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A B S T R A C T

This paper presents a Convolutional Neural Network (CNN) approach for counting and locating objects in
high-density imagery. To the best of our knowledge, this is the first object counting and locating method
based on a feature map enhancement combined with a multi-sigma refinement of the confidence map. The
proposed method was evaluated in two counting datasets: trees and cars. For the tree dataset, our method
returned a mean absolute error (MAE) of 2.05, a root-mean-squared error (RMSE) of 2.87 and a coefficient
of determination (R2) of 0.986. For the car dataset (CARPK and PUCPR+), our method was superior to state-
of-the-art methods. In the these datasets, our approach achieved an MAE of 4.45 and 3.16, an RMSE of 6.18
and 4.39, and an R2 of 0.975 and 0.999, respectively. We conclude that the proposed method is suitable for
dealing with high object-density, returning a state-of-the-art performance for counting and locating objects.
1. Introduction

Neural networks have been widely used in different applications,
including ground source heat pump performance prediction (Esen et al.,
2017, 2008a, 2008b, 2008c, 2009), plastic waste (Kokoulin et al.,
2018), classifying cardiac arrhythmias (Castillo et al., 2012) and mon-
itoring wildlife (d. S. de Arruda et al., 2018). In particular, the task
of counting and locating objects in images have been the attention
of several approaches (Sindagi & Patel, 2018). These methods help
to control and count people (Idrees et al., 2018), support car detec-
tion (Hsieh et al., 2017), and even count bacterial colonies (Ferrari
et al., 2017). As expected, the majority of these methods are based
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on the well-known object detection task, including the recent methods
based on convolutional neural networks (Faster R-CNN (Ren et al.,
2017), Mask-RCNN (He et al., 2020), RetinaNet (Lin et al., 2020)),
multi-scale variants (Multi-Scale Structures (Ohn-Bar & Trivedi, 2017),
Multi-scale deep feature learning network (Ma et al., 2020), Gated
CNN (Yuan et al., 2019)) and ensembles of models (Xu et al., 2020).
Many object detection methods consider a bounding box (bbox) around
the targeted objects and can provide both location (center of the bbox)
and counting (number of bboxs). Recent contribution to this matter
is from Hsieh et al. (2017), where authors proposed, simultaneously,
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Layout Proposal Networks (LPNs) and spatial kernels to detect objects
in videos. These additions helped to improve the object counting and
location using an object detection framework. Still, even state-of-the-art
methods return bounding boxes that partially overlap multiple objects,
which is still a problem since the adjacent object region is detected as
a separate object (Goldman et al., 2019).

One of the biggest challenges regarding counting and location of
objects in images is the high-object density. Object detection methods
are, in general, not adequate for high-density scenes (Goldman et al.,
2019). In this scenario, overlapping objects are difficult to analyze
due to the size of the instances and the standpoint of the scene.
Thus, approaches that model the problem of counting objects with a
density estimation has been defined as state-of-the-art solutions, and
are providing interesting solutions for dense scenes (Aich & Stavness,
2018; Goldman et al., 2019). In Goldman et al. (2019), the authors
proposed a CNN-based detection method, using the bounding box, to
cope with densely packed scenes. They considered a layer to estimate
a quality score index and used a novel EM (Expectation–Maximization)
merging unit to solve the overlap ambiguities with this score. However,
handling high-density objects in images is still a concerning issue, both
in counting and locating objects.

Another problem regarding object count from detection frameworks
is the need of detailed ground-truth labeled data, which is hard to
obtain at large-scales (Russakovsky et al., 2015). Acquiring a large-
scale annotated data is a time-consuming process. Because of that,
approaches based on a lighter weight image label is something that
researchers have previously proposed Fiaschi et al. (2012), Zhang et al.
(2018). Still, recent studies are implementing point annotations to
reduce the supervision task (Aich & Stavness, 2018; Liu et al., 2019).
Point annotations are easier to obtain than bounding-boxes, and many
counting and locating approaches do not need to rely on them to
identify an object (Liu et al., 2019). These types of approaches can rely
on context information, and, for most problems, object instances will
share a similar color, texture, and shape; meaning that the method will
learn how to recognize them even if only using point features (Aich &
Stavness, 2018).

Recently, state-of-the-art methods to count objects include the VGG-
GAP and VGG-GAP-HR (Aich & Stavness, 2018) approaches, Layout
Proposal Networks (LPN) (Hsieh et al., 2017) and Deep IoU CNN (Gold-
man et al., 2019). These methods were applied in counting and locating
cars, crowds, biological cells and products from supermarket shelves,
returning impressive performances in high-density scenes. Despite the
promising results, scale variations, clutter background, occlusions, and
especially high-density of objects are still challenges that hinder meth-
ods of providing high-quality predictions. That way, in previous work,
we developed an initial model for the location and counting of Citrus-
trees in UAV multispectral images (Osco et al., 2020). This initial model
significantly surpassed methods for detecting objects such as RetinaNet
and Faster-RCNN.

