanding 
of the 3D scenes. However, remarkable computation overhead might be 
generated by directly processing 3D LiDAR points. Shi et al. (2021) 
proposed a multiscale selection scheme to characterize performance- 
effective spatial and spectral properties of MS-LiDAR points. The opti
mized feature embedding was differentiated via an SVM classifier for 
cover type inference. Wang and Gu (2020) suggested to encode the 
spectral and geometric attributes of MS-LiDAR points through second- 
order tensor embedding. The tensor representation with two modes 
behaved promisingly in distinguishing the intraclass and interclass 
structure distributions. Given the knowledge of the local geometry re
lationships among points, Ekhtari et al. (2018) formulated a rule-based 
classifier for multi-return points labelling. The rules used as evidences in 
the classifier were derived according to height, distance, and distribu
tion priors. In the work of Luo et al. (2022), non-ground points were first 
separated from ground points to compute different feature attributes 
like intensity and height. Then, after feature merging, a decision tree 
model was leveraged to finalize point categorization. Jing et al. (2021) 
stacked an encoder-decoder architecture with stage-wise skip connec
tions on the basis of the PointNet++. As for the encoder, channel feature 
boosting mechanism was appended at each stage for feature semantic 
optimization. Zhao et al. (2021) designed a graph convolution network 
(GCN) for point-level prediction based on local graph representations. 
Worth mentioning, feature reasoning units were included in the GCN to 
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learn global contextual and local edge features. By making use of mul
tiscale feature semantics, Li et al. (2022a) developed a pyramidal 
network composed of attentive graph geometric moments convolutions. 
The input feature to the classification network was concatenated with 
spatial coordinates, spectral attributes, and geometrical properties, 
which were further encoded into moments embedding by the convolu
tion operations. Shaker et al. (2019) examined two processing pipelines 
to separate land and water regions in MS-LiDAR data. The first one 
leveraged a Gaussian mixture model based on the intensity/elevation 
histograms, whereas the second one employed a scan line analysis 
approach by considering the intensity-elevation ratios. Li et al. (2020) 
explored the feasibility of building instance segmentation by using MS- 
LiDAR data. The segmentation network followed a GCN architecture. 
Dai et al. (2018) adopted a mean shift segmentation workflow for 
delineating individual trees. The separation of tree crowns was achieved 
using the features extracted from both spatial and multispectral do
mains. Besides, MS-LiDAR data were also applied to geological exami
nation (Hartzell et al., 2014), heritage preservation (Shao et al., 2020), 
forest inventory (Kukkonen et al., 2019), land nutrient quantification 
(Sankey et al., 2021), and leaf biochemical constituent estimation (Sun 
et al., 2019). 

3. Materials and data preparation 

3.1. MS-LiDAR data 

The MS-LiDAR data used in our experiments were acquired by an 
airborne Titan multispectral laser scanning device from the Teledyne 
Optech. This device was mounted with three channels of laser scanners, 
which operated independently under different laser spectrum bands 
with different deflection angles. To be specific, Channel 1 worked under 
intermediate infrared spectrum (SWIR) with a wavelength of 1550 nm 
and a deflection angle of 3.5◦ (forward); Channel 2 worked under near 
infrared spectrum (NIR) with a wavelength of 1064 nm and a deflection 
angle of 0◦ (vertically downward); Channel 3 worked under visual 
spectrum (GREEN) with a wavelength of 532 nm and a deflection angle 
of 7◦ (forward). During data acquisition, an individual set of point cloud 
was generated from each channel, resulting in three separated sets of 
point clouds with different mapping details. Based on the backscattered 
laser intensities, these three channels can measure the spectral proper
ties of targets from different perspectives (e.g., vegetation shows strong 
reflectance in Channel 2), which shows more advantages to the single- 
band LiDAR counterparts. 

