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Abstract— Image dehazing is a common operation in
autonomous driving, traffic monitoring and surveillance.
Learning-based image dehazing has achieved excellent perfor-
mance recently. However, it is nearly impossible to capture pairs
of hazy/clean images from the real world to train an image dehaz-
ing network. Most of existing dehazing models that are learnt
from synthetically generated hazy images generalize poorly on
real-world hazy scenarios due to the obvious domain shift. To deal
with this unpaired problem arisen by real-world hazy images,
we present Cycle Spectral Normalized Soft likelihood estimation
Patch Generative Adversarial Network (Cycle-SNSPGAN) for
image dehazing. Cycle-SNSPGAN is an unsupervised dehazing
framework to boost the generalization ability on real-world
hazy images. To leverage unpaired samples of real-world hazy
images without relying on their clean counterparts, we design
an SN-Soft-Patch GAN and exploit a new cyclic self-perceptual
loss which avoids using the ground-truth image to compute
the perceptual similarity. Moreover, a significant color loss is
adopted to brighten the dehazed images as human expects.
Both visual and numerical results show clear improvements of
the proposed Cycle-SNSPGAN over state-of-the-arts in terms of
hazy-robustness and image detail recovery, with even only a small
dataset training our Cycle-SNSPGAN. Code has been available
at https://github.com/yz-wang/Cycle-SNSPGAN.
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I. INTRODUCTION

HAZE, as a common atmospheric phenomenon, unpre-
dictably damages the visual quality of images captured

by outdoor vision systems such as autonomous driving [1], [2],
unmanned aerial vehicles (UAVs) [3], traffic monitoring [4],
and surveillance [5]. Even top-performing vision approaches
of object detection, classification and tracking suffer from sig-
nificant accuracy degradations under hazy conditions. Image
dehazing is an essential prerequisite for bridging the gap
between hazy images and high-level vision tasks by enhancing
image quality.

Image dehazing aims at recovering the underlying clean
image from a hazy input. Current image dehazing techniques
fall into two categories, i.e., the prior-based and the learning-
based methods. Although both categories improve the overall
visibility, there are still many challenging yet unsolved prob-
lems. First, learning-based methods commonly develop CNNs
or other neural networks to restore degenerated hazy images
from hazy inputs via paired data. Such paired data in the
real world are difficult or even impossible to capture. Instead,
pairs of hazy/clean images can be generated by computing
a conventional atmospheric scattering equation with a known
transmission map and a global light map. However, the wis-
dom of training on fake synthesized data will degrade the net-
work’s ability to deal with real-world scenarios. Second, these
networks often introduce additional degradations such as the
loss of image details, low contrasts, and halos, since they tend
to overfit both synthesized and real hazy images, especially
when only a small amount of training samples is available.
Third, for the conventional prior-based methods, users have
to tweak parameters multiple times to determine their optimal
formulas. That means, users cannot apply filters without the
laborious parameter tuning process and automatically achieve
the optimal dehazing results.

Motivated by CycleGAN [10], we leverage unpaired data
to develop a unsupervised image dehazing network, such that
real-world hazy images can contribute to network training,
thereby better recovering the underlying background details
for the real-world hazy inputs. In view of this, we propose
a Cycle Spectral Normalized Soft likelihood estimation Patch
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Fig. 1. Image dehazed results on a real-world hazy image. From (a) to (f): (a) the input hazy image, and the dehazing results of (b) DCP [6], (c) AOD-Net [7],
(d) GCANet [8], (e) Cycle-Dehaze [9], and (f) our Cycle-SNSPGAN, respectively. Our Cycle-SNSPGAN can generate both haze-free and perceptually more
pleasing results.

Generative Adversarial Network (termed a Cycle-SNSPGAN)
for real-world image dehazing. Cycle-SNSPGAN is a unsuper-
vised dehazing framework which can boost the generalization
ability on real-world hazy scenarios. The critical component
of our framework is the proposed SN-Soft-Patch GAN, which
is an effective GAN that can leverage unpaired samples of
real hazy images for training. In detail, we employ a spec-
tral normalized GAN [11] and a patch discriminator [12]
to improve the training speed and stability of the network.
Also, we design a new soft likelihood estimation solution
to calculate the output of the discriminator. Moreover, dur-
ing the training process, we exploit the prior knowledge of
color information as a loss function to brighten the dehazed
images as humans expect, and develop a novel cyclic self-
perceptual loss to make the dehazed images more realistic.
Experiments on both synthetic datasets and real-world hazy
images demonstrate that our model outperforms the state-of-
the-art dehazing algorithms, even only a small dataset trains
our Cycle-SNSPGAN.

Cycle-SNSPGAN leverages the previous expertise, as well
as takes benefits from unpaired real-world training data. Fig. 1
exhibits image dehazing results of a real-world hazy image by
different approaches, where the proposed Cycle-SNSPGAN
produces much clearer and perceptually pleasing images, while
existing approaches introduce additional artifacts such as low
contrasts, halos, and haze residuals. Experiments on both
synthetic datasets and real-world hazy images validate that
our method performs favorably against the state-of-the-art
dehazing approaches.

In summary, the contributions of our method are mainly
four-fold.