In this paper, we present a method for counting and locating ob-
jects based on convolutional neural networks (Simonyan & Zisserman,
2015). The method is based on a density estimation map with the con-
fidence that an object occurs in each pixel, following Aich and Stavness
(2018). Unlike previous works that estimate a bounding box for each
object, the estimation of a density map allows a better refinement of the
occurrence of objects in each pixel of the image. Different from previous
work Osco et al. (2020), the proposed method uses a feature map
enhancement with a Pyramid Pooling Module (PPM) (Zhao et al., 2017)
that allows to incorporate global information at different scales. Con-
sequently, the proposed method incorporates sufficient global context
information for a good characterization of objects similarly to Zhang
et al. (2019) with its hierarchical context module. Thus, in this paper,
we hypothesize that this approach is most suitable for situations of
high object density, since it incorporates detection information in each
pixel with the density map and improves this learning with regional
2

information provided by the PPM module.
Another potential pitfall of previous methods is the missed detec-
tions due to object occlusion and high-density scenes. To compen-
sate for these problems, and produce the correct predictions, we also
propose a multi-sigma refinement over the ground-truth to provide
hierarchical learning of the object positions. The multi-sigma refine-
ment phase starts from a rough prediction of the object position to
a more refined prediction of the center of the object. Our hypothesis
is that this refinement allows the method to provide more assertive
predictions, decreasing the number of missed detections caused by
occlusion and high-density scenes. To incorporate these improvements,
we divided the proposed method into four main phases: (1) a feature
map generation using a Convolutional Neural Network (CNN); (2) a
global context insertion in the feature map using a Pyramid Pooling
Module (PPM); (3) a Multi-Sigma Refinement of the confidence maps;
and (4) object position estimation through peaks in the confidence map.

To verify the performance of the proposed approach, we performed
experiments in three image datasets in two challenging applications.
First, we perform a parameter evaluation in a tree counting dataset con-
taining 3,370 images and approximately 232,000 objects. This dataset
presents trees with irregular distribution and different growth stages,
different from our previous research (Osco et al., 2020). Once the
best parameters were defined, we evaluated the generalization of the
method in two car-counting benchmarks: CARPK and PUCPR+. For
that, we evaluated the proposed method with 13 other state-of-the-art
object detection methods.

2. Proposed method

This section describes our method to count and locate objects. This
method uses a three-channel image, with 𝑤 × ℎ pixels, as input, and
processes it with a CNN. The object counting and location is mod-
eled after a 2D confidence map estimation, following the procedures
presented in Aich and Stavness (2018).

The confidence map is a 2D representation of the likelihood of
an object occurs in each pixel. We improved the confidence map
estimation by including global and local information through a Pyramid
Pooling Module (PPM) (Zhao et al., 2017). We also proposed a multi-
sigma prediction phase to refine the confidence map to a more accurate
prediction of the center of the objects.

Fig. 1 illustrates the phases of the proposed method, which are
detailed in the following section. Our approach is divided into four
main phases: (1) feature map generation with a CNN (Section 2.1); (2)
feature map enhancement with the PPM (Section 2.2); (3) multi-sigma
refinement of the confidence map (Sections 2.3 and 2.4); and, (4) object
position obtention by peaks in the confidence map (Section 2.5).

2.1. Feature map using CNN

The first part of the proposed approach uses a convolutional neural
network to extract a feature map from a given input image (Fig. 1(a)).
The feature map is used to characterize the input image and allow the
confidence map estimation for the object detection task. This feature
map extraction module is based on the VGG19 (Simonyan & Zisserman,
2015), where the first two convolutional layers have 64 filters of a 3 × 3
size and are followed by a maximum pooling layer with a 2 × 2 window.
The last two convolutional layers have 256 filters with a 3 × 3 size.
All convolutional layers use the rectified linear units (ReLU) function,
with a stride of 1 and zero-padding, returning an output with the same
resolution as the input.

We evaluated two variations of our method for different input
images dimensions. The first variation receives an input image with
512 × 512 resolution and produces a feature map in the final layer
with 64 × 64 resolution. Proportionally, the second variation receives
an input images with 1024 × 1024 pixels, and the output feature map
has a resolution of 128 × 128. Despite the low resolution, this map can

describe relevant features extracted from the image.
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Fig. 1. Our method for the confidence map prediction using the Pyramid Pooling Module (PPM) and the multi-sigma refinement approach. The initial part (b), based on
VGG19 (Simonyan & Zisserman, 2015), extracts a feature map from the input image (a). This feature map is used as input for the PPM (c) (Zhao et al., 2017). The resulting
volume is then used as input to the first stage of a Multi-Sigma Stages (MSS) phase (d) (Aich & Stavness, 2018). The concatenation of the PPM and the prediction map of the
previous stage is used as input for the remaining stages. The 𝑇 stages apply a standard deviation (𝜎) for the confidence map peak, starting at maximum-to-minimum so that values
are spaced equally.
2.2. Improving feature map with Pyramid Pooling Module

Many CNN cannot incorporate sufficient global context information
to ensure a good performance in characterizing high-density objects.
To solve this issue, our method adopts a global and subregional context
module called PPM (Zhao et al., 2017). This module allows CNN to be
invariant to scale since it associates subregional and global information
in the feature map. Fig. 1(c) illustrates the PPM that combines the
features of four pyramid scales, with resolutions of 1 × 1, 2 × 2, 3 × 3
and 6 × 6, respectively.

