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Abstract—Urban trees are often densely planted along the two
sides of a street. When observing these trees from a fixed view,
they are inevitably occluded with each other and the passing
vehicles. The high density and occlusion of urban tree scenes
significantly degrade the performance of object detectors. This
paper raises an intriguing learning-related question – if a module
is developed to enable the network to adaptively cope with
occluded and un-occluded regions while enhancing its feature
extraction capabilities, can the performance of a cutting-edge
detection model be improved? To answer it, a lightweight yet
effective object detection network is proposed for discerning
occluded and dense urban trees, called OD-UTDNet. The main
contribution is a newly-designed Dilated Attention Cross Stage
Partial (DACSP) module. DACSP can expand the fields-of-view
of OD-UTDNet for paying more attention to the un-occluded
region, while enhancing the network’s feature extraction ability
in the occluded region. This work further explores both the self-
calibrated convolution module and GFocal loss, which enhance
the OD-UTDNet’s ability to resolve the challenging problem of
high densities and occlusions. Finally, to facilitate the detection
task of urban trees, a high-quality urban tree detection dataset is
established, named UTD; to our knowledge, this is the first time.
Extensive experiments show clear improvements of the proposed
OD-UTDNet over twelve representative object detectors on UTD.
The code and dataset are available at https://github.com/yz-
wang/OD-UTDNet.

Index Terms—OD-UTDNet, UTD dataset, Urban tree detec-
tion, High density and occlusion, Dilated attention cross stage
partial module

I. INTRODUCTION

THERE is a proverb in China: “Up above there is heaven;
down below there are Suzhou and Hangzhou”. It means

the two cities have picturesque nature. Besides Suzhou and
Hangzhou, many cities in the world are beautiful and attractive
in which trees play an important role. The trees in the city
are called the lungs of the city. There is a great demand for
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determining the quantity and monitoring the health status of
urban trees. Accordingly, tree detection becomes an essential
and fundamental prerequisite for resource appraisal and urban
vegetation management [1]–[4].

Conventional tree detection methods are mainly manual
and can only be conducted one by one, which is costly and
time-consuming. Since then, remote sensing techniques such
as aerial photography and LiDAR have been developed for
assessing urban trees, both directly and indirectly [5]–[9].
Although these efforts are effective in detecting urban trees,
the collection of remote sensing data is difficult and costly
to commission. Many works attempt to study image-based
urban tree detection in light of the convenient acquisition of
RGB images. Lin et al. [10] propose a detection framework for
detecting individual trees in unmanned aerial vehicle (UAV)
images. Chen et al. [11] develop an improved species-based
particle swarm optimization algorithm termed KDT-SPSO for
palm tree detection. KDT-SPSO employs a KD-tree structure
to accelerate the nearest neighbor search and obtain promising
detection results. However, for these conventional wisdom
of tree detection, users have to tweak parameters multiple
times to obtain satisfied detection results in practical scenarios.
This inconvenience heavily discounts the efficiency and user
experience.

With advances in deep learning, numerous excellent neuron
network-based detection frameworks have emerged in the field
of object detection [12]–[16], which bring great opportunities
for urban tree detection. Different from the conventional de-
tection methods, learning-based detectors commonly employ
CNNs to detect trees directly from the captured images in an
end-to-end fashion. Accordingly, these algorithms can produce
promising detection results in a variety of scenarios. However,
since the majority of urban trees are planted along roads,
coupled with heavy occlusion in complex and crowded urban
spaces, most existing detectors cannot accurately detect dense
urban trees. As demonstrated in Fig. 1, urban trees may be
occluded by vehicles, and trees may be occluded by each
other. Furthermore, most existing learning-based detectors
have numerous parameters and high computational costs,
making them unsuitable for deployment on various memory-
constrained mobile devices. To this end, this work aims to
develop a lightweight yet effective detection network for urban
tree detection, especially under occluded and dense scenarios.

In this paper, we respond to an intriguing learning-related
question. That is, developing a module to enable the network
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 Fig. 1. Detection results by different methods on two typical examples of occluded and dense urban scenes. From (a) to (d): the detection results by (a)
RetinaNet [14], (b) CenterNet [17], (c) YOLOv5s [18], and (d) our OD-UTDNet, respectively. Occluded and dense scenes strongly degrade the performance
of various object detectors. Even humans have difficulty determining the number of trees in such challenging images. As observed, the proposed OD-UTDNet
can discern ten trees from these two samples, while other detectors can only detect up to three trees, which indicates that our method can more robustly detect
the trees in such scenarios with higher confidence.