• We propose an unsupervised real-world image dehazing
framework via unpaired data, called Cycle Spectral
Normalized Soft likelihood estimation Patch Genera-

tive Adversarial Network (Cycle-SNSPGAN). Collecting
practical unpaired samples of real-world hazy images for
training becomes possible, which boosts the network’s
generalization ability on unpredictable real-world hazy
images.

• To improve the clearness of dehazed images, we pro-
pose an effective GAN, namely, SN-Soft-Patch GAN,
which consists of a spectral normalized GAN, a patch
discriminator, and the proposed solution of soft likelihood
estimation.

• To preserve both large-scale structures and small-scale
details from the hazy images, we develop a new cyclic
self-perceptual loss to calculate the perceptual similarity
without knowing the ground-truth clean image. More-
over, we regard the color features of the hazy images
as prior knowledge, and introduce a color loss to make
the dehazed images more realistic.

II. RELATED WORK

In this section, we will introduce prior-based methods, and
the learning-based methods, followed by the application of
GANs in image dehazing.

A. Prior-Based Methods

Traditional prior-based methods resort to exploring several
hand-crafted priors to restore the hazy images [6], [13]–[15].
The most representative work is the Dark Channel Prior (DCP)
proposed by He et al. [6], which is based on the statistics of
the clear non-sky images and can estimate the transmission
map effectively. However, this prior is found to be unreliable
in some cases, such as hazy images with sky regions. After
that, many approaches have been designed to improve the
performance of image dehazing based on different assump-
tions [15], [16]. Besides, Fattal [17] develop a color-line prior
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for image dehazing based on the observation that the pixels
of clear images patches exhibit a 1-dimensional distribution.
Berman et al. [18] find that a haze-free image can be approx-
imated by several hundred distinct colors, and then propose
the non-local color prior (NCP) for image dehazing. Although
these methods have achieved success in image dehazing, these
priors often incur color distortions and users have to tweak
parameters multiple times to determine their optimal formulas.

B. Learning-Based Methods

With the rapid developments of CNNs, many learning-
based methods have been proposed for image dehazing [7],
[19]–[22]. Early methods mainly focused on estimating the
transmission map from input hazy images. For example,
Cai et al. [19] employ a coarse CNN to generate a holistic
transmission map of the hazy input, and then recover the haze-
free image via atmospheric scattering model. Ren et al. [21]
develop the MSCNN framework that first generates a coarse
transmission map and then refines the coarse result. However,
inaccurate transmission map estimation affects the quality of
dehazed results seriously. Recent learning-based methods learn
to directly generate the haze-free image from a hazy input
via supervised learning. AOD-Net proposed by Li et al. [7].
is the first model by using an end-to-end manner for image
dehazing, which reconstructs the atmospheric scattering model
and can output a haze-free image directly from a hazy image.
Qin et al. [20] propose a novel end-to-end feature fusion net-
work to directly restore the haze-free image, which is based
on the attention mechanism and performed well on the SOTS
(A benchmark dataset for testing dehazing results) [23]. Since
these methods always require enough paired data to train
the network, while such paired data are difficult to obtain.
In light of this, the learning-based methods are often trained on
synthesized hazy datasets. The gap between synthetic images
and real-world images degrades their ability to remove haze.

C. GANs in Image Dehazing

Inspired by the success of GANs in other image processing
tasks [24]–[26], Zhu et al. [27] first introduced the GAN in
the field of image dehazing. They develop a network for image
dehazing based on atmospheric scattering model and judge the
output by a vanilla discriminator. Later, a series of GAN-based
image dehazing works have sprung up [28]–[33]. Li et al. [30]
propose a conditional GAN to directly generate haze-free
results instead of solving the atmospheric scattering model.
Qu et al. [34] develop a novel GAN-based dehazing network
called EPDN, followed by a well-designed refiner without
any physical model. Since these methods require paired data
for training just like the learning-based methods, they have
poor ability in dealing with real-world hazy images. Most
recently, Zhu et al. [10] propose CycleGAN, which is a new
image-to-image translation architecture based on unpaired data
training. Motivated by this work, Engin et al. [9] develop the
enhanced CycleGAN, i.e., Cycle-Dehaze for unpaired single
image dehazing. Shao et al. [35] propose a novel domain
adaptation network for image dehazing based on CycleGAN,

which includes an image translation module and two image
dehazing modules.

III. CYCLE-SNSPGAN

Due to the gap between synthetic images and real-world
images, most learning-based dehazing methods learnt from
synthetic images usually fail in generalizing well to real-world
scenarios. To deal with this problem, we focus on learning
and distilling global structures and small scale details rather
than training the network on synthetic images with fake haze.
And the haze-free images are represented by the CycleGAN
under the guidance of unpredictable real-world haze condi-
tions. Since our method can leverage real-world hazy images
for network training, it will boost the generalization ability
on real-world scenes. In the following, Cycle-SNSPGAN is
introduced in detail including the overview, the architecture
of the network, the new soft likelihood estimation solution,
and the loss functions.

A. Overview

We propose Cycle-SNSPGAN to make full use of unpaired
images for network training and enhance the dehazing ability
on real-world scenarios. Cycle-SNSPGAN consists of two
generators (G A and G B ) and two discriminators (DA and DB ),
as demonstrated in Fig. 2. We adopt G A to map the hazy
images to haze-free images with DA in a cycle-consistent
manner. Similarly, G B is employed to map the haze-free
images to hazy images inversely. The discriminator DA and
DB are designed to make the images generated by G A and
G B have similar feature distributions with the target domain,
thus making the generated images more realistic. In addition,
our network in each domain shares the same network structure
but with different inputs.

