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A B S T R A C T

Multi-view Stereo (MVS) meshes suffer from occlusions or missing data, making most surface reconstruction
methods invalid. Due to data imperfections, existing methods, just like PolyFit, have made a trade-off between
reconstruction accuracy and time consumption. We propose a novel approach that automatically reconstructs
a building surface model from raw triangular mesh with data incompleteness. Unlike existing methods that
extract high-quality primitives, our method focuses on assemblies of primitives to control the level of geometric
detail in the reconstructed models. We design a topological relationship of the primitives to form a plane
connection graph. To be precise, we first combine the scalability of shapes with plane primitives. Then strong
and soft connections between primitives are constructed by calculating the confidence of the plane intersection
in space. Furthermore, the topological relations of all primitives are encoded into an undirected graph. Finally,
a watertight and manifold model is extracted from the faces of a candidate set by energy minimization.
Experiments on the Helsinki 3D dataset demonstrate the superiority of our method in time consumption
and reconstruction error, as measured by Hausdorff distance. Our method outperforms other primitive-based
algorithms in handling non-planar structures. Even when dealing with imperfect data, a watertight model is

still obtained.
1. Introduction

Reconstructing buildings in 3D scenes is a challenge for the pho-
togrammetry and remote sensing community. In recent years, require-
ments for surface reconstruction of point clouds and Multi-View Stereo
(MVS) meshes in industry and academia have continued to expand so
that models can indeed be applied to real scene applications, such as
using building models for digital cities and virtual reality.

The main challenge for reconstruction is to obtain high-precision,
lightweight surface models, taking into account the problem of imper-
fect data (e.g., large storage, noise, and deficiency due to occlusion).
Reconstruction methods are divided into two main categories.

High precision. The first goal of reconstruction is high precision.
Deep Neural Networks (DNNs) learn complex and sharp surface de-
tails to reconstruct high-precision surfaces of small and medium-sized
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objects. However, the main problem for DNNs is the computational cost
required for large scenes (Mi et al., 2020; Luo et al., 2021).

Time consumption. Secondly, researchers take time consumption
as the standard. State-of-the-art methods reconstruct the surface of the
overall contour of an object in a large scene by analyzing a series of
a priori topological relations. Nevertheless, obtaining a higher accu-
racy surface model with a tolerable time consumption is remaining a
research hotspot (Li et al., 2016; Nan and Wonka, 2017; Bouzas et al.,
2020).

Most current reconstruction methods demand input data of high
quality, because noisy and missing data dramatically impact reconstruc-
tion results. The motivation of our work is to assure the reconstruction
pipeline is compatible with flawed (occlusion and sparse) data. Our
idea is to complement a model on the basis of plane hypothesis,
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i.e., assume the model consists of only planar primitives, while keeping
time consumption within acceptable limits by graph data structure.
Meanwhile, starting from existing prior knowledge, pre-processing, or
attaching hard constraints to the cost function (Nan and Wonka, 2017)
becomes an effective strategy. This tactic is the foundation of our
approach.

Based on the plane hypothesizing strategy in PolyFit (Nan and
Wonka, 2017), we propose a new topological relationship of spatial
planes to generate models using different positional relationships of
planes in space, which improves the surface accuracy of the output
model, and, to a certain extent, solves the problem of defects due to
occlusion. Urban meshes covering about 4 km2 in Helsinki (Finland) are
he input for the algorithm (Gao et al., 2021). The goal is to reconstruct
watertight model even when a part of a building is missing due to

cclusions of surroundings.
In order for the reconstruction method to tackle well the prob-

em of missing occlusion in sparse data, we formulated several goals
hat must be achieved in a reconstruction pipeline: (1) When the
lgorithm is applied to less noisy, less missing data, the reconstruc-
ion method must capture effectively geometric details, such as walls
nd corners. (2) In the case of imperfect data as input, a recon-
tructed model still describes the overall contour of the building and
as the properties of a watertight, two-dimensional manifold. (3) The
ime consumption of the proposed method outperforms an exhaustive
egmentation-based method, such as PolyFit (Nan and Wonka, 2017).
esides, under-detection of primitives significantly impacts existing
ethods. To reduce the impact of this problem on a plane-based
ethod, the proposed algorithm uses soft connection vertices. There-

ore, because the lack of planar primitives has less impact on our
pproach, we focus mainly on generating a watertight surface model
sing detected planes. The significant contributions of our work are as
ollows:

• A lightweight data structure and a general strategy are designed
to address the problem of data defects in a building for various
reasons, such as tree occlusion.

• A confidence strategy combining graph structure is proposed,
which, compared with PolyFit, reduces time consumption. In
addition, our method generates LoD2 models that capture more
accurate geometric details while reducing errors.