to adaptively cope with occluded regions while enhancing its
feature extraction capability will improve the performance of
cutting-edge detection models. A novel detection network is
proposed for discerning occluded and dense urban trees, called
OD-UTDNet. Note that the trees here are mostly street trees
and those commonly found in city parks, which are usually
mature trees with clear stems. In urban spaces, in addition to
complex and heavy traffic, most of the trees planted along the
roads are usually quite dense, which creates a severe occlusion
problem for tree detection (see Fig. 1). To address this issue,
we develop a Dilated Attention Cross Stage Partial (DACSP)
module to expand the receptive field of OD-UTDNet and
enhance its feature extraction capabilities. In this way, DACSP
can make our network pay more attention to the un-occluded
areas, thus improving the detection accuracy of the model in
occluded cases. Additionally, an effective feature enhancement
module (i.e., self-calibrated convolutions) [19] is employed to
further enlarge the fields-of-view of each convolutional layer
and enrich the output features. Moreover, to cope with the
problem of dense detection in this work, the GFocal loss [20]
is introduced in the design of OD-UTDNet, which has been
proven effective in dense object detection.

One challenge for applying deep learning techniques to
urban tree detection is the need for a benchmark dataset.
The lack of such datasets is a pervasive problem in the field
of urban tree detection due to the expensive data collection
and annotation cost. To the best of our knowledge, there
is currently no public image dataset related to urban trees.
Therefore, we capture and collect 1860 images of urban tree
scenes and label them in the format of PASCAL-VOC to
establish an urban tree detection dataset, named UTD.

Extensive experiments on the UTD benchmark demonstrate
that our network outperforms twelve representative state-of-
the-art object detection algorithms. The main contributions of
our method are summarized as follows:

• A novel lightweight yet effective detection framework is
proposed for discerning occluded and dense urban trees,

called OD-UTDNet.
• To address the heavy occlusion problem in urban trees,

OD-UTDNet leverages a well-designed DACSP module
and self-calibrated convolutions to expand the receptive
field of our model and enhance its feature extraction
ability. Additionally, the GFocal loss is introduced in the
model to cope with the problem of dense tree detection.

• We establish and release an object detection dataset of
urban tree images, dubbed UTD. To the best of our
knowledge, this is the first image dataset that focuses on
urban tree detection.

• The proposed OD-UTDNet is compared with twelve
representative state-of-the-art object detection algorithms
via extensive experiments. Consistently and substantially,
OD-UTDNet performs favorably against them.

The rest of this work is organized as follows. In Section II,
the related work is briefly reviewed from three aspects: con-
ventional tree detection techniques, deep learning-based tree
detection techniques, and general object detection techniques.
Section III describes the details of the proposed OD-UTDNet
for occluded and dense tree detection. Section IV first exhibits
the established UTD dataset and then presents the conducted
experiments and discuss the results, followed by conclusions
and future work in Section V.

II. RELATED WORK

This section roughly divides the discussion into three parts:
conventional tree detection techniques, deep learning-based
tree detection techniques, and general object detection tech-
niques.

A. Conventional Tree Detection Techniques

As a long-standing and fundamental task in both remote
sensing and computer vision, tree detection has attracted a
great deal of research attention in academia and industry
[7], [9], [21]–[23]. Traditional tree detection methods are
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commonly based on manual field measurements, which are
costly and time-consuming. Afterward, aerial photography and
LiDAR techniques are often employed to directly or indirectly
assess urban trees [5], [6], [8], [24]. However, given that the
collection of remote sensing data is difficult and expensive,
many efforts have begun to study image-based urban tree
detection, particularly with RGB images. Srestasathiern et al.
[25] propose a palm tree detection approach based on high-
resolution satellite images and achieve a detection rate of about
90%. Jiang et al. [26] propose a GPU-accelerated scale-space
filtering (SSF) algorithm to detect the papaya trees with UAV
images. SSF shows a clear improvement over other algorithms
in both speed and accuracy. Donmez et al. [7] employ a
Connected Components Labeling (CCL) algorithm to detect
the citrus trees based on the high-resolution UAV images and
achieve a high accuracy rate.