The whole pipeline can be described as follows (see Fig. 2):
First, the unpaired hazy image x and haze-free image y are
fed to the network simultaneously. Then, the generators G A

and G B will map the input image to the fake haze-free image
y � and hazy image x � respectively, i.e., G A(x) → y � and
G B(y) → x �. After that, the discriminators DA and DB will
judge whether y � (or x � ) is a real image or a fake image
outputted by the generator, which will improve the quality of
the generated images. Next, we feed y � and x � to G B and G A

to generate the reconstructed hazy image x �� and haze-free
image y ��, respectively. In this way, the cycle-consistency loss
can be calculated by the reconstructed images and the input
images, and the network can be trained in a cycle manner.

Remark: The purpose of adversarial training is to promote
G A and G B to produce more realistic images. Thus we employ
DA and DB to judge y � and x � for adversarial training with
the generators. While in the training process, the parameters of
G A, G B , DA, and DB are usually updated separately in one
iteration. If the discriminators are employed to discriminate
the reconstructed images (i.e., x �� and y ��) simultaneously,
the parameters of DA and DB will be updated twice in one
iteration, and the update of the generators’ parameters will
also be affected. It is well known that the training of GAN
itself is very difficult, and updating the parameters twice may
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Fig. 2. Overview of Cycle-SNSPGAN. G A & G B are the generators, and DA & DB are the discriminators. G A is used to map the hazy input to the
haze-free image, while G B is used to map the clear input to the hazy image.

Fig. 3. The architecture of Cycle-SNSPGAN.

cause mode collapse, which further degrades the quality of the
final generated images. In addition, although it is technically
feasible to judge the reconstructed images (x �� and y ��), this
will result in a significant increase in computational complex-
ity. Therefore, it only needs to judge the output images once
in the training process for the purpose of adversarial training.

B. Network Architecture

Although CycleGAN is very effective, there are still some
problems in the training process, such as mode collapse and
convergence difficulties, which will degrade the quality of the
final dehazed images. To address these problems, we develop
a simple yet effective GAN, i.e., SN-Soft-Patch GAN, which
consists of three parts: a spectral normalized GAN, a patch

discriminator, and a novel solution of soft likelihood estima-
tion. We first introduce the spectral normalized GAN [11] in
the design of discriminator, which is an effective normalization
approach that can improve the stability of training. Next, the
patch GAN is employed to reduce the parameters of the model
and boost the convergence speed of network training. Then,
a novel soft likelihood estimation solution is proposed to
enhance the overall quality of the final dehazed images, which
will be described in the next subsection. Moreover, to further
improve the dehazing ability of the model, an up-to-date
attention mechanism (Frequency Channel Attention Network,
i.e., FCANet) proposed by Qin et al. [36] is introduced in our
network. Since G B and DB have the same architecture as G A

and DA , we only present the architecture of G A and DA,
which is illustrated in Fig. 3.

Authorized licensed use limited to: Jonathan Li. Downloaded on May 03,2022 at 23:42:46 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: Cycle-SNSPGAN: TOWARDS REAL-WORLD IMAGE DEHAZING VIA Cycle-SNSPGAN 5

Fig. 4. Residual blocks. The residual blocks assist the generator to extract
more complex features and remove haze.

1) Generator: The function of the generator is to generate
the dehazed images from the corresponding hazy images (G A),
or generate the hazy images from the corresponding haze-free
images (G B). Motivated by “U-Net” [37] and “ResNet” [38],
we develop an encoder-decoder network as the generator and
introduce the skip connections to avoid the problem of gra-
dient vanishing. As demonstrated in Fig. 3(a), the generator
can directly output the dehazed (hazy) images in an end-to-
end manner, which contains an encoding module, a feature
extraction module and a decoding module.

The encoding module is composed of an initial layer and
two down-sampling layers. Thus, the feature information of
the input hazy images can be encoded into the feature maps.
The feature extraction module consists of 9 residual blocks
(see Fig. 4), which can further extract more complex and
deeper features from the input features, and remove the haze
simultaneously. After the feature extraction, two up-sampling
operations and a T anh activation function are adopted in
the decoding module to output the final dehazed images.
Furthermore, as mentioned above, we introduce FCANet in
the design of the generator to enhance the performance of our
model.

Remark: Using more complex network architectures, such
as GNNs and Transformers [39], [40], possibly enhances the
dehazing performance of existing models. However, a light-
weight network is more desirable to deploy for image dehazing
tasks, due to the fact that the hardware and computing ability
of intelligent transportation systems (e.g., unmanned aerial
vehicles, intelligent vehicles) are usually limited. Therefore,
we employ a simple yet effective ResNet-based generator to
achieve a better parameter-performance trade-off.

2) Attention Mechanism: In view of the fact that in a
hazy image with uneven haze distribution, we always want
to dehaze the hazy regions rather than the haze-free regions,
thereby making the output image have good visibility. Since
the attention mechanism has been widely used to improve
the performance of the neural networks [41]–[43]. Inspired
by a recent work [36], we adopt FCANet in the design of
the generator and the residual blocks to improve the dehazing
ability of our model, as shown in Fig. 3(a) and Fig. 4. FCANet
combines the channel attention mechanism with the Discrete
Cosine Transform (DCT) cleverly, and expands on the basis
of SENet [43] to obtain a new multi spectral channel attention
mechanism.