. Related work

Surface reconstruction issues involve computer graphics and com-
uter vision. The review of previous literature covers four aspects
irectly related to our proposed method: (a) Extract high quality primi-
ives to generate an accurate model. (b) Partition space and extract the
odel. (c) Assemble primitives to form a closed surface. (d) Approxi-
ate surface, relying on rough shape.
Planar shape detection. Compared with natural objects, most

rtificial objects, such as buildings, comprise many planes. Detecting
he plane primitives is to divide the initial input point set into multiple
ets of interior points, with the points in each set representing a plane
hey fit. At present, random sample consensus (Schnabel et al., 2007)
nd region growing (Marshall et al., 2001; Rabbani et al., 2006) are
he most mature methods for initial primitive detection that still obtain
eliable detection results when the input data is noisy and defective.
n addition, shape primitives are extracted by learning approaches
rained from CAD model databases (Fang et al., 2018; Li et al., 2019).
ll these methods perform well in experiments; however, it is always
roblematic to determine the initial parameters, which produce over-
nd under-detection of planar primitives (Chin et al., 2018). There-
ore, to reduce the impact of this problem, our algorithm focuses on
stablishing an assembly relationship for existing detected primitives.
Partitioning-based reconstruction Partitioning-based methods di-

ide 3D space into polyhedral spaces by extending planar primi-
ives (Verdie et al., 2015; Boulch et al., 2014; Oesau et al., 2014). An
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output model is formed by selecting a subset of candidates’ faces. The
major problems are the tremendous consumption of time and memory
space. Recently, researchers have focused on decreasing computational
costs. PolyFit (Nan and Wonka, 2017) filters and simplifies detected
primitives to obtain the final model from a candidate face set based
on binary linear programming formulation. A kinetic data structure
is proposed to divide space into smaller polyhedral spaces and then
obtain surface models by solving a graph-cut problem (Bauchet, 2019;
Bauchet and Lafarge, 2020). Furthermore, Connect-and-Slice proposes
a method of combining planar primitive connectivity with slicing (Fang
and Lafarge, 2020). By not exhaustively slicing the space and incorpo-
rating the scalability of the shapes into the algorithm, our approach
significantly reduces time consumption.

Connectivity-based reconstruction. Connectivity-based methods
attempt to construct adjacency relationships between planar primi-
tives (Schindler et al., 2011; Chen and Chen, 2008). Researchers focus
on constructing different topological relations of planar primitives
in space and combine the connection graph with three-plane inter-
sections (Chen and Chen, 2008; Schindler et al., 2011; van Kreveld
et al., 2011). When input data is missing or there is over-detection
of the primitives, using this strategy is in vain. An adjacency graph
emerges with wrong adjacency relationships, thereby invalidating the
result. One way to overcome this problem is an interactive solu-
tion (Arikan et al., 2013). Structure-Aware Building Mesh Polygoniza-
tion (SABMP) (Bouzas et al., 2020) makes the adjacency condition
more stringent, resulting in a more straightforward connection graph.
Because our approach designs a new planar relationship and encodes
different relationships into an undirected graph, the algorithm is more
robust to imperfect data.

Mesh simplification. To meet the needs of industry and animation,
many studies have focused on the simplification of 3D meshes. First, a
surface, approximated from a raw triangle mesh, is simplified. There-
fore, researchers, initially focused on reducing the storage space of the
mesh designed a cost function to constrain the simplification process
of the mesh. Quadric Error Metrics (QEM) (Garland and Heckbert,
1997) was proposed as a simplification based on quadratic errors as
the cost. Variational Shape Approximation (VSA) (Cohen-Steiner et al.,
2004) constructs planar proxies based on an input model through
cost function constraints. When the storage requirement is satisfied,
researchers consider the speed and accuracy of the algorithm; thus,
the introduction of spatial topological relations is also a necessary step.
To achieve the goal of simplifying the overall model, Structure-Aware
Mesh Decimation (SAMD) (Salinas et al., 2015) attempts to simplify the
detected planar proxies. To simplify the building mesh, SABMP (Bouzas
et al., 2020) encodes the topological relationship of the initial planes
into an undirected graph. Therefore, our proposed method uses prior
knowledge to analyze topological relationships in space to improve
time efficiency and model accuracy.

3. Method

As seen in Fig. 1, our method consists of the following three pro-
cessing stages: (1) Primitives detection and build-up of the strong-
connected graph (see Section 3.1). (2) Search for primitives that satisfy
the soft-connected condition (see the red wire-frame) and encode rela-
tionships into the strong-connected graph (see Section 3.2). (3) Surface
extraction using an energy minimization formulation (see Section 3.3).

3.1. Primitives detection and strong connected graph

Our method uses a raw triangular mesh as input. Using the region
growing method for city models (Lafarge and Mallet, 2012), we first
extract a set of primitives. Furthermore, the algorithm captures the
intrinsic topological relationship between primitives from the original

model.
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Fig. 1. Pipeline of the proposed 3D model reconstruction method. Our algorithm starts from a mesh with a set of primitives represented by colored polygon (a). By calculating the
strong connection between the primitives (see orange edges), we build the strong-connected graph (b). The building scaffold (see the black wire-frame) is generated using only the
strong-connected graph (c). Through the calculation of the soft connection relationship (see the red dashed box), the algorithm adds soft connections based on the strong-connected
graph (see blue edges) in order to form the soft-connected graph (d). The building scaffold is generated based on the soft-connected graph (e). The output model with watertight
and 2D-manifold characteristics (f). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. A simple 2D illustration of a soft connected graph. (a) Primitives detection(each
primitive is represented by a separate color); (b) Plane growth(three colors of each
primitive represent three growth scales; red dots represent the intersection of the
primitive growth); (c) Connection graph(orange dots and dashed lines represent strong
connection nodes and strong connection relationships; blue dots and dashed lines
represent soft connection nodes and soft connection relationships). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Existing methods have different ways of generating a strong con-
nected graph (Bouzas et al., 2020; Fang and Lafarge, 2020). However,
the notion of strong connectivity is defined as characterizing the re-
lationship between two primitives that are adequately spatially close.
The case where the interior points of two planar primitives share at
least one edge is defined as a strong connection relationship.