B. Tree Detection via Deep Learning

Advances in deep learning bring a big opportunity for
automatic tree detection. Iqbal et al. [27] present a deep learn-
ing approach for the detection and segmentation of coconut
trees in aerial imagery. They employ a Mask R-CNN model
with a ResNet50/ResNet101-based architecture and achieve
an overall 91% mean average precision for coconut tree
detection. Hartling et al. [28] conduct extensive experiments
and reveal that DenseNet is more effective for urban tree
classification and detection, outperforming the popular RF
and SVM techniques. Dong et al. [29] develop a single-tree
detection algorithm for high-resolution remote sensing images
based on a cascade neural network. They design a classifier
with a back propagation (BP) neural network and analyze the
differences between tree and non-tree samples. Liu et al. [30]
propose a point-based neural network named LayerNet for tree
species classification in forest regions. LayerNet can divide
multiple overlapping layers in Euclidean space to extract the
local structural features of the tree. Briechle et al. [31] propose
a dual-CNN-based network called Silvi-Net for the classi-
fication of 3D trees. Experimental results demonstrate that
Silvi-Net outperforms other state-of-the-art 3D tree detection
approaches, especially in the case of small samples. Ferreira
et al. [32] develop a fully convolutional neural network model
for individual tree detection and species classification in
Amazonian regions. They adopt a low-cost UAV to capture
RGB images and then detect trees in these images. Xie et al.
[33] present an end-to-end trainable framework for street tree
detection based on the Fast R-CNN network. Experimental
results show a clear improvement of their method over other
object detectors.

C. Object Detection

Object detection aims at predicting both the class and
bounding box of the target object, which is an important
research area in computer vision [34], [35]. Recently, with the
rapid development of CNNs, learning-based algorithms have
dominated modern object detection for years.

Current object detection techniques can roughly fall into
two categories, i.e., one-stage and two-stage. For two-stage

approaches, they first adopt the region proposal methods [36]
to produce a sparse set of candidate proposals and then refine
their locations and predict their specific categories. The most
representative two-stage detector is R-CNN [35], which is the
first successful attempt to replace the classifier with a CNN,
achieving large improvements in detection accuracy. Since
then, numerous variants based on this framework have been
developed, including Fast R-CNN [37], Faster R-CNN [38],
Cascade R-CNN [39] and Grid R-CNN [40]. Despite achieving
remarkable detection accuracy, two-stage detectors are not sat-
isfactory in terms of inference speed. Accordingly, to achieve a
better speed-performance trade-off, various one-stage detectors
are proposed for real-time detection. Representative algorithms
including YOLO series [13], [18], [41]–[43], RetinaNet [14],
CenterNet [17], SSD [12], etc. In general, the speed of the one-
stage detector is relatively faster, but the detection performance
is slightly weaker than that of the two-stage detector.

III. OD-UTDNET

Recall a time when you walk in a street. You may find
that the urban trees planted along the two sides of the street
are dense and occluded with each other and the passing
vehicles. Thus, you can just observe a part of these trees from
your view, potentially leading to misunderstanding these trees.
Similarly, the high density and occlusion of urban tree scenes
significantly degrade the performance of cutting-edge object
detectors, since these detectors can only perceive a part of the
trees and pay much attention to the occluded region.

Is it possible to make a detector pay more attention to
the un-occluded region while enhancing its feature extraction
ability in the occluded region? If the answer is positive, the
performance of cutting-edge detection models for handling the
high density and occlusion problems can be improved. It is the
focus of this work.

In this section, we first describe the overall architecture
of the urban tree detection network, namely, OD-UTDNet.
After that, the proposed Dilated Attention Cross Stage Partial
module (DACSP) is elaborated to demonstrate how we address
the heavy occlusion problem in the task of urban tree detection.
Finally, the self-calibrated convolutions and GFocal loss are
introduced to optimize OD-UTDNet to further enhance the
detection accuracy in dense tree scenes.

A. Overview of OD-UTDNet

For urban tree detection, the first consideration is how to
address the problem of heavy occlusion in dense urban spaces,
which greatly degenerates the detection accuracy of existing
detectors.

As known, YOLO series (e.g., the latest version YOLOv5)
[13], [18], [41]–[43] have been successfully applied in object
detection. Although YOLOv5 has achieved promising results
in various object detection benchmarks (e.g., MSCOCO [44],
PASCAL-VOC [45]), there are still many challenging yet
unsolved problems. First, the YOLOv5 family is originally
designed for object detection in general yet easy scenarios,
without considering how to cope with the non-trivial dense
object detection scenes. Second, like most existing detectors,
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Fig. 2. The overall architecture of OD-UTDNet. It mainly consists of three parts: the Backbone network, the Neck module, and the Detection head. Given
an urban tree image, we first employ the Backbone network to extract the complex and deep features from the input image. After that, the neck module is
adopted to further fuse the multi-scale features and transmit them to the detection head to predict the final detection result. DACSP refers to Dilated Attention
Cross Stage Partial Network, and SC Conv refers to self-calibrated convolutions. The main contribution is a newly-designed DACSP module. DACSP expands
the fields-of-view of the network for paying more attention to the un-occluded region, and enhances the network’s feature extraction ability in the occluded
region.

the YOLOv5 family is susceptible to the occlusion problems
in the urban tree detection task, resulting in a significant
decrease in detection accuracy. Third, YOLOv5s is lightweight
and efficient, which is promising for resource-limited mobile
devices in the YOLOv5 family. But its detection accuracy is
thus largely degenerated for the high density and occluded
urban tree scenes.