FCANet enables our model to learn the weights from differ-
ent feature maps adaptively, thus boosting the dehazing ability
of the network. Moreover, after the introduction of FCANet,

Fig. 5. Image dehazing results on the NH-HAZE dataset [44]. Cycle-
SNSPGAN can effectively remove haze in the uneven haze distribution
scenarios.

the results of ablation study indicate that the performance of
the proposed model can be improved significantly. We test the
proposed Cycle-SNSPGAN on the NH-HAZE dataset [44],
to better understand its performance of solving the uneven
haze distribution scenarios. As illustrated in Fig. 5, our
Cycle-SNSPGAN can remove the unevenly-distributed haze
effectively.

3) Discriminator: For adversarial training, the discriminator
is constructed in a fully convolution fashion and a novel SN-
Soft-Patch discriminator is proposed to improve the perfor-
mance of the vanilla patch discriminator. As demonstrated in
Fig. 3(b), we first design a spectral normalized convolutional
layer instead of the traditional convolutional layer to make the
training process more stable. Next, we employed 4 non-linear
ReLU layers, 3 instance normalization layers, and a sigmoid
activation function to output a 64 × 64 patch. Finally, the
values of these patches will be employed to judge whether the
input image is a real image or a fake image generated by G A.
Additionally, to further enhance the quality of the final dehazed
images, we propose a novel soft likelihood estimation solution
to calculate the output of these patches. The proposed method
can enhance the discriminating ability of the discriminator,
thus promoting the generator to output higher quality images.

C. Soft Likelihood Estimation Solution

Inspired by Versteegen et al. [45], we develop a new solu-
tion to compute the final output of the patch discriminator
rather than directly calculating the average of all patches. The
proposed soft likelihood estimation solution can encourage the
discriminator to focus on the detailed features of the input
images, thus improving the overall quality of the final dehazed
images. Specifically, we first obtain the weight matrix by
calculating the proximity of each patch to the lowest patch
likelihood. Here, the SoftMax/SoftMin functions are used to
smooth the max/min objective functions while solving the
weight matrix. After that, we multiply the weight matrix on
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each patch with the corresponding likelihoods and sum them
to produce the final output. Finally, the output will be judged
for the input image, whether it is a real or fake image. In this
way, the discriminator will pay more attention to the variations
in the low probability regions, and the generator will produce
images with rich details. The specific calculation process can
be expressed as formula (1):

P =
∑

i

(Wi × ln li ), (1)

where

Wi = eα×ln li
∑

i eα×ln li
. (2)

In the above formulas, P is the final output of the discrim-
inator, i denotes each patch in the discriminator, l represents
the patch-region likelihoods, Wi denotes the weight-matrix
and α represents the SoftMax or SoftMin operations during
the weight-matrix calculation. We set α to 1 to calculate the
SoftMax function and −1 to calculate the SoftMin function.

D. Loss Functions

Different with most existing dehazing solutions, we com-
prehensively consider all the positive factors that can enhance
the quality of the final dehazed images and make them much
clearer and more realistic. Therefore, we exploit a comprehen-
sive loss that contains adversarial loss, cycle-consistency loss,
identity loss, color loss, the Total Variation (TV) loss, as well
as the new cyclic self-perceptual loss, which is formulated as

LT otal = λ1 Ladv(G)+ λ2 Lcyc + λ3 Lide + λ4 Lcolor

+λ5Ltv + λ6 Lsel f −per . (3)

1) Adversarial Loss: The adversarial loss is employed to
match the distribution of the generated images with the data
distribution in the target domain. We adopt the Least-Squares
GAN loss [46] to improve the stability of the training process
and enhance the quality of the generated images. The defini-
tion of adversarial loss is shown in the following formulas:

Ladv(G) = EG A(x)∼Pf ake

[
(DA (G A(x))− 1)2

]

+EG B(y)∼Pf ake

[
(DB (G B(y))− 1)2

]
, (4)

Ladv (DA) = Ey∼Preal

[
(DA(y)− 1)2

]

+EG A(x)∼Pf ake

[
(DA (G A(x)))

2
]
, (5)

Ladv (DB) = Ex∼Preal

[
(DB(x)− 1)2

]

+EG B(y)∼Pf ake

[
(DB (G B(y)))

2
]
, (6)

where G A(x) and G B(y) are the fake haze-free and hazy
images generated by G A and G B , respectively.

2) Cycle-Consistency Loss: Thanks to the cycle-consistency
loss, it is possible to collect practical unpaired samples of real
hazy images for training. The cycle consistency loss can be
expressed by formula (7):

Lcyc = Ex∼Pdata(X)

[�(G B (G A(x))− x)�1
]

+Ey∼Pdata(Y )

[�(G A (G B(y))− y)�1
]
, (7)

where G B(G A(x)) and G A(G B(x)) are the reconstructed hazy
and haze-free images respectively. The purpose of cycle-
consistency loss is to make the reconstructed images match
closely to the original input images, i.e., G B(G A(x))≈x , and
G B(G A(x))≈y.