As shown in Fig. 1(a), the study areas for collecting the MS-LiDAR 
data are located in Ontario, Canada. Two sites with different land 
cover conditions were surveyed, including an inland area of 
Whitchurch-Stouffville (Fig. 1(b)) and a coastal area of Tobermory 
(Fig. 1(c)). The survey in Whitchurch-Stouffville involved 19 intersect
ing flying strips occupying an area of about 3.21 km2. The survey in 

Tobermory comprised ten intersecting flying strips occupying an area of 
about 1.99 km2. The specific areas of these two test sites are marked in 
Fig. 1(b) and (c). We named the collected MS-LiDAR data in these two 
areas as the WS (for Whitchurch-Stouffville) and TM (for Tobermory) 
datasets, respectively. Each of the two datasets contained three sets of 
point clouds acquired by the Titan system. To be specific, for the WS 
dataset, the total number of points is 414,090,351. The minimum, 
maximum, and average point densities are 12, 53, and 43 points/m2, 
respectively, in each channel. The point intensity variations in the SWIR, 
NIR, and GREEN channels are in the ranges of [1, 452], [1, 289], and [1, 
315], respectively. For the TM dataset, the total number of points is 
268,650,373. The minimum, maximum, and average point densities are 
16, 58, and 45 points/m2, respectively, in each channel. The point in
tensity variations in the SWIR, NIR, and GREEN channels are in the 
ranges of [1, 431], [1, 274], and [1, 297], respectively. 

3.2. Feature image rasterization 

In this paper, aiming at providing map-level analyses of land covers, 
we employ a feature image-based interpretation scheme to accomplish 
land cover classification by using MS-LiDAR data, which can also 
improve the processing efficiency. To this end, the three clusters of raw 
MS-LiDAR point clouds are rasterized to form a group of top-view 
feature images according to the data attributes in different channels. 
As a matter of fact, the three clusters of MS-LiDAR points are not 
geographically the same due to the deflection angle differences of the 
three channels of laser scanners. However, the three clusters of MS- 
LiDAR points are acquired based on the same global navigation satel
lite system (GNSS) and each point has a geographical coordinate under 
the same coordinate system. Thus, first, a data registration operation is 
performed to merge the three clusters of MS-LiDAR points together 
simply based on their geographical coordinates, resulting in a single 
point cloud set. Specifically, the outlier points in each channel are 
removed before performing data registration by using the CloudCom
pare software (http://www.cloudcompare.org). Then, the merged point 
cloud is vertically gridded along the Z-axis direction to form a cell 
representation, where each cell contains several points from different 
channels. The cell size (or the spatial resolution) is set as 0.5 m by 
default by considering the minimum point density in a channel and the 
mapping accuracy. Finally, each cell is rasterized into an individual 
pixel in the corresponding feature image. The pixel values associated 
with the cells are interpolated based on the point attributes within the 
cells through inverse distance weighted (IDW) interpolation (Yu et al., 
2014). The IDW interpolation method is proven to show an excellent 
rasterization quality by assigning different degrees of contributions to 
different points in a cell, which performs better than the strategies 
selecting the maximum point attribute or averaging the point attributes. 
To be specific, the empty cells with no data points are simply assigned 
with zero values. The feature image rasterization operations are 

Fig. 1. (a) Overview of the study areas, (b) study area of Whitchurch-Stouffville, and (c) study area of Tobermory.  
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implemented using C++ on Microsoft Visual Studio 2019. As shown in 
Fig. 2, we obtain five kinds of feature images based on the data attributes 
with regard to elevation (Fig. 2(a)), number of returns (Fig. 2(b)), and 
the three channels of intensities (Fig. 2(c)-(e)). Fig. 2(f) also presents a 
false-color image synthesized by combining all the channels of intensity 
images. The red, green, and blue channels of the false-color image are 
composed of the intensity images from Channel 1, Channel 2, and 
Channel 3, respectively. Note that, except the three intensity images that 
are rasterized independently based on only the LiDAR points from their 
corresponding channels, the other feature images are all rasterized 
based on the merged point cloud by considering the entire information. 

4. Methodology 

By combining the feature semantic encoding superiority of capsule 
primitives and the long-range self-attention capability of transformer 
formulations, we design a cross-context capsule vision transformer 
(CapViT) architecture to serve land cover classification with MS-LiDAR 
feature images. As depicted by Fig. 3, the CapViT parallels three streams 
to investigate patch features under different contexts, which are finally 
integrated together to conduct category prediction. To be specific, given 
a query pixel in the feature images, three patches with different context 
details are retrieved and, respectively, fed into the corresponding stream 
to obtain capsule feature encodings. For each stream, the patch is first 
processed to form the capsule representations through a capsule 
embedding procedure, followed by a token embedding procedure to 
convert the capsule representations into the token representations. 
Then, a transformer encoder is connected to extract feature semantics. 
Eventually, the cross-context features are fused with an MLP to deter
mine the category label of the query pixel. 