The algorithm encodes the interrelationships detected between prim-
itives to an undirected graph. Each graph vertex represents a primi-
tive. There are two types of graph edges: strong-connected edges and
soft-connected edges.

3.2. Soft connected graph

In our method, only the adjacency relationship of different primi-
tives in a small spatial neighborhood is regarded as a strong connection.
It is difficult to capture adjacency relationships from noisy and missing
304
Fig. 3. Plane shape growing data structure. (a) Minimum convex polygon; (b) Circum-
scribed circle for one point(orange polygon represents the base polygon in Fig. 3(a));
(c) Plane shape growing(black polygon represents the polygon from which the base
polygon in Fig. 3(a) has grown). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

data; therefore, a soft connection relationship is designed to solve this
problem. As shown in Fig. 2, we provide a 2D toy example to describe
the soft connection idea. In terms of algorithm implementation, first,
based on the plane hypothesizing strategy, the easiest way to deal with
missing data is to extend the plane to achieve model completion. Next,
because the excessive extension of the plane causes more consumption
of memory and time, a hyperparameter determines the degree of plane
growth. Finally, to speed up the reconstruction solution, a confidence
strategy is employed to associate plane growth with the connectivity
graph.

3.2.1. Plane shape growing
Inspired by Kinetic Shape Reconstruction (KSR) (Bauchet and La-

farge, 2020), we developed an algorithm that designs a new structure
to grow planar shapes. The difference is that we consider the concept
of scale only (see Fig. 3).

The scalability of shapes in our method is expressed through the
lightweight data structure defined by the following three points:
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Fig. 4. Confidence of multi-scale polygon.

(a) For the set of interior points of each primitive, the algorithm
projects the shape to the fitting plane, maps the 3D points to 2D
points, and calculates the smallest convex polygon 𝑃 for the 2D
point set on the plane.

(b) Each vertex of the convex polygon 𝑃 has the following two
attributes: the center of gravity on the straight-line 𝐿 formed by
the vertex, and the circle 𝐶 passing through the vertex with the
barycenter as the center.

(c) The growth of the convex polygon 𝑃 ′ is achieved by controlling
the radius of each circle to grow proportionally to the length of
its initial radius 𝑃 .

3.2.2. Confidence of multi-scale
We anticipate that the algorithm perceives the scalability of a

shape. Therefore, the expansion of planar convex polygons is defined
according to three scales(basic, tolerable expansion and detectable),
each of which is assigned a different confidence level.

The confidence level of a convex polygon decreases as its area
increases. The polygon with the smallest area has the highest confi-
dence in the basic scale; whereas, the polygon with the largest area
has the lowest confidence in the detectable scale. It is seen that the
ratio of the area between polygons with different confidence levels
becomes the key to measuring the expansion and contraction of a plane
primitive. The algorithm defines the missing scale coefficient 𝑘 of the
initial model, which is a user-defined percent parameter between 0
and 1. Three growth parameters correspond to the basic, tolerable and
detectable scales. In fact, we use the missing scale coefficient 𝑘 to
ensure that the growth of the three scale polygons is at the same scale.
In Section 4 (Experiments), the scales of the three levels are defined as
1.1𝑡, 1.4𝑡, 2𝑡, where 𝑡 = tan 0.65𝜋𝑘. We set the highest confidence to basic
scale, the lowest to detectable scale, and the confidence of the plane
primitive to 0 (see Fig. 4). The confidence of a point projected onto a
plane is equal to the confidence of the convex polygon with the smallest
area. For example, when a point is in a polygon with a tolerable scale,
but not in the polygon with a basic scale, its confidence is level 2.

3.2.3. Soft connected vertex
After calculating a multi-scale convex polygon for each planar prim-

itive, the algorithm computes the intersection points of all planar
primitives and adds them to the point set 𝑆. Each intersection point
is generated from the intersection of three planar primitives. If the
intersection point is outside the 3D bounding box of the initial model,
it will be discarded.

When the point set 𝑆 is obtained, the confidence level of each
intersection point will be calculated. Each intersection is formed by
305
Fig. 5. Intersection of three adjacent primitives.

Fig. 6. Two situations of triple planes’ intersection.

three planes (see Fig. 5). The intersection points are projected onto
three planes. The confidence of the intersection point is the sum of
the confidence of the three projection points. Actually, this step of
the method expresses the topological relationship of the three planar
primitives in space through the confidence level of the intersection. The
intersection points with higher confidence represent the closer spatial
relationship of the three planar primitives in real space.

(a) In Fig. 6(a), when the three planes cannot form a strong con-
nection relationship, the relationship in the space of the basic
scale polygon (the smallest convex polygon) formed by the three
planar primitives is assumed. Suppose two projection points fall
within a convex polygon with a tolerable scale, and one projection
point falls into a polygon of the detectable scale. In that case,
we consider that these three planes form a soft connection at this
time.

(b) In Fig. 6(b), a pair of planes in the three planes forms a strong
connection relationship. If two projection points fall within the
convex polygon of the detectable scale and one projection point
falls within the basic scale polygon, then we consider that these
three planes form a soft connection.