To this end, we start from these three aspects and propose
an enhanced object detection network based on YOLOv5s for
occluded and dense urban tree detection. Here, the proposed
OD-UTDNet is built on top of the latest version of the
YOLO series, namely, YOLOv5s [18] (the smallest version
of YOLOv5). Actually, our OD-UTDNet has the potential to
benefit from a more complex version of YOLOv5 to further
improve its performance, such as YOLOv5m and YOLOv5l.
However, we choose the smallest version because a lightweight
model is more desirable for deploying automatic tree detection

on many memory-constrained devices.

As illustrated in Fig. 2, the proposed network consists of
three main components, i.e., the backbone network, the neck
module, and the detection head. Given an input image, we
first leverage the Focus operation in the backbone network
to divide the image into different granularities and aggregate
them together. Then, several enhanced Cross Stage Partial
(CSP) modules [46], i.e., Dilated Attention CSP (DACSP),
are employed to extract the complex and deep features from
the restructured image. DACSP is a novel feature enhancement
module developed to expand the receptive field of our model,
thus making the network pay more attention to the un-occluded
areas to reduce the impact of heavy occlusions. After that,
the neck module is adopted to produce the feature pyramids
based on the Path Aggregation Network (PANet) [47] and then
transmits the feature maps to the detection head. Finally, the
detection head module is employed to generate the final class
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probability score, bounding boxes, and confidence score.
Moreover, to further boost the detection performance of

OD-UTDNet and address the dense detection problem in
urban spaces, we introduce a more recent multi-scale feature
enhancement module (self-calibrated convolutions) and an up-
to-date GFocal loss into our network. Both of them have
been widely used in object detection tasks and have been
demonstrated to be effective in improving detection accuracy,
which will be described in the following subsections.

B. Dilated Attention Cross Stage Partial network

Theoretically, the feature extraction ability of the network
directly determines the performance of the model. Thus, we
argue that there are two solutions to reduce the impact of
occlusions on urban tree detection. One is to expand the
receptive field of the network to help the model detect the
trees from the un-occluded areas. The other is to enhance the
feature extraction ability of the network so that trees can be
detected directly from the occluded areas. To improve the
feature extraction capability of the network, natural think-
ing is to deepen the number of network layers or employ
more complex network architectures (e.g., GNNs [48] and
Transformers [49]). However, a lightweight model is more
desirable to deploy for automatic tree detection tasks due
to the limited hardware and computing ability of intelligent
detection systems (e.g., intelligent vehicles, UAVs). Given this,
we consider employing a dilated convolution module (expand-
ing the receptive field) and a lightweight attention network
(enhancing feature extraction ability) in the design of the CSP
network to achieve a better parameter-performance trade-off.
This enhanced CSP network is called Dilated Attention CSP
(DACSP), and its architecture is depicted in Fig. 3.

Dilated convolutions can expand the receptive field of the
network without increasing the computational effort, which
has been demonstrated to be effective in improving the per-
formance of networks. However, due to the special calculation
method of dilated convolution, the continuous information of
the image will be destroyed, resulting in the loss of partial
features. To address such a problem, we combine dilated
convolutions with conventional convolutions to expand the
receptive field of the network while ensuring that the image
information will not be lost. Specifically, we first employ the
dilated convolution module and the conventional convolution
network to calculate the input feature maps and then con-
catenate them through a residual connection to extract multi-
scale features while expanding the receptive field of the CSP
network (see Fig. 3). In this way, our model can focus on more
un-occluded areas, thus reducing the impact of occlusions on
detection accuracy.

Attention mechanisms have been widely used in improving
the performance of neural networks [50], [51]. We consider
adopting a lightweight attention module to boost the feature
extraction capability of the CSP network, thus enhancing the
detection accuracy of OD-UTDNet. Motivated by Qin et al.
[52], an up-to-date Frequency Channel Attention Network
(FCANet) is employed in the design of the CSP network to
improve the detection performance of our model, as exhibited

Input 

Conv1×1

Conv1×1

FCANet

Conv3×3

DConv3×3

Add

Concat

Conv1×1

BottleNeck

 

Fig. 3. The architecture of Dilated Attention CSP network. In our designation,
we employ a dilated convolution module to expand the receptive field of
the convolutional layer and a lightweight attention network to enhance the
feature extraction ability of the CSP network. Both of them can help the
model address severe occlusions in urban spaces and improve the detection
accuracy of OD-UTDNet. FCANet represents the frequency channel attention
network. DConv3×3 refers to a dilated convolution network with a kernel size
of 3 (dilation rate = 3).

in Fig. 3. FCANet is extended on the basis of SENet [51] and
combined with Discrete Cosine Transform (DCT) to develop
a novel multi-spectral channel attention mechanism. It enables
the CSP network to learn the weights from different features
adaptively, thus enhancing the detection performance of OD-
UTDNet.