4.1. Cross-context patch embedding 

As preprocessing, the five kinds of feature images rasterized from the 

MS-LiDAR data are first aligned and stacked together to structurize into 
a multispectral image form, in which a pixel contains five-channel 
values provided by the corresponding feature images. This multispec
tral image representation is leveraged as the input to the CapViT to 
predict pixel-level category information. As shown in Fig. 3, for a query 
pixel, three patches with different sizes of s1 × s1, s2 × s2, and s3 × s3 (s3 
> s2 > s1) are generated with the query pixel as the patch center. This set 
of patches can reflect the contextual properties of the query pixel at 
different scales, which perform better in distinctive feature exploitation 
than that of using a single fixed-size patch. Then, the three patches are 
taken as the input to the corresponding streams of the CapViT to extract 
capsule feature semantics. 

As for each stream, the scalar intensity-valued patch is first con
verted into a vectorial capsule-encoded representation through a 
capsule embedding module. The resultant capsule representation has 
the identical size to the input patch. Noteworthily, different from 
traditional scalar primitives commonly used in CNN architectures, the 
capsule primitive employs a tensor formulation composed of a set of 
parameters (Sabour et al., 2017). The superior uniqueness about the 
capsule primitive is embodied in that both feature presence saliency and 
entity-aware intrinsic properties can be simultaneously encoded by 
using the capsule length and the parameters, respectively. The capsule 
embedding module is built by a convolutional layer with a kernel size of 
3 × 3, a padding of 1, and a stride of 1. Specifically, the generated 
feature channels at each position are further partitioned sequentially 
into G sets, each of which encapsulates D components, thereby resulting 
in a D-dimensional capsule representation with G feature channels. In 
our architecture, D and G are set as 12 and 64 by default. Then, the 
squashing function (Sabour et al., 2017) is applied to the capsules for 
normalizing their lengths. The squashing function takes the following 
form: 

C =
‖T‖2

‖T‖2
+ 1

⋅
T
‖T‖

(1) 

Fig. 2. Illustration of the feature images rasterized with (a) elevation, (b) number of returns, (c)-(e) three channels of intensities, and (f) the false-color image 
synthesized with all the channels of intensities. 
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where T denotes the raw capsule and C represents the normalized 
capsule. 

Next, the capsule representation is processed by a token embedding 
module to generate a token representation, which will act as the oper
able semantic units for the subsequent feature encoding procedure. The 
token representation has a quarter size of the capsule representation. 
That is, both the width and height are reduced to the half sizes of the 
original ones after token embedding. It is equivalent to a feature 
downsampling manipulation by a sampling factor of 0.5. To be specific, 
the token embedding module is built by a capsule convolutional layer 
with a kernel size of 2 × 2 and a stride of 2, and maintains the same 
capsule dimension of D and the same number of feature channels of G. 
The capsule convolution (Sabour et al., 2017) is operated as follows: 

T =
∑

i
aiWiCi (2)  

where Ci is a capsule within the kernel, T is the resultant unnormalized 
capsule, Wi is a feature mapping matrix associated with capsule Ci, and 
ai denotes a coupling coefficient indicating the relevance of capsule Ci, 
which is dynamically computed with the improved dynamic routing 
process (Rajasegaran et al., 2019). The improved dynamic routing 
process takes into consideration both the capsule lengths and orienta
tions to iteratively determine the significance of a capsule. Compared 
with the original dynamic routing process (Sabour et al., 2017), it is 
more stable and easy to converge for constructing deep network archi
tectures. Finally, a squashing function layer is appended to the token 
representation to conduct token normalization. As illustrated by Fig. 3, 
the token representation in each stream will be taken as the operable 
components to the transformer encoder for further feature semantic 
investigation. 