We use the topological relationship between the above two planes
in space as a threshold to prove whether an intersection is reliable or
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Fig. 7. Reconstruction result of Military Museum.
Fig. 8. Reconstruction result of Radisson Hotel.
not. The confidence of the intersection in the above two cases is 5. If
the confidence of the intersection is equal to or greater than 5, the
relationship will be judged as a soft connection. The maximum and
minimum confidence of intersections are 9 and 0, respectively. The
above cases list only the two threshold cases in the algorithm to judge
whether an intersection is reliable or not.

The soft connection relationships between the planes are encoded
into a planar graph, and all strong connection relationships satisfy the
conditions of the soft connection. Therefore, to form a soft-connected
graph, we add soft connection edges based on the strong-connected
graph.

3.3. Surface extraction

The generation of the final model is based on the formulation
of a binary linear programming problem (Papadimitriou and Stei-
glitz, 1982; Williams, 2009). To generate the set of candidate faces,
we improved the strategy of forming a building scaffold in Mesh
Polygonization (Bouzas et al., 2020).

The building scaffold is generated from a soft-connected graph,
where each simple cycle formed by three primitives in the soft-
connected graph represents a vertex. If there is a soft connection
between the plane primitives, the vertex is defined as a soft connection
node. Otherwise, the vertex is a strong connection node. The candidate
face set is generated by mapping through the planar primitives to the
building scaffold.

The indicator variable 𝑥𝑖 represents whether the candidate face
𝑓𝑖 is selected (𝑥𝑖 = 1) or not (𝑥𝑖 = 0). The indicator variables are
connected by minimizing the energy function under the constraints of
manifold and watertightness. The energy term of an indicator vari-
able is derived from the development of the energy term of Mesh
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Polygonization (Bouzas et al., 2020), which includes four aspects: face
coverage, data fitting, model complexity, and defect completion term.

Face coverage. The face coverage term is defined as based on the
area of the candidate face covered by the 𝛼-shape (Edelsbrunner et al.,
1983) formed by the initial triangular face.

𝐸𝑐 =
1

𝐴(𝑏𝑏𝑜𝑥)

𝑁
∑

𝑖=1
𝑥𝑖 ⋅ (𝐴(𝑓𝑖) − 𝐴(𝑀𝑎

𝑖 )) (1)

where 𝐴(𝑏𝑏𝑜𝑥) is the surface area of the bounding box of the input
model, 𝐴(𝑓𝑖) is the area of the candidate face 𝑓𝑖, and 𝐴(𝑀𝑎

𝑖 ) is the face
area covered by the 𝛼-shape formed by the initial model.

Data fitting. The data fitting term is related to the number of
triangular faces covering the candidate face.

𝐸𝑓 = 1 − 1
|𝐹 |

𝑁
∑

𝑖=1
𝑥𝑖 ⋅ 𝑠(𝑓𝑖) (2)

where |𝐹 | is the total number of faces in the initial model and 𝑠(𝑓𝑖) is
the number of faces covering the candidate face.

Model complexity. Model complexity term is related to the number
of corners and creases in the final model. This term is set to avoid gaps
and enforce large planar regions.

𝐸𝑚 = 1
|𝐸|

|𝐸|

∑

𝑖=1
𝑐(𝑒𝑖) (3)

where |𝐸| is the total number of edges in the final model. 𝑐(𝑒𝑖) is
an indicator function. When the selected adjacent candidate faces are
coplanar, the value is 0, otherwise 1.

Defect completion. The setting of the defect completion term is
related to the vertices of the candidate face generated by the soft
connection. Soft connections represent close spatial relationships that
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Fig. 9. Large curvature structure in the input model.

Fig. 10. 2D example of soft connection.

are not sufficiently detected by the initial model. The defect completion
item is more inclined to select candidate faces formed by soft connec-
tions. The premise of this term is based on the assumption that the
initial input model is defective.

𝐸𝑑 = 2𝑘(1 − 1
|𝐶|

|𝐶|

∑

𝑖=1
𝑥𝑖 ⋅ 𝑣(𝑓𝑖)) (4)

where |𝐶| is the total number of candidate faces. 𝑘 is the missing scale
coefficient, 𝑣(𝑓𝑖) is the weight of the vertex of candidate face 𝑓𝑖.

𝑣(𝑓𝑖) =
1
|𝑉 |

|𝑉 |

∑

𝑖=1
𝑤(𝑣𝑖) (5)

where |𝑉 | is the number of vertices of candidate face 𝑓𝑖; 𝑤(𝑣𝑖) is the
vertex weight. If the vertex on the candidate faces is a soft connected
vertex, then 𝑤(𝑣𝑖) is equal to 1, otherwise 0.

By minimizing the weighted sum of the energy as mentioned in
the above terms, a subset of the candidate face set is selected to
generate the final simplified model. Meanwhile, strong constraints
are required to ensure that the generated model has manifold and
watertight characteristics (Nan and Wonka, 2017), as given by Eq. (6).

min𝑥 𝜆𝑓𝐸𝑓 + 𝜆𝑐𝐸𝑐 + 𝜆𝑚𝐸𝑚 + 𝜆𝑑𝐸𝑑

𝑠.𝑡.
{∑

𝑗∈𝑁(𝑒𝑖) 𝑥𝑗 = 2 𝑜𝑟 0, 1 ≤ 𝑖 ≤ |𝐸|

𝑥𝑖 ∈ {0, 1}, 1 ≤ 𝑖 ≤ 𝑁
(6)

In the case where the initial input model has defects, the optimized
model calculated by the IP solver (Williams, 2009) still has an overall
profile.