3) Identity Loss: Besides the adversarial loss and cycle-
consistency loss, we adopt the identity loss to make the images
generated by the generator consistent with the tone of the input
images, which is shown as the following formula (8):

Lide = Ey∼Pdata(Y )

[�(G A(y)− y)�1
]

+Ex∼Pdata(X)

[�(G B(x)− x)�1
]
. (8)

The identity loss can make the output image have the same
structure as the input image, thus improving the quality of
the final generated image. We surprised find that the identity
loss is very helpful to enhance the details of the dehazed
images, while many image-to-image translation works pay
less attention to employing this loss function in the training
process [9], [47], [48].

4) Color Loss: In light of the fact that the brightness
and contrast of hazy images are usually lower than haze-
free images, we regard this common phenomenon as prior
knowledge, and introduce the color loss [49] to measure the
color difference between the dehazed images and haze-free
images. This loss function can brighten the dehazed images
as humans expect, thus making the dehazed images more
realistic. To this end, we first employ a Gaussian filter over
the dehazed image and haze-free image to obtain the blur
representations, and then the mean squared error between them
is computed by the following formula (9):

Lcolor = M SE(G A(x)blur , yblur ), (9)

where G A(x)blur and yblur are the blurred images of G A(x)
and y, respectively. Since we mainly focus on image dehazing,
color loss is only utilized on G A. Fig. 6 exhibits three real-
world hazy samples and the corresponding dehazing results
obtained by the proposed Cycle-SNSPGAN. As observed,
the introduction of color loss enables Cycle-SNSPGAN to
produce both brighter and more realistic images. Also, Cycle-
SNSPGAN has a certain capability of color correction.

5) Total Variation Loss: In order to remove the noise of the
generated images and make them much clearer, we introduce
the TV loss [50] to enforce spatial smoothness of the generated
images, which is shown as follows:
Ltv = � ∇x G A (x) + ∇y G A (x) �1

+�∇x G B (y) + ∇y G B (y) �1, (10)

where ∇x and ∇y denote the horizontal and vertical differ-
ential operation matrices, respectively. This loss function can
improve the quality of the generated images and make them
much clearer.

6) Cyclic Self-Perceptual Loss: The above loss functions
cannot recover all the texture information from the hazy image,
especially in the case of thick haze. Inspired by [51] and [52],
we propose a novel cyclic self-perceptual loss to preserve both
large-scale structures and small-scale details from hazy input.
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Fig. 6. Image dehazing results on the real-world hazy images by the proposed
Cycle-SNSPGAN. Our approach can produce both brighter and more realistic
images.

Different from the vanilla perceptual loss, our training
process is based on a unsupervised learning framework without
ground-truth images to calculate perceptual similarity. There-
fore, we propose to directly measure the perceptual similarity
between the dehazed result and the corresponding hazy input,
rather than the ground-truth image. This perceptual similarity
can make the dehazed image have similar structure and texture
features to the input image, so that more detailed features
can be preserved. We calculate the perceptual loss in a cyclic
manner, i.e., the perceptual similarities of G A(x) and G B(y)
are calculated simultaneously. According to the deep features
extracted by a pre-trained VGG network, the perceptual sim-
ilarities are calculated by the following formula (11):

Lsel f −per = �ψ( G A (x)) − ψ(x) �1

+�ψ( G B (y)) − ψ(y) �1, (11)

where ψ(.) denotes the feature maps extracted from the 2nd

and 5th pooling layers within the VGG-16 network pre-trained
on ImageNet. To verify the use of cyclic self-perceptual
loss that can effectively remove thick haze, the Dense-Haze
dataset [53] is employed to qualitatively evaluate the proposed
Cycle-SNSPGAN, as shown in Fig. 7. Although there is still
a little haze left in the scene, most of the thick haze has been
removed and the visibility of the image has been considerably
improved.

IV. EXPERIMENT

A. Implementation Details

1) Dataset: Since Cycle-SNSPGAN is trained in an unsu-
pervised learning manner, the real-world hazy images can be
chosen for training. We randomly choose unpaired hazy and
haze-free images from OTS (Outdoor Training Set), RTTS

Fig. 7. Image dehazing results on the Dense-Haze dataset [53]. The proposed
Cycle-SNSPGAN can effectively remove thick haze.

(Real-world Task-driven Testing Set) and URHI (Unannotated
Real Hazy Images) from RESIDE dataset [23] as our training
set. In detail, the training set is composed of 3000 hazy
images chosen from RTTS and URHI respectively. For haze-
free images, since there are no haze-free images in RTTS and
URHI, we train G B by randomly choosing 6000 images from
OTS. Although the dataset is very small, the final dehazing
results of the model are favorably compared to the results by
the learning-based methods training on the entire ITS dataset
(Indoor Training Set, containing 100000 indoor hazy/haze-free
image pairs).

2) Training Details: We implement our network using
Pytorch 1.5 on a system with Intel Xeon E5-2698 v4 CPU
and NVIDIA Tesla V100 GPU. For accelerating the training
procedure, Cycle-SNSPGAN is trained by the Adam optimizer
with a batch size of 2, where the momentum parameters β1 and
β2 take the values of 0.5 and 0.999, respectively. The initial
learning rate l is set to 2 × 10−4 for both generators and
discriminators. Since GANs are difficult to train, we fix l
during the first 100 epochs of training, and decay l to 0 linearly
in the next 100 epochs. In the following experiments, the loss
weights are set with λ1 = 1, λ2 = 10, λ3 = 5, λ4 = 0.5,
λ5 = 0.5 and λ6 = 5. For all these loss weights, a large
number of experiments are performed to ensure their optimum
values.