The highest general level, shown in orange, applies a global max
pooling which creates a 1 × 1 feature map to describe the global image
context, such as the number of detected objects in the image. The
other levels divide the input map into subregions, forming a grouped
representation of the image with their subcontext information, as dense
or sparse regions.

The levels of the PPM contain feature maps with various sizes.
Because of this, we used a 1 × 1 convolution layer with 512 filters
after each level. We upsampled the feature maps to the same size as
the input map with bilinear interpolation. Lastly, these feature maps
are concatenated with the input map to form an improved description
of the image. This step ensures that small object information is not lost
in the PPM phase.

Although this module is proposed for semantic segmentation, it has
proven to be a robust method for counting objects according to our
experiments. The module allowed image information at different scales
and its global context to be grouped with the feature map for a better
description of the input image, improving the detection performance.
3

2.3. Multi-sigma refinement

In the multi-sigma refinement phase, the improved feature map
obtained by PPM is used as input for the 𝑇 stages that estimates the
confidence map. The first stage (Fig. 1(d)) receives the feature map
and generates the confidence map 𝐶1 by using five convolutional layers:
three layers with 128 filters with a 3 × 3 size; one layer with 512 filters
with a 1 × 1 size; and one layer with a single filter, corresponding to
the confidence map.

At a subsequent stage 𝑡 (Fig. 1(d)), the prediction returned by the
previous stage 𝐶𝑡−1 and the feature map from the PPM process are con-
catenated. They are used to produce a refined confidence map 𝐶𝑡. The
𝑇 −1 final stages consist of seven convolutional layers: five layers with
128 filters with a 7 × 7 size; and one layers with 128 filters with a 1 × 1
size. The last layers have a sigmoid activation function so that each
pixel represents the probability of the occurrence of an object (values
between [0, 1]). The remaining layers have a ReLU activation function.
Through the multiple stages, we proposed hierarchical learning of the
center of the object. The first stage roughly predicts the position, while
the other stages refine this prediction (Fig. 5).

To avoid the vanishing gradient problem during the training phase,
we adopted a loss function (Eq. (1)) to be applied at the end of each
stage.

𝑓𝑡 =
∑

𝑝
∥ �̂�𝑡(𝑝) − 𝐶𝑡(𝑝) ∥22, (1)

where �̂�𝑡 is the ground truth confidence map of the stage 𝑡 (Section 2.4).
The overall loss function is given by:

𝑓 =
𝑇
∑

𝑓𝑡 (2)

𝑡=1
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Fig. 2. Example of an RGB image and its corresponding ground-truth confidence maps with different 𝜎𝑡 values.
2.4. Generation of confidence maps

As mentioned in the previous section, to train our method, a con-
fidence map �̂�𝑡 is generated as a ground truth for each stage 𝑡 by
using the center of the objects as annotations in the image. The �̂�𝑡 is
generated by placing a 2D Gaussian kernel at each center of the labeled
objects (Aich & Stavness, 2018). The Gaussian kernel has a standard
deviation (𝜎𝑡) that controls the spread of the confidence map peak, as
shown in Fig. 2.

Our approach uses different values of 𝜎𝑡 for each stage 𝑡 to refine
the object center prediction during each stage. The 𝜎1 of the first stage
is set to a maximum value (𝜎𝑚𝑎𝑥) while the 𝜎𝑇 of the last stage is set
to a minimum value (𝜎𝑚𝑖𝑛). The appropriate values of 𝜎𝑚𝑎𝑥 and 𝜎𝑚𝑖𝑛
are evaluated in the experiments. The 𝜎𝑡 for each intermediate stage
is equally spaced between [𝜎𝑚𝑎𝑥, 𝜎𝑚𝑖𝑛]. The early stages should return
a rough prediction of the center of the objects, and this prediction is
refined in the subsequent stages.

Fig. 2 illustrates an example of a ground truth confidence map with
three values of 𝜎𝑡. Fig. 2(a) shows the RGB image and the locations
of each objected marked by a red dot. Fig. 2 (b, c, and d) present the
ground truth confidence maps for 𝜎𝑡 = 0.5, 1.0 and 1.5, respectively. In
our experiment, the usage of different 𝜎 helped refine the confidence
map, improving its robustness.