4.2. Transformer encoder 

The functionality of the transformer encoder is to exploit long-range 
global feature interactions of the input tokens with a self-attention 
mechanism. It is stacked by a set of capsule transformer (CapFormer) 
blocks and exports the overall feature representation of the input tokens. 
As detailed in Fig. 3, the transformer encoders of the three streams 
contain, respectively, N1, N2, and N3 CapFormer blocks. In our archi
tecture, we deploy the same configuration on the transformer encoders, 
which involve the same number of CapFormer blocks, i.e., N1 = 8, N2 =

8, and N3 = 8 by default. Note that, the transformer encoder maintains 
the same capsule dimension of D, the same feature channel number of G 
and the same token number through all the CapFormer blocks. That is, 
the dimensions of the input tokens and the output representations of 

each CapFormer block are identical. 
As illustrated by Fig. 4(a), the CapFormer block is constructed by two 

parallel multi-head self-attention (MSA) modules for global feature 
recalibrations and an MLP for local feature exploitation. Importantly, a 
LayerNorm layer is linked before the MLP and the MSA modules to 
perform layer normalization, and a residual connection is deployed after 
each of them to perform model augmentation. To be specific, given the 
input tokens, they are first normalized through the LayerNorm layer. 
Then, the normalized tokens are duplicated into two groups: one is 
directly fed into the token-wise MSA (T-MSA) for performing global 
feature self-attention from the token’s perspective (i.e., performing 
spatial feature semantic attention) and one is transposed and fed into the 
channel-wise MSA (C-MSA) for performing global feature self-attention 
from the channel’s perspective (i.e., performing channel feature 

Fig. 3. Overview of the cross-context capsule vision transformer architecture.  

Fig. 4. Architectures of (a) the CapFormer block and (b) the MLP.  
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semantic attention). Here, the transpose operation functions to trans
form the tokens from the spatial domain into the channel domain. That 
is, given the input token representation Rt×G×D, where t, G, and D are, 
respectively, the token number, the feature channel number, and the 
capsule dimension, the input to the T-MSA module has the form of 
Rt×G×D and the input to the C-MSA module has the form of RG×t×D. 
Finally, the output from the C-MSA module is transposed and concate
nated with the output from the T-MSA module, which are further fused 
through a linear layer, followed by a squashing nonlinearity. As illus
trated by Fig. 4(b), the MLP consists of two linear layers and two 
squashing function layers. Specifically, a linear layer is followed by a 
squashing function layer. With such a dual-path self-attention design 
pattern of the CapFormer block, the spatial feature interactions and 
channel feature interactions can be simultaneously characterized in a 
global way, which is significantly beneficial to obtain high-quality, 
strongly-distinctive feature semantics. 

As illustrated by Fig. 5(a), the T-MSA and C-MSA modules have the 
same architecture that follows a capsule-based MSA formulation. Take 
the T-MSA module for detailed description. For the input embedded 
tokens Rt×G×D, they are first preprocessed by three different sets of linear 
layers, each of which contains n separate parallel linear layers with 
different parameters, resulting in a query set Q={Q1, Q2, …, Qn}, where 
Qi ∈ Rt×g, i = 1, 2, …, n, a key set K={K1, K2, …, Kn}, where Ki ∈ Rt×g, i =
1, 2, …, n, and a value set V={V1, V2, …, Vn}, where Vi ∈ Rt×g×D, i = 1, 2, 
…, n. Here, g denotes the number of feature channels. Then, each triad 
{Qi, Ki, Vi}, i = 1, 2, …, n, is dispatched to a single-head self-attention 
module to exploit global feature interactions. Finally, the outputs from 
all the n heads are sequentially concatenated and further fused through a 
linear layer, followed by a squashing nonlinearity. In our architecture, 
the number of heads is configured to be n = 5 and the number of feature 
channels is configured to be g = 16 by default. 

The detailed architecture of the single-head self-attention module is 
illustrated in Fig. 5(b). Its mathematical formulation is as follows: 

Attention(Qi,Ki,Vi) = Softmax(
QiKT

i
̅̅̅g√ + B)Vi (3)  

where B ∈ Rt×t is a relative position bias between each pair of tokens (Liu 
et al., 2021), which is shared by all the n heads. To be specific, first, 

matrix multiplication is performed on Qi and KT
i , followed by a scaling 

operation on the product matrix by dividing ̅̅̅g√ . Then, the relative po
sition bias is added to the product matrix to include position embed
dings, followed by a softmax function. Here, we regard the resultant 
matrix as the position-embedded attention matrix. Finally, the position- 
embedded attention matrix is multiplied with Vi to generate the self- 
attention-recalibrated feature semantics as the output. 