4. Experiments

Dataset. We applied our method to the SUM Helsinki 3D dataset
(Gao et al., 2021), whose annotations are divided into six categories:
Ground, Vegetation, Building, Water, Vehicle, and Boat. To evaluate
our method, throughout the experiments, we collected 126 buildings
of various architectural styles.

The experimental data are divided into two categories: intact and
defective. The intact data are used to compare our algorithm with
existing advanced technology. The challenging data with flaws prove
the robustness of the method to missing data.
307
Implementation details. We implemented our method in C++
using the CGAL library (Alliez and Fabri, 2016), which provides the
basic geometric tools for mesh-data structures. The primitive detection
of all methods in an experiment uses the same standard methods from
the CGAL library. Also, all methods are optimized using the same
mathematical solver. The optimizer used in solving the final model is
SCIP solver (Vigerske and Gleixner, 2018). For the parameter settings,
𝜆𝑓 = 0.39, 𝜆𝑐 = 0.24, 𝜆𝑚 = 0.27, 𝜆𝑑 = 0.1. The percentage of user input
determines the missing scale coefficient. We designed that, when 𝑘 is
greater than 0.5, the initial data is considered not reliable enough. In
an experiment, there is no input greater than 0.5; therefore, the defect
completion term 𝐸𝑑 has a scale factor of 2, which expands the influence
of 𝑘 on the optimization.

4.1. Data without occlusion

To compare our methods with state-of-the-art methods, we chose (1)
PolyFit, which performs surface reconstruction by infinite partitioning
of space, and (2) Mesh Polygonization, which reconstructs a surface
using only the strong connectivity relations we have defined. These two
methods correspond to the two extreme cases of the algorithm, that is
the cases where the missing scale coefficients are 1 and 0, respectively.

Fig. 7 through Fig. 14 show the reconstruction results of six different
architectural styles under different methods. The Hausdorff distance
between two meshes (Guthe et al., 2005) is used as an indicator to
measure the difference between the reconstruction results of different
methods and the original model.

The building, Military Museum, (see Fig. 7(a)) is simple in overall
structure, but with geometric details. Our reconstruction results por-
tray the overall contours and attempt to generate (albeit not accurate
enough) geometric details (see Fig. 7(d)) that are missing in the other
models. This is also a point that the Mesh Polygonization reconstruction
results do not have (see Fig. 7(c)). Due to uneven ground, the small
plane formed on the ground significantly impacts the hypothetical
process of PolyFit, and the plane formed on the ground divides the
overall building and affects the partition result in Fig. 7(b).

Fig. 8 shows a building with a connecting corridor bridge. It is a
challenge for existing methods to reconstruct separated buildings while
retaining geometric details. The plane intersecting and plane confi-
dence of multiple buildings affect the reconstructed result of PolyFit,
and generate a less complex model (see Fig. 8(b)). The advantage
of our method is that an undetectable small plane can be abstracted
into a point by soft connection, maintaining geometric accuracy (see
Fig. 8(d)). However, in Mesh Polygonization, the number of planes
detected remains stable as the surface area of the input mesh increases
(see Fig. 8(c)).

Figs. 11 and 12 show two buildings with grooves and sharp ge-
ometric details. Comparison results of the two groups fully illustrate
the effectiveness of setting the missing scale coefficient. In Fig. 11(b)
and Fig. 12(b), PolyFit describes the overall structure; however, un-
necessary plane intersections produce wrong results, which is the main
problem of slice-based methods. Mesh Polygonization looks for effec-
tive closed loops in graph structures formed only by strong connectivity
relationships, and it is easy to lose the overall structure (e.g., groove
façade and cylindrical surface) (see Fig. 11(c) and Fig. 12(c)). When
the missing scale factor in Fig. 12(d) is adjusted, our results balance
the relationship between geometric details and the whole contour.
However, as shown in Fig. 11(d), there are still slight deviations.

Fig. 13 shows a building with sharp details with large curvature
at the joints and a simple overall structure. Moreover, we aim to
use building, Aallonkoti Hotel (see Fig. 13(a)), to illustrate why our
proposed method works well.

The plane detection algorithm has two basic parameters: the min-
imum fitting number of a single primitive and the tolerance distance
of the plane interior point. When a user reduces the two parameters,
more planes are detected. The disadvantage is that, when the surface
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Fig. 11. Reconstruction result of Aiko Mall.
Fig. 12. Reconstruction result of Sokos Mall.
Fig. 13. Reconstruction result of Aallonkoti Hotel.
Table 1
Quantitative evaluation for models presented on Figs. 7 to 14.

Building PolyFit (Nan and Wonka, 2017) Mesh Polygonization (Bouzas et al., 2020) Ours

Points (original) Faces (original) Primitives Points Faces Simplify (%) Primitives Points Faces Simplify (%) Primitives Points Faces Simplify (%)

Military Museum 6384 12447 14 347 340 2.7 85 151 262 2.1 85 292 580 4.6
Radisson Hotel 17414 34148 28 389 408 1.2 131 89 174 0.5 185 416 766 2.2
Aiko Mall 28460 56525 21 441 446 0.7 223 75 146 0.2 381 528 944 1.7
Sokos Mall 23927 47484 22 294 300 0.6 182 98 200 0.4 292 422 844 1.8
Aallonkoti Hotel 18050 35825 31 210 216 0.6 111 85 166 0.5 178 567 1130 3.1
Kluuvi Mall 27023 53577 28 592 640 1.2 161 113 222 0.4 244 717 1248 2.3
308
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Fig. 14. Reconstruction result of Kluuvi Mall.
Table 2
Quantitative evaluation for models presented on Figs. 7 to 14.