2.5. Object localization from confidence map

Object locations are obtained from the confidence map of the last
stage (𝐶𝑇 ). We estimate the peaks (local maximum) of the confidence
map by analyzing the 4-pixel neighborhood of each given location of
𝑝. Thus, 𝑝 = (𝑥𝑝, 𝑦𝑝) is a local maximum if 𝐶𝑇 (𝑝) > 𝐶𝑇 (𝑣) for all the
neighbors 𝑣, where 𝑣 is given by (𝑥𝑝 ± 1, 𝑦𝑝) or (𝑥𝑝, 𝑦𝑝 ± 1). An example
of the object location from the confidence map peaks is shown in Fig. 3.

To avoid noise or low probability of occurrence of the positions
𝑝, a peak in the confidence map is considered as an object only if
𝐶𝑇 (𝑝) > 𝜏. Besides that, we set a minimum distance 𝛿 to allows the
method to detect very close objects. After preliminary experiment, we
used 𝜏 = 0.35 and 𝛿 = 1 pixel, that allows the detection of objects from
two pixels of distances.

3. Experiments

3.1. Image datasets

To test the robustness of our method, we evaluated it in a new
and challenging dataset of eucalyptus tree images. We used this image
dataset because there are different tree plantation densities, ranging
from extreme cases to more sparsed trees (Fig. 4). This variation in
density is a challenge for counting and locating objects. The trees were
also at different growth stages. This permitted to evaluate the proposed
method in different scales (tree size) and changes in appearance.
4

The images were captured by an Unmanned Aerial Vehicle (UAV)
in a rural property in Mato Grosso do Sul, Brazil, over four different
areas of approximately 40 ha each. The eucalyptus trees were planted
at different spacing, the densest being at 1.25 m from each other, with
an average of 1750 trees per hectare. These trees were at different
growth stages, variating between high and canopy areas. The images
were acquired with an RGB sensor, which produced a pixel size of
4.15 cm. A total of four orthomosaic were generated from the area
of interest. Approximately 232,000 eucalyptus trees were labeled as a
point feature by a specialist.

To evaluate the robustness and generability of the proposed ap-
proach, we also compared the performance of our method in two
well-known image datasets for counting cars: CARPK and PUCPR+
benchmarks (Hsieh et al., 2017). We compare the prediction met-
rics with state-of-the-art methods such One-Look Regression (Mund-
henk et al., 2016), IEP Counting (Stahl et al., 2019), YOLO (Redmon
& Farhadi, 2017), YOLO9000 (Redmon & Farhadi, 2017), Faster R-
CNN (Ren et al., 2017), RetinaNet (Hsieh et al., 2017; Lin et al., 2020),
LPN (Hsieh et al., 2017), VGG-GAP (Aich & Stavness, 2018), VGG-
GAP-HR (Aich & Stavness, 2018) and Deep IoU CNN (Goldman et al.,
2019).

3.2. Experimental setup

The four orthomosaics were split into 3370 patches with 512 × 512
pixels without overlapping. These patches were randomly divided into
training (𝑛 = 2870), validation (𝑛 = 250) and testing (𝑛 = 250)
sets. For training the CNN, we applied a Stochastic Gradient Descent
optimizer with a momentum of 0.9. To reduce the risk of overfitting, we
used the validation set for the hyperparameter tuning on the learning
rate and the number of epochs. After minimal hyperparameter tun-
ing, the learning rate was 0.01 and the number of epochs was equal
to 100. Instead of training the proposed approach from scratch, we
initialized the weights of the first part with pre-trained weights in
ImageNet. Six regression metrics, the mean absolute error (MAE) (Chai
& Draxler, 2014; Wackerly et al., 2014), root mean squared error
(RMSE) (Chai & Draxler, 2014; Wackerly et al., 2014), the coefficient of
determination (R2) (Draper & Smith, 1998), the Precision, Recall, and
the F-Measure, were used to measure the performance. Training and
testing were performed in a desktop computer with Intel(R) Xeon(R)
CPU E3-1270@3.80 GHz, 64 GB memory, and NVIDIA Titan V Graph-
ics Card (5120 Compute Unified Device Architecture - CUDA cores
and 12 GB graphics memory). The methods were implemented using
Keras-Tensorflow on the Ubuntu 18.04 operating system.

4. Results and discussion

This section presents and discusses the results obtained by the pro-
posed method while comparing it with state-of-the-art methods. First,
we demonstrate the influence of different parameters, which includes
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Fig. 3. Example of the localization of eucalyptus trees from a refined confidence map.
Fig. 4. Examples of the tree dataset. The eucalyptus trees are at different growth stages and plantation densities.
the 𝜎 to generate the ground truth confidence maps, the number of
stages necessary to refine the prediction, and the usage of PPM (Zhao
et al., 2017) to include context information based on multiple scales.
Second, we compare the results with a baseline of the proposed method.
For this, we used the tree counting dataset and the car counting datasets
(CARPK and PUCPR+).