C. Self-Calibrated Convolutions

The self-calibrated convolution network [19] is an enhanced
CNN structure, which is employed to build long-range spatial
and inter-channel dependencies around each spatial location.
That is, it can enlarge the receptive field of each convolutional
layer and improve the feature extraction ability of CNNs.
Therefore, we consider employing the self-calibrated convo-
lution network as a feature enhancement module to help OD-
UTDNet address the aforementioned occlusion problem and
boost the detection accuracy of the model.

The architecture of self-calibrated convolutions is demon-
strated in Fig. 4. Given an input feature map X with channel
C, we first split it into two feature maps X1 and X2 with
channel C/2. Then, X1 is sent to the self-calibrated branch for
feature transformation and fusion. In this branch, three filters
(i.e., K2, K3, and K4) are adopted to extract and fuse multi-
scale features from X1. Next, the filter K1 is employed to
transmit and extract features from X2 to obtain the other half
of result Y2. Finally, we concatenate Y1 and Y2 to produce the
final output Y . In our designation, the self-calibrated convolu-
tions are introduced into the neck module of OD-UTDNet to
expand the fields-of-view of the convolutional layer and extract
multi-scale features, thus enforcing the network to pay more
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attention to the un-occluded areas. In this way, our model can
well address the unpredictable occlusion scenarios in urban
tree detection tasks.

Upsample

Input X

Split

X1

X2

Avgpooling

K2

K3

σ

K4 Y1

K1 Y2

C

Conv 3×3

LeakyReLU

Summation

σ Sigmoid

Multiplication

C Concat

Output Y

Fig. 4. The architecture of self-calibrated convolution network. It can
build long-range spatial and inter-channel dependencies around each spatial
location, thus expanding the receptive field of each convolutional layer and
enhancing the feature extraction ability of CNNs.

D. Generalized Focal Loss

GFocal loss [20] is an improved version of Focal loss
[14], which aims to solve the problem of imbalance between
positive and negative samples in dense object detection tasks.
In the training process, Focal loss reduces the weight of
numerous simple negative samples, making the network pay
more attention to difficult samples (i.e., dense objects), thus
improving the detection accuracy of dense objects. Therefore,
natural thinking is to employ Focal loss in the design of our
framework to cope with dense scenes in urban tree detection
tasks. However, Focal loss itself has many limitations; for
example, it can only handle discrete labels such as 0 or 1
but cannot deal with continuous labels between 0 and 1. In
addition, the inconsistency of the classification and regression
calculation methods during training and inference will degen-
erate the detection accuracy of the model. To this end, Li
et al. [20] develop an enhanced Focal loss (GFocal loss) to
address the above problems and further improve the accuracy
of dense object detection tasks. Gfocal loss mainly improves
Focal loss from two aspects: one is to incorporate the quality
estimation into the class prediction vector to eliminate the risk
of inconsistency between the training and inference phases,
and the other is to leverage a vector instead of the Dirac delta
distribution to accurately depict the flexible distribution in real
data.

GFocal loss consists of Quality Focal loss (QFL) and
Distribution Focal loss (DFL). To address the above-mentioned
inconsistency problem between the training and test phases,
QFL adopts a joint representation of localization quality (IoU
score) and classification score, where the standard one-hot
category label y ∈ {0, 1} turns to a possible float target
y ∈ [0, 1] on the corresponding category. Note that y = 0
represents the negative samples with quality score being equal
to 0, and 0 < y ≤ 1 refers to the positive samples with the
target IoU score y. Additionally, QFL employs the IoU score
between the estimated bounding box and its corresponding
ground-truth label to represent the localization quality label y,
which takes a value between 0 and 1. However, considering

that the original Focal loss only supports {0, 1} discrete labels,
but the new joint representation labels contain decimals. QFL
loss extends the Focal loss for enabling the successful training
under the new continuous labels as:

QFL(σ) = −|y − σ|β((1− y) log(1− σ) + y log(σ)), (1)

where −((1− y) log(1− σ) + y log(σ)) denotes the complete
cross-entropy loss function, y ∈ [0, 1] denotes the new quality
label and σ ∈ (0, 1) represents the predicted result. Note that
the sigmoid operators σ(·) is employed for multi-class imple-
mentation, with the output being denoted as σ for simplicity.
Similar to the Focal loss, the term |y − σ|β is employed to
adjust the weights for positive/negative samples during the
training phase. As the quality estimation becomes accurate
(σ → y), the modulating factor goes to 0 and the weight
for well-estimated examples is reduced, where the parameter
β is employed to control the weighting rate (β = 2 works
best in our experiments). QFL still retains the classification
vector, but the physical meaning of the corresponding category
position confidence is no longer a classification score but a
quality prediction score. Furthermore, to accurately describe
the distribution in real data, DFL is employed to accelerate
the network’s training.

DFL first converts the integral over the continuous domain
into a discrete representation, i.e., {y0, y1, . . . , yi, . . . , yn}.
Therefore, given the discrete distribution property∑n
i=0 P (yi)=1, the predicted regression value ŷ (y0 ≤ ŷ ≤ yn)

is formulated as:

ŷ =

n∑
i=0

P (yi) yi. (2)

Hence, the General distribution P (x) can be directly imple-
mented through a Softmax S(·) layer with n+ 1 units. For
simplicity, the output of P (yi) is marked as Si. In this way,
ŷ can be trained in an end-to-end manner with existing loss
objectives like IoU loss [53]. Furthermore, considering that the
most appropriate underlying location would not be far away
from the coarse label, the DFL is employed to help the network
rapidly focus on the values near label y, by enlarging the
probabilities of yi and yi+1 (yi ≤ y ≤ yi+1). Consequently,
DFL is extended on the basis of the complete cross-entropy
part in QFL as:

DFL (Si,Si+1) = −((yi+1 − y) log(Si)
+(y − yi) log(Si+1)).

(3)

Intuitively, DFL is designed to focus on enlarging the
probabilities of the values around y (i.e., yi and yi+1), thus
can improve the training efficiency. Finally, QFL and DFL
can be unified to form the GFocal loss. Assume that a net-
work estimates probabilities for two variables yl, yr (yl < yr)
as pyl , pyr (pyl ≥ 0, pyr ≥ 0, pyl + pyr = 1), with a final es-
timation of their liner combination being ŷ = ylpyl +
yrpyr (yl ≤ ŷ ≤ yr). Note that the corresponding continuous
label y for the prediction ŷ also satisfies yl ≤ y ≤ yr. Taking
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the absolute distance |y − ŷ|β as modulating factor, GFL is
formulated as:

GFL (pyl , pyr ) = −|y − (ylpyl + yrpyr )|
β
((yr − y) log (pyl)

+(y − yl) log (pyr )).
(4)

Through extensive experiments, we find that DFL provides
our model with relatively limited performance gains while
adding additional computational overhead. Hence, only QFL
is adopted in the design of OD-UTDNet.

IV. EXPERIMENTS AND DISCUSSION

In this section, we evaluate OD-UTDNet on the proposed
UTD benchmark and conduct comparisons with SSD300
[12], RetinaNet [14] YOLOv3 [43], Centernet [17], Grid R-
CNN [40], Cascade R-CNN [39], YOLOv4 [42], YOLOF
[54], Sparse R-CNN [55], and YOLOv5 [18]. After that, a
comprehensive ablation study is implemented to analyze the
effectiveness of each component designed in our OD-UTDNet.
We also describe the details of the established UTD dataset
and the specific training settings. The details are as follows.

A. Dataset

Since there is no publicly available urban tree image dataset,
to train and evaluate the proposed network, a new object
detection dataset of urban trees is established, called UTD.
To the best of our knowledge, UTD is the first image dataset
that focuses on urban tree detection research. Specifically, our
UTD contains a total of 1860 tree images captured in various
urban scenes. These images are collected from the Internet or
captured by us. Considering that an accurately labeled dataset
is essential for object detection tasks, we employ the Colabeler
tool [56] to manually annotate our UTD in the format of
PASCAL-VOC. Moreover, to further ensure the accuracy of
the labels, experts from Nanjing Forestry University are invited
to proofread all the annotated images. The task of annotating is
difficult due to the heavy occlusion of trees in some images,
and it takes about 5-10 minutes to label each image. After
labeling these 1860 images, we obtain 5540 ground truth
bounding boxes.