In addition, we also find that the quality of the generator’s
output will be degraded due to the strong ability of SN-Soft-
Patch discriminator. Therefore, the network training is divided
into the following two stages: we first use the traditional
patch discriminator to train the generator, and then add the
soft likelihood estimation solution after the generator becomes
stable. It is worth noting that, by experiments, the model
has the best performance when the soft likelihood estimation
solution is added after the 28th epoch.

3) Evaluation Settings: The proposed method is compared
quantitatively and qualitatively with several previous state-
of-the-art approaches. These methods can fall into three
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TABLE I

QUANTITATIVE COMPARISON (PSNR/SSIM) OF VARIOUS STATE-OF-THE-ART IMAGE DEHAZING APPROACHES ON SYNTHETIC
DATASETS. OUR CYCLE-SNSPGAN PERFORMS FAVORABLY AGAINST OTHER DEHAZING ALGORITHMS

TABLE II

QUANTITATIVE COMPARISONS (NIQE/BRISQUE/SSEQ/FADE) WITH
SOTAS ON THE HSTS DATASET. RED AND BLUE COLORS ARE USED

TO INDICATE THE 1st AND 2nd RANKS, RESPECTIVELY

categories: prior-based, supervised-based and unsupervised-
based. For prior-based methods, we compare with DCP [6],
BCCR [15] and NCP [18]. For supervised-based approaches,
we compare with MSCNN [21], AOD-Net [7], GFN [56],
DCPDN [29], GCANet [8], EPDN [34], MSCNN-HE [55],
GFN-IJCV [56], and Interleaved CSF [57]. For unsupervised-
based methods, we compare with CycleGAN [10], Cycle-
Dehaze [9], Dehaze-GLCGAN [47], LIGHT-Net [58], Deep
DCP [59], and a more recent unsupervised and untrained
image dehazing framework YOLY [60]. Both the SOTS (Syn-
thetic Object Testing Set) and HSTS (Hybrid Subjective Test-
ing Set) from RESIDE are employed as the test set. We adopt
average Peak Signal to Noise Ratio (PSNR) and Structural
Similarity index (SSIM) for quantitative evaluation of the
recovered images, which are the most widely used image
objective evaluation indexes. PSNR is employed to evaluate
the quality of an image compared to the original image after
processing, while SSIM is employed to measure image sim-
ilarity from three aspects: brightness, contrast, and structure.
Larger values of PSNR or SSIM usually indicate better results.

Additionally, we utilize four well-known no-reference
image assessment metrics to further measure the quality

of dehazed images from multiple perspectives, including
NIQE [61], BRISQUE [62], SSEQ [63], and FADE [64]. Both
NIQE and BRISQUE are used to assess the overall quality
of the given images, and lower values indicate better results.
SSEQ assesses image quality by computing the entropy in
the spatial and frequency domains of image patches, while
FADE is a criterion for evaluating the haze density of the
given images.

B. Comparison Results

1) Comparison on Synthetic Dataset: Fig. 8 and Fig. 9
show qualitative comparisons on synthetic outdoor images
from SOTS and HSTS. Since the real-world haze always exists
outdoors, we mainly focus on the dehazing of outdoor datasets.
DCP tends to cause color distortions and introduce artifacts
in the sky regions, which affects the visibility of dehazing
images. For AOD-Net, GCANet and Deep DCP, although they
have largely overcome the problem of color distortion, none
of them can remove the haze completely. Although Cycle-
Dehaze succeeds in removing the haze to a certain extent,
it also causes color distortion and introduces halo artifacts into
the whole image. Compared with these state-of-the-arts, the
Cycle-SNSPGAN can generate much clearer dehazed images
with perceptually pleasing.

Moreover, the averaged PSNR and SSIM of all networks are
reported for quantitative evaluation, as shown in Tab. I. For
all the compared methods, we either retrain their models on
the entire ITS dataset or directly adopt the pre-trained models
provided by the authors for evaluation. It is obvious that our
Cycle-SNSPGAN outperforms other state-of-the-arts in terms
of PSNR. We also achieved impressive performance in terms
of SSIM. Although the Cycle-SNSPGAN is only trained on
6000 unpaired image pairs, it exhibits better on SOTS and is
generalized smoothly on HSTS.
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Fig. 8. Image dehazing results on the SOTS outdoor dataset. From (a) to (h): (a) the hazy image, and the dehazing results of (b) DCP [6], (c) AOD-Net [7],
(d) GCANet [8], (e) Cycle-Dehaze [9], (f) Deep DCP [59], (g) our Cycle-SNSPGAN, respectively, and (h) the ground-truth image. Our Cycle-SNSPGAN
can produce much clearer results with less color distortion and fewer artifacts.