4.1. Parameter analysis

We present the results of the proposed method in the validation set
for a different number of stages on the tree counting dataset. These
stages are responsible for refining the confidence map. We observed
that by using two stages (𝑇 = 2), the proposed method already returned
satisfactory results ( Table 1). When increasing to 𝑇 = 4 stages, we
obtained the best result, with MAE, RMSE, R2, Precision, Recall and
F-Measure of 2.69, 3.57, 0.977, 0.817, 0.831, and 0.823, respectively.
These results indicate the multi-sigma refinement affect the object
counting tasks significantly. This is because the confidence map is
5

Table 1
Evaluation of the number of stages (𝑇 ) on the validation set of the tree counting dataset
using 𝜎𝑚𝑖𝑛 = 1 and 𝜎𝑚𝑎𝑥 = 3.

Stages (𝑇 ) MAE RMSE R2 Precision Recall F-Measure

2 2.86 3.82 0.974 0.809 0.825 0.816
4 2.69 3.57 0.977 0.817 0.831 0.823
6 3.48 4.61 0.962 0.805 0.836 0.819
8 2.90 3.79 0.974 0.816 0.823 0.818
10 3.32 4.25 0.967 0.789 0.796 0.790

refined in later stages, increasing the chance of objects be detect in
high-density regions. Thus, we verified that the increase in the number
of stages is decisive for a good refinement of the predictions. With 𝑇 = 6
or more stages we see that the performance stabilizes and begins to
decrease, due to the deepening of the layers.

We evaluated the 𝜎𝑚𝑖𝑛 and 𝜎𝑚𝑎𝑥 responsible for generating the
ground truth confidence maps implemented in the 𝑇 stages. In this
experiment, we adopt 𝑇 = 4 stages that achieved the best results from
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Table 2
Evaluation of the 𝜎𝑚𝑎𝑥 in the validation set of the tree counting dataset. We adopted
the 𝜎𝑚𝑖𝑛 = 1 and stages 𝑇 = 4.
𝜎𝑚𝑎𝑥 MAE RMSE R2 Precision Recall F-Measure

2 3.31 4.31 0.966 0.811 0.837 0.822
3 2.69 3.57 0.977 0.817 0.831 0.823
4 3.21 4.24 0.968 0.804 0.816 0.809

Table 3
Evaluation of the 𝜎𝑚𝑖𝑛 in the validation set of the tree counting dataset. We used 𝜎𝑚𝑎𝑥 = 3
and stages 𝑇 = 4.
𝜎𝑚𝑖𝑛 MAE RMSE R2 Precision Recall F-Measure

0.5 11.01 13.77 0.658 0.868 0.721 0.783
0.75 2.93 3.89 0.972 0.820 0.831 0.824
1 2.69 3.57 0.977 0.817 0.831 0.823
1.25 3.05 4.01 0.970 0.815 0.822 0.817
1.5 2.94 3.73 0.975 0.818 0.810 0.813

Table 4
Processing time evaluation of the proposed approach for different
amounts of 𝑇 .
Stages (𝑇 ) Average Time (s) Standard deviation

2 0.802 0.022
4 1.426 0.028
6 2.063 0.058
8 2.675 0.059
10 3.373 0.100

the previous experiment. The confidence map from the first stage is
generated using 𝜎𝑚𝑎𝑥, while the last stage uses 𝜎𝑚𝑖𝑛, and the inter-
mediate stages are constructed from values equally spaced between
[𝜎𝑚𝑎𝑥, 𝜎𝑚𝑖𝑛]. A low 𝜎, relative to the object area (e.g., tree canopy)
rovides a confidence map without correctly covering the object’s area.
owever, a high 𝜎 generates a confidence map that, while fully covers

he object, may include nearby objects in high-density conditions.
hese conditions make it difficult to spatially locate objects in the

mage.
The evaluation for 𝜎𝑚𝑎𝑥 is presented in Table 2. The highest result

as obtained with 𝜎𝑚𝑎𝑥 = 3, which best covers the tree-canopies
ithout overlapping them. Still, we observed that other values for 𝜎𝑚𝑎𝑥
lso returned good results. Since 𝜎𝑚𝑎𝑥 is used in the first stage, it does a
mall influence over the final result, since the confidence map is refined
n subsequent stages.

The results for the 𝜎𝑚𝑖𝑛 are summarized in Table 3. The 𝜎𝑚𝑖𝑛 has
reat influence over the final result since it is responsible for the last
onfidence map. The overall best result was obtained with a 𝜎𝑚𝑖𝑛 = 1.0,
hich achieved a MAE, RMSE, R2, Precision, Recall and F-Measure of
.69, 3.57, 0.977, 0.817, 0.831 and 0.823, respectively. This shows
hat the 𝜎𝑚𝑖𝑛 = 1.0 is the best fit for the size of the tree canopy.
he conducted experiments showed that, with appropriate values of
𝑚𝑎𝑥 = 3 and 𝜎𝑚𝑖𝑛 = 1, high performance for counting trees can be
btained ( Table 3).