Method Military Museum Radisson Hotel Aiko Mall Sokos Mall Aallonkoti Hotel Kluuvi Mall

Time (s) RMS Time (s) RMS Time (s) RMS Time (s) RMS Time (s) RMS Time (s) RMS

PolyFit (Nan and Wonka, 2017) 2 1.93 249 2.56 431 6.61 321 4.23 181 2.43 232 3.57
Mesh Polygonization (Bouzas et al., 2020) 9 1.77 26 2.17 53 3.89 40 4.84 38 2.22 71 3.31
Ours 9.5 1.76 82 2.07 156 3.28 84 4.17 68 1.98 196 3.41
Fig. 15. Performances of surface reconstruction methods.

curvature of the input model is large, the model consists of more plane
primitives (see Fig. 9).

Each of the three algorithms removes a part of the planes by spec-
ifying the minimum fitting number of plane primitives to reduce the
influence of noise. Nevertheless, when users want to capture geometric
details with larger curvatures in the model, more planes must be added
to the calculation. Both our algorithm and Mesh Polygonization intro-
duce the concept of adjacency graphs. However, if strong connections
only are used, when the curvature is large, it is likely that an effective
closed-loop cannot be formed in the adjacency graph. Furthermore,
a strong closed constraint is used in the process of energy function
optimization. The emergence of this situation causes a part of the
output model to be missing (see results in Fig. 11(c) and Fig. 12(c)).
Our soft connection solves this problem well:

Fig. 10 is a two-dimensional example to describe how a soft con-
nection handles the under-detection problem. The blue border line
represents the primitive selected by the algorithm. The red line rep-
resents the planes whose interior points are less than the minimum
threshold or the missing data caused by occlusion. When only the
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strong adjacency relationship is used, the entire model cannot sat-
isfy the closed constraint; therefore, a watertight model cannot be
generated.

To generate a closed watertight model, our method calculates the
confidence of the red vertices and establishes soft connections for the
blue border lines. The function of the soft connection is apparent as the
algorithm abstracts the plane (red line), which has small-scale interior
points, into a point (red vertex) having the same adjacency relationship
with the plane. Alternatively, it can be viewed as a way to complement
missing data, thereby generating a geometric model with more detail.

The above is why our method deals well with the under-detection
of the data of primitives. In any case, the algorithm abstracts the unde-
tected planes into points (see Fig. 13). The number of early detection
planes also determines the LODs level of the generated model.

Fig. 14 shows a challenging building to test the performance of the
algorithm based on planar primitives when a large number of planes
is detected. PolyFit is very sensitive to the number of plane primitives.
The time efficiency of PolyFit increases exponentially with an increase
in the number of primitives. Thus, PolyFit abstracts only a rough
outline (see Fig. 14(b)). When our method deals with a large number of
planes, the number of soft connections increases exponentially with the
number of primitives, but optimization time is reduced. Although the
reconstruction result is not as good as the result of Mesh Polygonization
in terms of Hausdorff distance (see Fig. 14(c)), it is seen that our
method generates as many more geometric details as possible with
fewer errors (see Fig. 14(d)).

Table 1 shows the number of input planar primitives in different
methods. Based on the same time efficiency, our method handles a
larger number of input planes than the other two methods. PolyFit,
which relies significantly on a greedy slicing strategy, has an enormous
computational time cost. Mesh polygonization is fast and lightweight,
but is extremely limited by the quality of the input data. It can be seen
from the number of points and faces of the reconstructed model that
our algorithm obtains a high-precision model with accurate geometric
details, such as the building, Aallonkoti Hotel. The number of obtained
points and faces of the output model is two to three times that of other
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Fig. 16. Reconstruction results. From left to right: original model, detected primitives, reconstruction model, the visualization of the Hausdorff distance defined between the input
model and the result.
methods, and the error is smaller. The simplified ratio represents the
storage space ratio of the result to the input model. Because our method
is designed for retaining numerous geometric details, the ratio of our
reconstruction results, stable at about two percent, is slightly higher
than that of other algorithms.
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Timings.
Table 2 shows the time efficiency and root-mean-square error, in

different methods, calculated by Hausdorff distance. The limitation
of PolyFit is that the solution time for the energy function increases
exponentially with an increase in the number of initial plane primitive
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Fig. 17. Reconstruction of the Radisson Hotel when the number of primitives is
consistent.

Table 3
Comparison between our method with PolyFit and Mesh Polygonization in Fig. 17.

Method Primitives Strong connection Soft connection Time

PolyFit (Nan and Wonka,
2017)

155 – – ≥2 h

Mesh Polygonization
(Bouzas et al., 2020)

155 79 – 18 s

Ours 155 79 90 55 s

inputs. Fig. 15 shows the relationship between the calculation time
of the three algorithms and the number of initial detection primitives
when the fixed missing scale coefficient is 0.3. It is seen from Fig. 15
that the function of the soft connection we designed is to find an
essential balance between the goal of complementing missing data or
capturing more geometric details and time consumption. Theoretically,
the time efficiency of our proposed method completes high-precision
geometric detail reconstruction based on time efficiency infinitely close
to Mesh Polygonization.