Fig. 9. Image dehazing results on the HSTS dataset. From (a) to (h): (a) the hazy image, and the dehazing results of (b) DCP [6], (c) AOD-Net [7],
(d) GCANet [8], (e) Cycle-Dehaze [9], (f) Deep DCP [59], (g) our Cycle-SNSPGAN, respectively, and (h) the ground-truth image. Our Cycle-SNSPGAN
can generate much clearer dehazed images with perceptually pleasing.

In addition to PSNR and SSIM, we also report the aver-
aged NIQE, BRISQUE, SSEQ, and FADE for a comprehen-
sive evaluation of different dehazing methods, as exhibited
in Tab. II. Obviously, Cycle-SNSPGAN outperforms other
dehazing algorithms in terms of NIQE and BRISQUE, which
indicates that the overall quality of the images restored by our

method is better. Although compared with DCP and Cycle-
Dehaze, our Cycle-SNSPGAN is not the best in terms of SSEQ
and FADE, it still achieves impressive performance and ranks
second among the eight dehazing approaches.

2) Comparison on Real-World Hazy Images: We also com-
pare our approach with several state-of-the-art methods on
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Fig. 10. Image dehazing results on the real-world hazy images. From (a) to (g): (a) the input hazy image, and the dehazing results of (b) DCP [6],
(c) AOD-Net [7], (d) GCANet [8], (e) Cycle-Dehaze [9], (f) Deep DCP [59], and (g) our Cycle-SNSPGAN, respectively. Our Cycle-SNSPGAN can produce
both clearer and more realistic dehazing results.

Fig. 11. The dehazing results tested on the Google Cloud Vision API. From (a)-(c): (a) label detection result in the real-world hazy image, (b) label detection
result after dehazing by our Cycle-SNSPGAN, and (c) the averaged confidences in recognizing haze from 30 sets of the real-world hazy images and dehazed
images of DCP [6], AOD-Net [7], GCANet [8], Cycle-Dehaze [9], and our Cycle-SNSPGAN, respectively.

real-world hazy images (the ground-truth image is not avail-
able). Fig. 10 illustrates five real hazy samples and the cor-
responding dehazing results obtained by different algorithms.
Similar to the results in Fig. 8 and Fig. 9, the dehazing results
in Fig. 10 generated by DCP lead to color distortion, which
makes the dehazed images look darker. The results of AOD-
Net, GCANet, and Deep DCP still contain the haze residuals.
For Cycle-Dehaze, the dehazed images look darker and have
significant artifacts. In contrast, our Cycle-SNSPGAN can
generate both haze-free and perceptually pleasing images.

To better understand the performance of the proposed
method on real-world images, the Google Cloud Vision
API is applied to evaluate the dehazing results. Specifi-
cally, we employ Vision API to test 30 sets of real-world
hazy images and dehazed images of our method and several

dehazing approaches [6]–[9]. As illustrated in Fig. 11, when
the hazy images are dehazed by the Cycle-SNSPGAN, the
confidences of Vision API in recognizing haze are reduced
significantly. Moreover, our method can effectively remove the
haze in the real world and performs well against the other
approaches.

Additionally, we further conduct the user study to quanti-
tatively evaluate the performance of real-world haze removal.
Specifically, we first prepare for 30 real-world hazy images
randomly selected from the RTTS dataset (different from our
training set). Then, we employ several state-of-the-art dehaz-
ing approaches to remove the haze from these 30 images. After
that, 10 participants with 5 females and 5 males are asked to
score the dehazing results on a scale from 1 (worst quality)
to 5 (best quality). For each participant, we present him/her
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Fig. 12. Visual results of ablation studies. From (a) to (h): (a) the input hazy image, and the results of (b) Base, (c) V1, (d) V2, (e) V3, (f) V4, (g) V5,
respectively, and (h) the ground-truth image.

TABLE III

USER STUDY RESULTS. MEAN RATINGS GIVEN BY THE

PARTICIPANTS ON THE VARIOUS DEHAZING METHODS

the 180 dehazing results in a random order without knowing
the corresponding approaches. The statistic result is reported
in Tab. III, showing that our Cycle-SNSPGAN achieves the
best performance for real-world haze removal.

For the quantitative comparison, we report the averaged
NIQE, BRISQUE, SSEQ, and FADE values of different dehaz-
ing algorithms in Tab. IV. All these metrics are evaluated
on the 30 images prepared for the user study. As a display,
our Cycle-SNSPGAN wins the first place in terms of NIQE,
BRISQUE, and SSEQ, indicating that the dehazed images
restored by our method are much more satisfactory. More-
over, the proposed Cycle-SNSPGAN also achieves impressive
performance in terms of FADE. In general, Cycle-SNSPGAN
wins three of the four metrics, which further verifies the
superiority of our method on real-world dehazing tasks.

C. Ablation Study

In this subsection, ablation studies are performed to explore
the contribution of the components of Cycle-SNSPGAN
towards effective dehazing. Our nine configurations to train
the proposed Cycle-SNSPGAN are:

1) base network (original CycleGAN) + SN-Soft-Patch
GAN architecture → V1,

2) V1 + cyclic self-perceptual loss → V2,
3) V2 + color loss → V3,

TABLE IV

QUANTITATIVE COMPARISONS (NIQE/BRISQUE/SSEQ/FADE) WITH

STATE-OF-THE-ART DEHAZING ALGORITHMS ON 30 REAL-WORLD

IMAGES. RED AND BLUE INDICATE THE 1st AND 2nd RANKS,
RESPECTIVELY

4) V3 + attention module → V4,
5) V4 + total variation loss → V5 (full model),
6) V5 − SN-Soft-Patch GAN architecture → V6,
7) V5 − cyclic self-perceptual loss → V7,
8) V5 − color loss → V8,
9) V5 − attention module → V9.