4.3. Prediction head 

The predication head of the CapViT functions to gather the cross- 
context feature semantics from the three streams of transformer en
coders to make a decision on the category label of the query pixel in the 
input. To this end, as illustrated by Fig. 3, the cross-context feature se
mantics from the three streams of transformer encoders are first 
downsampled with a global average pooling (GAP) layer, resulting in 
three capsule feature vectors representing the overall feature encodings 
under the corresponding contexts. Then, these three feature vectors are 
sequentially concatenated and further comprehensively interpreted by 
an MLP. Note that, the MLP comprises two linear layers that are linked 
by a squashing function layer. The second linear layer transforms the 
capsule representation into a scalar representation, whose nodes 
correspond to the land cover categories. Finally, the output of the MLP is 
adjusted with a softmax function for providing the category-oriented 
predictions with a “one-hot” encoding pattern. Here, the “one-hot” 
encoding pattern means that one entry in the output has the largest 
value and the other entries in the output have smaller values. To be 
specific, the entry with the largest value in the output determines the 
category of the input. The “one-hot” encoding pattern is formed by the 
supervision of the loss function at the training stage by comparing the 
predictions and the ground-truths and the adjustment of the softmax 
function applied to the output. 

4.4. Loss function 

In fact, there is a nonnegligible issue regarding the imbalance of the 
training samples from different classes in the land cover classification 
task, which might influence the capability of the constructed model. 
Hence, to well supervise the optimization of the CapViT, the loss func

Fig. 5. Architectures of (a) the MSA module and (b) the single-head self-attention module.  
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tion is formulated as follows: 

L =
∑P

i=1
LEFL (4)  

where P denotes the number of training samples; LEFL is computed as the 
equalized focal loss (Li et al., 2022b) of the ground-truth prediction 
entry. The equalized focal loss can well alleviate the imbalance issue of 
training samples by using a class-related focusing factor to balance the 
contribution of each class to the total loss. 

5. Results and discussions 

5.1. Network training 

At the network optimization stage, the CapViT was fine-tuned with 
the AdamW optimizer (Kingma and Ba, 2014) supervised by the loss 
function defined in Eq. (4) in a cloud computing environment. This 
platform is packed with a 128-GB memory, a 16-core CPU, and ten 16- 
GB GPUs. We trained the CapViT for 400 epochs with a batch size of 640, 
split on the ten GPUs. The weight decay of 0.05 and the initial learning 
rate of 0.001 were configured. The learning rate was scaled by a cosine 
decay learning rate scheduler. As in Yu et al. (2022), for each of the two 
test datasets, 60% of the annotated samples were randomly selected 
from each class to form the training set, where 3% of the samples were 
treated for validation. Such amount of training samples was sufficient to 
construct and optimize the CapViT. The remaining 40% data were left as 
the test set for model performance examination. Specifically, at either 
the training or the test stages, three patches with sizes of 24 × 24, 32 ×
32, and 40 × 40 pixels containing different contextual details were 
cropped centered at a sample, which were, respectively, dispatched to 
the three streams of the CapViT. 

5.2. Land cover classification 

The classification performance of the CapViT was quantitatively 
evaluated with the following three metrics: overall accuracy (OA), 
average accuracy (AA), and Kappa coefficient (κ). These three metrics 
estimate the classification quality from different perspectives. Specif
ically, OA cares about the overall classification performance on all cat
egories, while AA concerns the individual classification performance on 
each category. κ evaluates the model performance by taking into ac
count both the cross-category and intra-category classification accu
racies. Generally, the higher the values of the evaluation metrics, the 
better the classification accuracies of the model. 