To verify the potential of our method in real-time processing, we
erform a comparison of the processing time performance for different
mounts of stages (𝑇 ). Table 4 shows the processing time of the
roposed method for values of 𝑇 = 2, 4, 6, 8 and 10. For this, we used
00 images from the tree test set and extracted the average processing
ime and standard deviation. We used the values of 𝜎𝑚𝑖𝑛 = 1 and
𝑚𝑎𝑥 = 3 that obtained the best performance in the previous tests.
he results showed that the proposed approach can achieve real-time
rocessing. For the best configuration with stages 𝑇 = 4 the approach
an deliver an image detection in 1.42 s with a standard deviation of
.028.
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Table 5
Results of the proposed method and its baseline for the tree counting dataset.

Method MAE RMSE R2 Precision Recall F-Measure

Baseline (𝜎 = 0.5) 11.97 15.10 0.62 0.861 0.709 0.772
Baseline (𝜎 = 1.0) 2.85 3.72 0.977 0.814 0.833 0.822
Baseline (𝜎 = 2.0) 3.07 4.37 0.968 0.822 0.805 0.812

Baseline + PPM 2.44 3.38 0.981 0.825 0.836 0.829

Baseline + multi-sigma 2.78 3.64 0.978 0.808 0.833 0.819

Proposed Method 2.05 2.87 0.986 0.822 0.834 0.827

4.2. Tree counting

To analyze the design of the proposed architecture, we compared
it with a baseline model that does not include the PPM and the multi-
sigma refinement on tree-counting dataset. The overall best result with
just the baseline of the CNN was obtained with a 𝜎 = 1, returning an
MAE, RMSE, R2, Precision, Recall, and F-Measure equal to 2.85, 3.72,
0.977, 0.814, 0.833 and 0.822, respectively.

A gain in performance is observable when analyzing the results from
the inclusion of the PPM and multi-sigma refinement in the baseline (
Table 5). The inclusion of the PPM has no significant improvement for
the results, while the baseline with multi-sigma refinement achieves
better results. One explanation for this is that multiple stages provide
hierarchical learning of the object position, starting from a rough to a
more refined prediction of the center of the object. Examples of the con-
fidence map refinement across the stages are shown in Fig. 5. Besides,
when we implemented both these two modules, it outperformed all the
baselines results. This performance gain can be explained by the sharing
of the benefits that the two modules deliver, on the one hand the
PPM module delivers subregional and global information in the feature
map and the multi-sigma refinement uses this information to refine the
objects predictions throughout the stages. The results shows that the
combination of these two modules is essential to object counting.

We considered a region around the labeled object position to an-
alyze qualitatively the proximity of the prediction with the center of
the object. The results using the best configuration (𝜎𝑚𝑖𝑛 = 1.0, 𝜎𝑚𝑎𝑥
= 3.0, and 𝑇 = 4) is displayed in Fig. 6. The predicted positions are
represented by red dots, and the tree-canopies regions are represented
by yellow circles whose center is the labeled position. The proposed
method can correctly predict most of the tree positions. Another impor-
tant contribution is that planting-lines are also identified without the
need for annotation or additional procedure (Fig. 6(a)). Furthermore,
the proposed method can correctly identify trees even outside the
planting lines, in a non-regular distribution (Fig. 6(b)).

A comparison of the proposed method with both PPM and multi-
sigma refinement against the baseline is displayed in Fig. 7. The base-
line fails to detect some trees while returning some false-positives. The
proposed method is capable of detecting more difficult true-positives,
not detected by the baseline methods, with fewer false-negatives.

Although the proposed method returned a good performance for the
tree counting dataset, it also had some challenges (Fig. 8). The ‘‘far-
from-center’’ predictions occurred in short planting-lines (Fig. 8 (a)) or
in disperse vegetation. This also happened in highly dense areas (Fig. 8
(b)), although in fewer occurrences. Still, the proposed method was
capable of predicting the correct position of the majority of trees.

4.3. Density analysis

To verify the performance of the proposed approach for object
detection in different types of densities, we divided the tree dataset of
250 images into three density groups: low, medium and high. For this,
the images were ordered according to the number of trees annotated,
then the three groups were defined based on the quantities of trees in
a balanced way. The low corresponds to the images that have up to 52
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Fig. 5. Example of two images showing the confidence map refinement by our method.
Fig. 6. Comparison of predicted positions (red dots) in two images with different tree density.
plants, the medium between 53 and 78 plants, and the high above 78
plants. Thus, the sets of low, medium and high test images were left
with 83, 90 and 77, respectively.

Table 6 presents the results obtained by the proposed approach at
the three density levels. We can see that the approach does equally well
at each density level, obtaining better results at the low level achieved
an MAE, RMSE, R2, Precision, Recall, and F-Measure equal to 1.70,
2.34, 0.966, 0.818, 0.846 and 0.829, respectively.