Table 3 shows the time efficiency of our method and the other
two methods with the same number of input primitives. In comparison
experiments, for the case of Mesh Polygonization (Bouzas et al., 2020)
with the same number of input primitives as our method, the gener-
ated reconstruction results are often zero solutions due to the overly
complex strong connectivity graph. In particular, Fig. 17 shows the
reconstruction results. Note that the execution of PolyFit terminated
after two hours, so we cannot visually compare the results of PolyFit
(see Table 3 and reconstruction results). Compared with PolyFit and
Mesh Polygonization, our method sacrifices a little time efficiency but
improves the robustness of the accuracy to imperfect data.

4.2. Data with occlusion

Here, we consider only the semantically labeled meshes of ground
and buildings as input for the following two reasons: (i) The mesh that
ignores other semantic tags when used as algorithm input results in
the input building simulation missing due to occlusion; (ii) To achieve
more accurate and precise reconstruction, the algorithm is used as a
post-processing step for the result of semantic segmentation.

Fig. 16 shows the results of our method applied to seven buildings,
with varying degrees of data missing due to occlusion. The reconstruc-
tion difficulty of seven buildings with missing data ranges from low
to high. And building f and g do not have closed characteristics. Our
method does not use the hypothesis of PolyFit for building data with
missing data, i.e., the plane of the 3D bounding box is added to generate
easily a watertight model. Therefore, the planes detected by the input
model must intersect in space to form at least a closed space, which
can be seen from the reconstruction results of f and g.

Our proposed method, when used on missing data, cannot capture
the precise details of a structure. However, Table 4 shows that the time
efficiency is within an acceptable range when applied to models with
missing data. The final models generated all have the properties of
watertight and manifold. We still count the RMS error used to mea-
sure the difference between the reconstruction result and the original
model. However, due to the influence of vegetation data in the initial
model, the RMS error cannot fully measure the effectiveness of our
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Fig. 18. Reconstruction of the building by gradually increasing the ratio of the missing
scale coefficient.

algorithm. The reconstruction results of insufficient data meet only the
visualization requirements.

Effect of the missing scale coefficient.
Given the value of the degree of missing scale coefficients, the al-

gorithm generates results according to the specified parameters, which
also means that our method is susceptible to changing a missing scale
coefficient. Fig. 18 shows this process. When a missing scale coefficient
is gradually increased, the algorithm adds more soft connection vertices
to the final model. The whole process is considered an ‘‘association’’
process. To complete the model, the algorithm calculates according
to the specified parameters. We still record the Hausdorff distance
between the input and reconstructed results.It is seen that the error
increases as the coefficient increases.

Ablation study.
Fig. 19 shows the effect of the face coverage and the data fitting

terms under different coefficients. Note that the face covering term
tends to choose planes with high confidence; whereas, the data fitting
term expects all input data to be included in the computation of surface
extraction. The ratio of the coefficients of the two terms balances the
effect of noise on the reconstruction results. Fig. 19(b) shows that the
data fitting term tends to have low noise in the input data; however, the
reconstruction result produces some sharply wrong details due to noise.
The face coverage term in Fig. 19(c) prefers the input be highly noisy.
The reconstruction result contains only some high-confidence planes
and loses the overall contour. The validity of the regular term weights
used in the experiments has been verified in PolyFit (Nan and Wonka,
2017). Note that a wide range of weights produces the same results.

Fig. 20 shows the effect of the defect completion term. If the
weights of the edges in the connectivity graph are identical, then
our proposed method simply complicates the connectivity graph and
increases the time consumption compared to Mesh Polygonization. The
defect completion term is used to balance the weights of the edges with
different attributes in the connectivity graph. Actually, soft connection
has a higher rank in the connection graph, which means that the energy
term is inclined to select intersections formed by soft connections. This
makes the reconstruction method easier to complement the model.
To illustrate this feature, we added the ablation experiment shown
in Fig. 20. This preference also produces unnecessary errors, such as
building Aiko Mall. Thus, the selection of energy term coefficients also
minimizes the influence on the reconstruction results relative to other
energy terms (𝜆𝑑 = 0.1 in the experiment).

Although the algorithm requires the user to input only a missing
scale coefficient to cope with the absence of the model, the parameters
of the planar growth are still predefined. In fact, we found these
parameters must be determined by the point density of the input data
and the degree of data deficiency.
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Table 4
Statistics on the result presented in Fig. 16.

Building Points (original) Faces (original) Primitives Time (s) Points (simplified) faces(simplified) RMS

(a) Botanic Garden 6573 12607 38 2 33 62 1.08
(b) Residence 10113 19564 58 23 220 444 1.72
(c) Museum 14299 27920 64 27 175 346 3.03
(d) Company 6860 13173 59 4 43 82 2.17
(e) Museum 6995 13722 57 5 59 114 1.81
(f) Restaurant 23684 46460 74 18 225 446 2.44
(g) Archives 6351 12262 30 2 29 54 1.51
Fig. 19. Reconstruction results of Radisson Hotel under different energy coefficients.
Fig. 20. The effect of the defect completion term (reconstruction results of Sokos Mall).
We then decided to set the values of the two parameters separately.
The degree of missing data in the model is specified by the user. The
basic parameters of planar growth are adjusted empirically for datasets
with different point densities. To illustrate the principle of parameter
setting, we tried multiple combinations of scale parameters for the
current dataset (see results in Tables 5 and 6). As can be seen from
the tables, the values of the scale parameters directly affect the number
of soft connections formed. Moreover, the number of soft connections
is related to the time efficiency of the computation. Note that the time
efficiency of the algorithm is very sensitive to the choice of parameters.