For each of the two test datasets of the surveyed areas, the land 
covers were annotated into six different types including water (T1), 
vegetation (T2), road (T3), soil (T4), building (T5), and other imper
vious surface (T6). Specifically, the land cover type of vegetation 
involved the trees and grasses. The ground-truths of the land covers 
were pixel-wisely labelled assisted by the high-resolution remote 
sensing images in the surveyed areas. The number of samples associated 
with each land cover type in the two test datasets was reported in detail 
in Table 1. The land cover classification results on the WS and TM 
datasets are reported in Tables 2 and 3, respectively, where the classi
fication accuracy of each land cover type, as well as the overall classi
fication accuracies measured by the OA, AA, and κ metrics, are recorded 
in detail. The visual exhibitions of the land cover classification results on 
the two datasets are also presented in Fig. 6, where different land cover 

types are marked with different colors. For providing clear visual in
spections, the close-up views of two regions from the two datasets are 
also illustrated in Fig. 6. 

As indicated in Table 2, the six types of land covers in the WS dataset 
were excellently distinguished from each other with a quite promising 
classification accuracy on each land cover type. Specifically, the best 
classification performance appeared on the land cover water with a 
single-class classification accuracy of 99.57%. In contrast, compared 
with the classification accuracies of the other land cover types, relatively 
lower classification performances fell on the land covers soil and 
building with single-class classification accuracies of 94.16% and 
94.02%, respectively. Quantitatively, the classification accuracy differ
ence between land covers water and building was about 5.55%. More
over, similar classification performances were attained in identifying 
land covers other impervious surface and vegetation. All in all, for the 
WS dataset, the CapViT performed satisfactorily with high overall 
classification accuracies of 98.95%, 95.93%, and 0.9834 with regard to 
the OA, AA, and κ metrics, respectively. As reflected in Table 3, the 
CapViT behaved better on the TM dataset with higher classification 
accuracies on all the land cover types compared with those of the WS 
dataset. Similarly, among the six land cover types, water regions were 
successfully located with the highest single-class classification accuracy 
of 99.64%. The land cover vegetation was also effectively recognized 
and separated from the other land covers with a single-class classifica
tion accuracy of 96.85%. For the land covers road and soil, equally 
matched results were achieved in identifying them with single-class 
classification accuracies of 95.26% and 95.03%, respectively. Compar
atively, less promising classification results also appeared on the land 
cover building with a single-class classification accuracy of 94.61%. To 
be specific, the classification accuracy of land cover building was 
degraded by about 5.03% in comparison with that of the land cover 
water. On the whole, competitive overall classification accuracies of 
99.42%, 96.30%, and 0.9883 with regard to the OA, AA, and κ metrics, 
respectively, were also obtained by the CapViT on the TM dataset. 

The classification results on the two datasets indicated that the land 
cover types with small elevation fluctuations, low topology complex
ities, and homogeneous reflectivity properties can be effectively recog
nized and differentiated with high classification accuracies. For 
instance, the water bodies and road regions showed quite homogeneous 
textural attributes in the feature images either with respect to the in
tensities or the elevations. Thus, they were easy to tell apart from the 
other land covers due to their feature uniqueness. On the contrary, the 
classification performance was degraded on the land cover types with 
more complex spatial structures and varying spectral characteristics. For 
instance, the buildings in the surveyed areas exhibited different color 
appearances, diverse geometric structures, and various heights. As a 
result, the misclassification error was increased in handling the building 
regions due to their feature heterogeneities in the feature images. 
However, on both datasets, the classification accuracy of land cover 
building was still acceptable and promising. In addition, some classifi
cation errors were generated in the adjacent regions of different land 
cover types. For example, a part of soil elements was wrongly classified 
as the road type. Nevertheless, the misclassification rate was quite low 
on every land cover type in both of the two datasets. It convincingly 
demonstrated the high performance of the CapViT on land cover clas
sification with MS-LiDAR data. The classification performance gains of 
the CapViT mainly benefitted from the following three aspects of ar
chitecture designs. First, adopted with capsule primitives, more 
powerful and distinctive entity-aware feature semantics can be 

Table 1 
Number of samples associated with each land cover type in the two test datasets.  