All these variants are retrained in the same way with
100 epochs and are tested on the SOTS outdoor dataset. The
experimental results are shown in Tab. V and Fig. 12.

As demonstrated in Fig. 12 and Tab. V, each component
contributes to the image dehazing quality, especially the SN-
Soft-Patch architecture and the proposed self-perceptual loss.
The introduction of the attention module and the color loss
have greatly improved the performance of the model in terms
of PSNR, while the use of total variation loss improves the
network performance in terms of SSIM. In short, if we make
full use of the implementation details in this paper, the results
will outperform other competitive dehazing approaches.

D. Application

The accuracy of object detection can be significantly
degraded under hazy conditions (see Fig. 13 (a)). To demon-
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TABLE V

ABLATION ANALYSIS OF DIFFERENT TRAINING STRATEGIES ON SOTS OUTDOOR DATASET.
OUR FULL MODEL OUTPERFORMS OTHER ALTERNATIVES

Fig. 13. Object detection results on the real-world hazy images and images after dehazing by different methods. From (a) to (f): (a) object detection results
on the hazy images, and the object detection results after dehazing by (b) DCP [6], (c) AOD-Net [7], (d) GCANet [8], (e) Cycle-Dehaze [9], and (f) our
Cycle-SNSPGAN, respectively.

Fig. 14. Consecutive hazy images in the REVIDE dataset [65] and the corresponding dehazing results of the proposed Cycle-SNSPGAN.

strate that Cycle-SNSPGAN can benefit vision-based appli-
cations like traffic monitoring and surveillance, we apply a
pre-trained YOLOv4 [66] to detect objects of interests on the
real-world hazy images and images after dehazing by different
methods. As shown in Fig. 13, after dehazing, the confidences
in detecting objects of interests are significantly improved.
clearly, the proposed model performs favorably against the
other methods for object detection on the real-world hazy
images. Additionally, we also report the mean Average Pre-
cision (mAP) before and after dehazing on 30 real-world
images selected from the RTTS dataset, as tabulated in Tab. VI.
Obviously, the proposed Cycle-SNSPGAN achieves the best
performance, which indicates that our method is effective in
real-world dehazing tasks and can benefit downstream vision
systems.

Furthermore, dehazing is often a pre-processing step in
many automated systems, where the input of such systems may
be a sequence of images (i.e., video). Therefore, we test our
Cycle-SNSPGAN on a recently released hazy video dataset,
i.e., REal-world VIdeo DEhazing dataset (REVIDE) [65].
Fig. 14 exhibits six consecutive hazy images in the REVIDE
dataset and the corresponding dehazing results of Cycle-
SNSPGAN. As observed, our method can effectively address
the consecutive hazy images to produce the realistic dehazing
results. However, Cycle-SNSPGAN currently focuses on dehz-
ing single images, thus overlooking the temporal redundancy
from neighborhood hazy frames. Although it is challenging
to exploit the temporal redundancy among the hazy frames,
we will attempt to explore a fusion strategy in the future
work, making Cycle-SNSPGAN enjoy such the temporal
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TABLE VI

COMPARISON OF OBJECT DETECTION PRECISION MEASURED
ON 30 REAL-WORLD IMAGES SELECTED FROM THE RTTS DATASET.

THE OBJECT DETECTOR YOLOV4 IS TRAINED ON

THE VOC2007 DATASET

TABLE VII

RUNTIME (IN SECONDS) COMPARISON OF DIFFERENT
DEHAZING METHODS TESTED ON THE HSTS DATASET

redundancy information to further enhance the dehazing
quality.

E. Runtime Analysis

Efficiency should be considered as an important component
for intelligent transportation systems like autonomous driving,
traffic monitoring, and surveillance. We report the execution
speed of some typical dehazing approaches by listing their
averaged running time in Tab. VII. Note that all the methods
are implemented on a system with an Intel(R) Xeon E5-2698
v4 CPU, 64 GB RAM, and an NVIDIA Tesla V100 GPU.
Cycle-SNSPGAN takes about 0.19s to handle one hazy image
from the HSTS dataset on average. The speed of Cycle-
SNSPGAN is acceptable, since it ranks second among the
8 dehazing algorithms.

V. CONCLUSION

In this work, we have proposed a unsupervised dehazing
framework, called Cycle-SNSPGAN, to enhance the general-
ization ability on real-world hazy scenarios. In order to lever-
age unpaired samples of real-world hazy images for training,
we design an SN-Soft-Patch GAN and exploit a novel cyclic
self-perceptual loss which avoids using the ground-truth image
to compute the perceptual similarity. This loss function can
help our approach preserve both large-scale structures and
small-scale details from the hazy images. In addition, the color
features of the hazy images are taken as prior knowledge, and
a color loss is introduced to make the dehazed images more
realistic. Experiments on both synthetic dataset and real-world
hazy images demonstrate that our method performs favorably
against the state-of-the-art dehazing approaches, even only a
small dataset trains our Cycle-SNSPGAN.
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