In subsequent work, we will focus also on automatically determin-
ing parameters to improve the scalability of the proposed scheme.

The guidelines for parameter setting.
In order to obtain accurate reconstruction results, we provide a

reasonable parameter setting guideline to adjust the missing scale coef-
ficients. In Section 3.2.1, we calculate the convex polygons for planar
shapes, which means that the calculation is inaccurate for buildings
with non-convex polygons in the profile projection.

Fig. 21 shows a two-dimensional toy example for different param-
eters. In Fig. 21(a), the different colored line segments represent too
small planes or missing data. Fig. 21(b) shows that the confidence
level of the projected points is incorrectly increased when they fall into
the blue region. In Fig. 21(c), when the missing coefficient is small,
an under-segmented structure may be generated in the interior of the
input polygon. Such an error is found in Fig. 22(c). When the missing
coefficient is set larger, the generated over-segmented structure (see
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Fig. 21. Two-dimensional example of parameter setting. (a) Input plane primitives,
different color line segments represent different planes; (b) Convex polygon, the orange
dashed line represents the convex polygon of the plane shape, and the blue area
represents the area of confidence increase error; (c) Over-small parameters; (d) Suitable
parameters; (e) Over-large parameters.

Fig. 21(e)) is outside the input polygon due to the incorrectly increased
confidence of the projection points, just as the extended structure of the
error in Fig. 22(e).
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Table 5
Statistics on the result presented in Fig. 22.

Scale parameters (1.0, 1.1, 1.3) (1.0, 1.2, 1.6) (1.0, 1.3, 1.8) (1.1, 1.4, 2.0)* (1.1, 1.5, 2.2)

Soft connection 40 75 96 124 136
RMS 1.91 1.99 1.97 1.73 1.82
Time 14 s 73 s 101 s 152 s 206 s
Table 6
Statistics on the result presented in Fig. 22.

Scale parameters (1.1, 1.7, 2.4) (1.2, 1.4, 1.8) (1.2, 1.6, 2.4) (1.2, 1.7, 3.0) (1.2, 2.0, 3.5)

Soft connection 163 118 157 210 280
RMS 1.86 1.96 2.04 1.97 2.03
Time 354 s 110 s 410 s 1056 s ≥2000 s
Fig. 22. The effect of the plane scale parameters (k=0.3).
As shown in Fig. 22, the basic growth parameters in Section 3.2.2
are reliable for the current dataset, while avoiding the case of inability
to form an effective closed-loop in the connection graph (Fig. 22(c))
and plane overgrowth (Fig. 22(e)).

In summary, we can adjust the parameters reasonably by the po-
sition of the error structure generated by the reconstruction results
according to the following guidelines:

(1) The reconstructed results are initially obtained with the basic
parameters set on the dataset.

(2) By determining which of the generated errors corresponds to the
case in Fig. 21, the parameter size is adjusted directionally.

(3) The accurate reconstruction results are obtained by iterating
through step (2).

It is worth mentioning that for buildings with convex polygons in
the building profile projection, the missing scale coefficient has a wide
range to obtain the same results. The difference is only the computation
time (see results in Tables 5 and 6). Our future work will focus on
addressing the issues shown in Fig. 21.

Limitations.
At the same time, our simulation experiments tested the effect of our

method under extreme pressure. As shown in Fig. 23(a), the number
of points of the model is halved as input. It is seen that, although
the missing data is filled in the results, errors are also generated (see
Fig. 23(b)). The reason is that because the input to the algorithm has
only the missing scale coefficient, it cannot determine which part of the
data should be calculated and completed. The two planes in Fig. 23(c)
(pointed to by the red arrow) are considered to be complemented after
313
Fig. 23. Reconstruction under the limit of data defect.(a) Simulation model with flaws;
(b) Reconstruction model; (c) Detected primitives.

calculation. Generating this inaccurate structure is a major limitation in
the proposed method. This topology error is also captured on the roof
of Building Museum(c).

5. Conclusion

We proposed a novel building surface reconstruction method based
on the establishment of different connection relationships between
plane primitives. Our proposed method, based on the strong and soft
connection relationship we defined, rectifies the defect of not being
able to generate watertight models when a certain degree of data is
missing. The key lies in the soft connection relationship composed of
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four data structures. The experimental results fully demonstrate the
potential of the method in terms of time efficiency and accuracy.

The missing scale coefficient, which dramatically impacts the accu-
racy and time efficiency of the algorithm, also has certain limitations.
In future work, we aim to show that the algorithm automatically de-
termines the parameters. Improving the robustness of the algorithm to
noise will also be the focus of future work. By application, we anticipate
that our method can be combined with semantic segmentation, which
can be used as a post-processing step for semantic segmentation of large
scene meshes for surface reconstruction.
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