Fig. 9 shows the visual results for plant detection at the three density
levels. We can see that the proposed approach is able to correctly detect
the centers of the plants, even in irregular plantings (see Fig. 9(a) and
7

Table 6
Results of the proposed method for different object densities.

Density level MAE RMSE R2 Precision Recall F-Measure

Low 1.70 2.34 0.966 0.818 0.846 0.829
Medium 2.10 2.85 0.865 0.824 0.829 0.826
High 2.38 3.36 0.843 0.823 0.826 0.824

(b)). In addition, as shown in Table 6 we can see that at the low level
the approach detects the plants positions more easily, since there is not
much overlap of the tree-canopies.
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Fig. 7. Comparison of the predicted positions of (a) the proposed method and (b) the baseline. Predicted positions are shown by red dots while tree-canopies are represented by
yellow circles. Blue circles show the challenges faced by the methods.
Fig. 8. Examples of the challenges faced by the proposed method.
4.4. Experiments on cars datasets

To generalize the proposed approach while comparing its robustness
against other state-of-the-art methods, we evaluated its performance in
two well-known benchmarks: CARPK and PUCPR+ (Hsieh et al., 2017).
These benchmarks provide a large-scale aerial dataset for counting cars
in parking lots. We adopted the same protocols for the training and
testing sets. The images have been resized to 1024 × 1024 pixels since
we obtained similar performance when using full-resolution images in
our approach.
8

To perform these experiments, we compare the proposed approach
with state-of-the-art methods: One-Look Regression (Mundhenk et al.,
2016), IEP Counting (Stahl et al., 2019), YOLO and YOLO9000 (Red-
mon & Farhadi, 2017), Faster R-CNN (Ren et al., 2017), RetinaNet
(Hsieh et al., 2017; Lin et al., 2020), LPN (Hsieh et al., 2017), VGG-GAP
and VGG-GAP-HR (Aich & Stavness, 2018), Deep IoU CNN (Goldman
et al., 2019), GSP (Aich & Stavness, 2019), Crowd-SDNet (Wang et al.,
2021) and GAnet (YuanQiang et al., 2020).
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Fig. 9. Examples of the performance of the proposed approach at different levels of object densities. Column (a) shows the results for low densities, (b) for medium densities and
(c) for high densities.
4.4.1. Experiments on CARPK dataset
The CARPK dataset (Hsieh et al., 2017) is composed of 989 training

images (42,274 cars) and 459 test images (47,500 cars). The number
of cars per image ranges from 1 to 87 in training images, and from 2
to 188 in test images.

Unlike the images of trees that we seek to cover its canopy, in the
car images the confidence map seeks to cover the surface of the vehicle
to correctly identify the objects. Table 7 presents the comparison with
state-of-the-art methods. We can see that recent approaches such as
Crowd-SDNet (Wang et al., 2021) and GAnet (YuanQiang et al., 2020)
reached a MAE of 4.95 and 4.61, and an RMSE of 7.09 and 6.55,
respectively. Traditional approaches such as Faster R-CNN, YOLO and
RetinaNet achieved a MAE of 24.32, 45.36 and 16.62, and an RMSE
of 37.62, 52.02 and 22.30. The proposed approach reached a MAE and
an RMSE of 4.45 and 6.18, in addition it had a Precision, Recall and
F-Measure of 0.767, 0.765 and 0.763, respectively.

Similar to this work, GSP (Aich & Stavness, 2019) also estimates
an activation map indicating the positions of the objects. Although
it obtains relevant results, the proposed method delivers a gain of
1.01 and 1.91 for MAE and RMSE, respectively. In Fig. 10 the visual
comparison of the activations generated by the GSP and the proposed
approach with its refinement in multiple stages is presented. We can
observe that following the quantitative results the proposed approach
delivers more refined predictions, achieving greater performance.

We observed that the proposed method achieved state-of-the-art
performance in counting cars. As shown in Fig. 11, the proposed
method improves the results by detecting more difficult true-positives.
Some cars are partially covered by trees or shadows (Fig. 11(a)) while
9

Table 7
CARPK comparative results.

Method MAE RMSE R2 Precision Recall F-Measure

One-Look Regression 59.46 66.84 – – – –
IEP Counting 51.83 – – – – –
YOLO 48.89 57.55 – – – –
YOLO9000 45.36 52.02 – – – –
Faster R-CNN 24.32 37.62 – – – –
RetinaNet 16.62 22.30 – – – –
LPN 13.72 21.77 – – – –
VGG-GAP 10.33 12.89 – – – –
VGG-GAP-HR 7.88 9.30 – – – –
Deep IoU CNN 6.77 8.52 – – – –
GSP 5.46 8.09 – – – –
Crowd-SDNet 4.95 7.09 – – – –
GAnet 4.61 6.55 – – – –
Proposed Method 4.45 6.18 0.975 0.767 0.765 0.763

others are partially occluded (Fig. 11(b)) at the edge of the images.
Our method was able to detect such cases. The PPM helped improve
the object representation, while the multi-sigma refinement provided a
better position in the center of the objects. These features, incorporated
in our approach, provide to be important additions for the detection of
objects in these challenging scenarios.