Dataset T1 T2 T3 T4 T5 T6 

WS 1,935,836 6,315,571 641,277 3,534,682 351,372 92,162 
TM 3,164,296 2,922,096 213, 212 362,264 151,044 1,145,232  
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extracted. Second, formulated with a cross-context transformer archi
tecture, multiscale context properties can be effectively exploited to 
provide high-quality feature evidence for prediction. Third, designed 
with dual-path MSA modules, the spatial and channel interactions of 
tokens can be simultaneously analyzed to obtain strong global feature 
encodings. Note that, the processing efficiency of the CapViT was 
slightly lower than that of using a pure CNN-based architecture due to 
the dynamic routing process used in capsule convolutions. Nevertheless, 
the efficiency degradation was not significant. 

5.3. Comparative analyses 

As for verification experiments to further convincingly examine the 
practical feasibility and competitive superiority of the CapViT in MS- 
LiDAR-based land cover classification missions, we carried out inten
sive comparisons and analyses with some state-of-the-art land cover 
classification models, which were based on MS-LiDAR feature images, 
including ESA-CapsNet (Yu et al., 2022), HCapsNet (Yu et al., 2020), 
CNN (Pan et al., 2020), DBM (Pan et al., 2019), SRF (Ghaseminik et al., 
2021), SVM (Huo et al., 2018), MLC (Morsy et al., 2017), and RF 
(Matikainen et al., 2017). Besides, the ViT model (Dosovitskiy et al., 
2021) was also included as a baseline for performance comparison. To 
be specific, the ESA-CapsNet and HCapsNet were constructed with 
capsule primitives and followed the convolutional architectures. The 

CNN and DBM employed the traditional deep learning design principles 
with scalar neuron primitives. The SRF, SVM, MLC, and RF relied on 
machine learning techniques to train classifiers with handcrafted fea
tures. Note that, feature attention mechanism was considered in the 
ESA-CapsNet to promote the representation quality of the output feature 
semantics. Local and global feature semantics were reasonably com
bined in the HCapsNet for investigating different contexts of details. For 
fair comparisons, the same evaluation metrics of OA, AA, and κ were 
leveraged for providing quantitative classification performance assess
ments on these models. The detailed land cover classification results 
obtained by these models are reported in Tables 2 and 3. 

As reflected by the statistical results in Tables 2 and 3, the ESA- 
CapsNet, ViT, and HCapsNet behaved more superiorly than the other 
models with higher overall classification accuracies on both of the two 
datasets. Specifically, the ESA-CapsNet achieved the best performance 
among the nine models. Likewise, for all these models, a better perfor
mance also appeared on the TM dataset. It means that the scene con
dition of the TM dataset was less complicated than that of the WS 
dataset, thereby achieving more accurate land cover predictions by 
these models. In contrast, the SRF, MLC, and RF introduced more 
misclassification errors almost on each land cover type caused by either 
omissions or commissions. As a result, the single-class classification 
accuracy on each of the datasets was degraded apparently, thereby 
leading to the decline of the overall classification accuracies. Note that, 

Table 2 
Land cover classification results on the WS dataset.  

Type CapViT ESA-CapsNet HCapsNet ViT CNN DBM SRF SVM MLC RF 

T1 (%)  99.57  99.35  99.11  99.27  98.44  98.10  94.64  95.17  94.76  92.77 
T2 (%)  96.18  95.27  94.53  95.06  93.17  92.42  87.63  88.54  87.99  86.61 
T3 (%)  95.53  94.56  93.72  94.22  91.86  83.63  81.87  83.36  82.92  82.53 
T4 (%)  94.16  93.31  92.91  93.17  91.43  88.71  86.12  87.02  85.84  84.97 
T5 (%)  94.02  93.17  92.23  92.95  91.15  88.95  86.35  88.79  88.63  82.38 
T6 (%)  96.14  95.24  94.76  95.11  93.91  93.54  89.14  91.65  90.25  81.22 
OA (%)  98.95  98.42  97.89  98.27  95.91  94.36  90.52  92.17  91.23  90.64 
AA (%)  95.93  95.15  94.54  94.96  93.33  90.89  87.63  89.09  88.40  85.08 
κ × 100  98.34  97.76  97.13  97.51  95.34  93.78  88.96  91.75  89.67  84.96  

Table 3 
Land cover classification results on the TM dataset.  