To train our OD-UTDNet, the dataset is divided into three
groups, i.e., the training set, the validation set, and the test
set, as exhibited in Table I. Additionally, to demonstrate our
dataset more intuitively, four image examples from the UTD
dataset are exhibited in Fig. 5, each of them containing more
than three urban trees. Although the proposed UTD contains
various categories of urban trees, all the different categories of
the tree are cast as one class here, since we mainly focus on the
tree detection task in this work. In the future, we will further
classify these detected trees in subsequent work. Furthermore,
The established UTD will be released on our GitHub website
to accelerate the research on automatic tree detection tasks.

B. Implementation Details

Training details. The proposed OD-UTDNet is imple-
mented using PyTorch 1.9 on a system with an Intel(R)

TABLE I
DETAILED INFORMATION ABOUT UTD DATASET.

Group Training Validation Test

Number of images 1530 170 160
Number of tress 4643 516 381

  
(a)                                       (b) 

  
(c)                                       (d) 

Fig. 5. Examples of different scenes in the UTD dataset, where the red boxes
refer to the ground truths.

Core(TM) i7-9700 CPU, 16 GB RAM, and an Nvidia GeForce
RTX 3090 GPU. To optimize our model, we employ the SGD
optimizer with a mini-batch size of 32, where the momentum
parameter and weight decay are set to 0.937 and 0.0005, re-
spectively. The total number of epochs and the initial learning
rate are set to 100 and 0.01, respectively. Considering that
training the network on pretrained weights can accelerate the
convergence speed of the model, our OD-UTDNet is trained
on the UTD with the MSCOCO [44] pretrained weights.

Evaluation Settings. To quantitatively evaluate the per-
formance of OD-UTDNet, the Average Precision (AP ) and
AP50 are employed as the evaluation metrics, which are the
most widely used evaluation indexes in object detection tasks.
The proposed OD-UTDNet is compared with several state-
of-the-art object detection methods. These detectors can be
classified into two categories: 1) two-stage-based Grid R-
CNN [40] and Cascade R-CNN [39]; and 2) one-stage-based
SSD300 [12], RetinaNet [14], YOLOv3 [43], Centernet [17],
YOLOv4 [42], YOLOF [54] and YOLOv5 [18]. Moreover, we
also compare OD-UTDNet with a recent sparse-based object
detection framework Sparse R-CNN [55].

C. Comparison with State-of-the-arts

We report the AP , AP50, and Frames Per Second (FPS)
metrics of twelve state-of-the-art detection algorithms (includ-
ing three versions of YOLOv5) on the established UTD test
set in Table II. To make a fair comparison, all compared
approaches are retrained on the UTD dataset, following the
settings in their papers. As observed, the proposed OD-
UTDNet achieves the best performance with 37.7 AP and 78.5
AP50 compared to SOTA approaches. OD-UTDNet realizes an
excellent parameter-performance trade-off, since its parameter
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TABLE II
COMPARISON OF OD-UTDNET WITH STATE-OF-THE-ART OBJECT DETECTORS ON THE UTD TEST SET. WE EVALUATE THE RUN TIME WITH BATCH SIZE

1 ON A SINGLE NVIDIA GEFORCE RTX 3090 GPU.

Method Publication Params GFlops AP AP50 FPS

SSD300 ECCV’16 34.3M 386.3 31.3 71.2 45
RetinaNet ICCV’17 33.7M 239.3 29.7 70.7 22
YOLOv3 arXiv’18 61.5M 155.1 28.0 68.8 63

Grid R-CNN CVPR’19 64.2M 307.3 29.4 69.5 8
Cascade R-CNN TPAMI’19 68.9M 195.8 35.8 76.7 19

CenterNet CVPR’19 14.2M 51.3 25.5 77.3 65
YOLOv4 arXiv’20 63.9M 128.4 30.9 71.8 41
YOLOF CVPR’21 44.0M 86.0 35.1 75.4 33

Sparse R-CNN CVPR’21 105.9M 149.9 31.4 71.4 21
YOLOv5s [18] 7.3M 16.3 30.8 71.1 67
YOLOv5m [18] 21.4M 50.3 33.6 74.8 60
YOLOv5l [18] 47.0M 114.1 34.3 75.1 47

OD-UTDNet ours 8.7M 19.6 37.7 78.5 62

(a) SSD300 (b) RetinaNet (c) Cascade R-CNN (d) CenterNet

(e) YOLOv4 (f) YOLOF   (g) YOLOv5s   (h) Ours

Fig. 6. Detection results by different methods in a heavy occlusion case. From (a) to (h): the detection results by (a) SSD300 [12], (b) RetinaNet [14], (c)
Cascade R-CNN [39], (d) CenterNet [17], (e) YOLOv4 [42], (f) YOLOF [54], (g) YOLOv5s [18], and (h) our OD-UTDNet, respectively. As can be seen,
there are a total of six trees in the image, and only three methods, namely, Cascade R-CNN, YOLOF, and OD-UTDNet can detect all the trees. However, the
Cascade R-CNN and YOLOF suffer from the mis-detection problem as they discern these six trees as eleven and seven trees, respectively. In contrast, our
OD-UTDNet can effectively address unpredictable occlusion scenarios.

amount and calculation cost are acceptable and rank second
among the compared methods. In addition, the inference speed
of OD-UTDNet is fast, and it can detect 62 images per sec-
ond, which is suitable for deploying on memory-constrained
devices.