4.4.2. Experiments on PUCPR+ dataset
PUCPR+ (Hsieh et al., 2017) is a subset of the PUCPR dataset 1u

(de Almeida et al., 2015), and it is composed of 100 training images
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Fig. 10. Comparison of the activations generated by GAP and GSP approaches (first row) adapted from Aich and Stavness (2019), and by the multiple stages of refinement of the
proposed approach (second row).

Fig. 11. Car detection by the proposed method on the CARPK dataset. Figure (a) shows the detections in scenarios of occlusions by trees and shadows, while figure (b) shows
the cars partially hidden at the end of the image. Orange circles highlight challenging cases.
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Fig. 12. Car detection by the proposed method on the PUCPR+ dataset. Figure (a) shows the detections in scenarios from multiple distances between overlapping objects and
figure (b) shows the cars partially hidden by trees and at the end of the image. Orange circles highlight challenging cases.
Table 8
PUCPR+ comparative results.

Method MAE RMSE R2 Precision Recall F-Measure

YOLO 156.00 200.42 – – – –
YOLO9000 130.40 172.46 – – – –
Faster R-CNN 39.88 47.67 – – – –
RetinaNet 24.58 33.12 – – – –
One-Look Regression 21.88 36.73 – – – –
IEP Counting 15.17 – – – – –
VGG-GAP 8.24 11.38 – – – –
LPN 8.04 12.06 – – – –
Deep IoU CNN 7.16 12.00 – – – –
VGG-GAP-HR 5.24 6.67 – – – –
GAnet 3.28 4.96 – – – –
Crowd-SDNet 3.20 4.83 – – – –
Proposed Method 3.16 4.39 0.999 0.832 0.829 0.830

and 25 test images. The training and test images contain respectively
12,995 and 3920 car instances.

Table 8 presents the comparison with 12 state-of-the-art meth-
ods for the PUCPR+ dataset. Again, we note that the approaches
GAnet (YuanQiang et al., 2020) and Crowd-SDNet (Wang et al., 2021)
reached a MAE of 3.28 and 3.20, and an RMSE of 4.96 and 4.83,
respectively. In the same way as observed for the CARPK dataset, the
traditional approaches Faster R-CNN, YOLO and RetinaNet achieved
intermediate performances with MAE of 39.88, 130.40 and 24.58,
and an RMSE of 47.67, 172.46 and 4.58. This shows that traditional
methods of object detection are not suitable for dense scenes. The
proposed approach reached a MAE and an RMSE of 3.16 and 4.39, and
obtained a Precision, Recall and F-Measure of 0.832, 0.829 and 0.830,
respectively.

Fig. 12 presents the detections obtained by the proposed approach
on the PUCPR+ dataset. Due to the point of view of the camera, the
cars appear closer and distant in the same image. Thus, the results
help to assess the generalization of the approach to recognize objects
at different scales and with overlap (Fig. 12(a)). Since PPM adds
multi-scale information to objects and multi-sigma refines detections,
especially in highly dense areas, we see that the proposed approach
achieves good detections even in these challenging scenes. Following
11
the results in the CARPK dataset, the proposed approach achieves good
performance in occlusion situations (Fig. 12(b)).

5. Conclusion

In this study, we proposed a new method based on a CNN which
returned state-of-the-art performance for counting and locating objects
with a high-density in images. The proposed approach is based on a
density estimation map with the confidence that an object occurs in
each pixel. For this, our approach produces a feature map generated
by a CNN, and then apply an enhancement with the PPM. To improve
the predictions of each object, it uses a multi-sigma refinement process,
and the object position is calculated from the peaks of the refined
confidence maps.

Experiments were performed in three datasets with images contain-
ing eucalyptus trees and cars. Despite the challenges, the proposed
method obtained better results than previous methods. Experimental
results on the CARPK and PUCPR+ indicate that the proposed method
improves MAE, e.g., from 6.77 to 4.45 on CARPK and 5.24 to 3.16 on
database PUCPR+. The proposed method is suitable for dealing with
high object-density in images, returning a state-of-the-art performance
for counting and locating objects. Since this is the first object counting
and locating CNN method based on a feature map enhancement and
a multi-sigma refinement of a confidence map, other types of object
detection approaches may benefit from the findings presented here.

Further research could be focused on investigating the impact on ob-
ject counting for different choices of distribution (other than Gaussian)
used to generate the groundtruth confidence map. Predictions other
than the confidence map can also help in separating objects in high
density, such as predicting the boundaries obtained from the Voronoi
diagram.
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