Type CapViT ESA-CapsNet HCapsNet ViT CNN DBM SRF SVM MLC RF 

T1 (%)  99.64  99.52  99.34  99.47  98.76  98.35  95.28  96.38  95.34  93.42 
T2 (%)  96.85  96.13  95.25  95.84  94.45  93.51  88.94  89.77  88.92  86.88 
T3 (%)  95.26  94.82  94.17  94.68  92.56  88.26  82.73  85.34  83.17  83.35 
T4 (%)  95.03  94.47  93.52  94.21  91.77  90.13  87.86  89.12  88.05  85.24 
T5 (%)  94.61  93.55  92.41  93.09  91.51  89.92  88.07  88.81  88.21  82.57 
T6 (%)  96.42  95.89  95.02  95.52  94.22  93.81  91.82  92.43  91.74  82.26 
OA (%)  99.42  98.91  98.34  98.75  96.68  95.13  91.97  93.22  92.15  90.96 
AA (%)  96.30  95.73  94.95  95.47  93.88  92.33  89.12  90.31  89.24  85.62 
κ × 100  98.83  98.37  97.76  98.13  95.85  94.24  91.18  92.25  91.27  85.31  

Fig. 6. Land cover classification results on (a) the WS dataset and (b) the TM dataset.  
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the classification accuracy differences between the ESA-CapsNet and RF 
were about 0.1280 and 0.1306, respectively, with regard to the κ metric 
on the two datasets. Furthermore, the CNN and DBM performed equally 
matched with moderate classification accuracies among the nine 
models. The performance superiorities of the ESA-CapsNet and HCaps
Net benefitted from the capsule feature encoding philosophy and the 
self-attention or multi-context feature embedding strategies for 
semantic-strong feature abstraction. The performance gains on the ViT 
well proved the competitive capability of the long-range global feature 
exploitation scheme of the transformer architectures. On the other hand, 
the classification performances of the SRF, MLC, and RF were greatly 
impeded owing to the use of handcrafted low-level features. Notewor
thily, the SRF leveraged a segment-based processing pipeline based on 
the pre-segmentation of semantic regions. Thus, the segmentation 
quality affected significantly on the final land cover prediction results. 

However, through comparative analyses on the land cover classifi
cation results recorded in Tables 2 and 3, we convinced that the pro
posed cross-context CapViT demonstrated significant improvements 
over the other compared models with either higher single-class classi
fication accuracies or overall classification accuracies. For instance, the 
CapViT improved by about 0.78% and 0.57% with regard to the AA 
metric in comparison with the ESA-CapNet and by about 0.1338 and 
0.1352 with regard to the κ metric compared with the RF on the two 
datasets. In conclusion, the CapViT worked suitably and competitively 
in the land cover classification task. 

6. Conclusion 

In order to improve the map-level land cover mapping accuracy, this 
paper has formulated a cross-context vision transformer architecture 
stacked by capsule primitives, termed as CapViT, for conducting land 
cover classification with MS-LiDAR data. The CapViT parallels three 
streams of transformer encoders functioning to exploit long-range global 
feature interactions under different context details, which are finally 
effectively combined to provide high-quality and strong feature se
mantics for accurate land cover prediction. Specifically, the CapFormer 
block constituting the transformer encoder involves dual-path capsule- 
based MSA modules serving for interpreting both the spatial feature 
correlations and channel feature interdependencies of the token repre
sentations, which significantly promotes the feature encoding semantics 
to a large extent. The proposed CapViT has been elaborately testified on 
two MS-LiDAR datasets towards land cover classification. Quantitative 
assessments demonstrated that the CapViT performed excellently with 
high single-class and overall classification accuracies on the two data
sets. The OA, AA, and κ values are 98.95%, 95.93%, and 0.9834 on the 
WS dataset, and 99.42%, 96.30%, and 0.9883 on the TM dataset. 
Intensive comparative analyses also convinced the practical feasibility 
and competitive superiority of the CapViT in handling MS-LiDAR-based 
land cover mapping missions. Thus, the work in this paper provides an 
effective and high-performance solution to the improvement of the map- 
level land cover classification accuracies and positively enlarges the 
application domains of the MS-LiDAR data. In the future, we will 
investigate pretraining techniques and more advanced network archi
tectures to further promote the land cover classification performance. 
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