To further evaluate the effectiveness of OD-UTDNet under
occluded and dense scenes, we test our method and other
approaches in two heavy occlusion cases. Visual comparisons
of the detection results are depicted in Fig. 6 and Fig. 7.
As observed, the captured images contain severe occlusion,
where trees and trees occluded each other to form a whole. It
is practically impossible for a human to count the quantity
of trees in these images. As demonstrated in Fig. 6 and
Fig. 7, most compared detection algorithms miss some trees
due to heavy occlusion. For Cascade R-CNN and YOLOF,
although they have overcome the impact of occlusion to some
extent, the confidence of the detected trees is quite low. In

addition, the Cascade R-CNN method suffers from significant
mis-detection, and it can easily identify other objects as
trees. In contrast, the proposed DASCP module enhances the
feature extraction capability of OD-UTDNet while expanding
the receptive field of the model, thus reducing the impact
of occlusions on detection accuracy. Consequently, our OD-
UTDNet exhibits better results in detecting occluded and dense
trees.

Likewise, to verify the generalization ability of OD-UTDNet
in general scenes (without severe occlusion), we present a
visual comparison of the detection results in the cases of few
occlusions, as exhibited in Fig. 8 and Fig. 9. It can be observed
that even in the case of only a small amount of occlusion, many
detection algorithms still miss some trees. Similar to the results
in Fig. 6 and Fig. 7, the detection results produced by Cascade
R-CNN still have the problem of mis-detection, and one tree
is detected as multiple trees. Compared with these SOTA
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(a) SSD300 (b) RetinaNet (c) Cascade R-CNN (d) CenterNet 

(e) YOLOv4 (f) YOLOF (g) YOLOv5s (h) Ours 

Fig. 7. Detection results by different detectors in a heavy occlusion case. Only the Cascade R-CNN and our OD-UTDNet can detect all the trees in the
image, while other detectors have more or less missed trees. Similar to the results in Fig. 6, the Cascade R-CNN still has the problem of mis-detection.
Comparatively, our method can handle occlusion cases well.

    
(a) SSD300                                                                         (b) RetinaNet                                                                  (c) Cascade R-CNN                                                              (d) CenterNet 

     
(e) YOLOv4                                                                          (f) YOLOF                                                                          (g) YOLOv5s                                                                             (h) Ours 

 

 Fig. 8. Detection results by different approaches in a case of few occlusions. The results of SSD300, RetinaNet, YOLOv4, and YOLOF obviously miss
some trees. For CenterNet and YOLOv5s, although they can discern the two trees in this image, the confidence of the detected trees is quite low. Similar to
the previous cases, the Cascade R-CNN identifies these two trees as three. In contrast, our OD-UTDNet can generalize well in both heavy occlusion and few
occlusion situations.

detectors, our OD-UTDNet can detect more trees with higher
confidence, which demonstrates that our model performs well
in both heavy occlusion and few occlusion situations.

D. Ablation Study

OD-UTDNet exhibits superior detection performance com-
pared to twelve representative state-of-the-art methods. To
further validate the effectiveness of the proposed OD-UTDNet,
comprehensive ablation studies are conducted to analyze
different components, including the Dilated Attention CSP
module, self-calibrated convolutions, and GFocal loss.

We first construct the base model with the original
YOLOv5s as the baseline of the detection network and then
train this model through the implementation details men-
tioned above. Subsequently, different modules are incremen-
tally added into the base model as:

1) base model + Dilated Attention CSP module → V1,
2) V1 + self-calibrated convolutions → V2,
3) V2 + GFocal loss → V3 (our full model).

All these models are retrained in the same way as before and
tested on the UTD test set. The performances of these variants
are exhibited in Table III.

As observed, each module in our OD-UTDNet contributes
to object detection, especially the well-designed Dilated At-
tention CSP network, which achieves a 4.2 AP and 4.3 AP50

improvement over our base model. The introduction of self-
calibrated convolutions and GFocal loss also greatly improve
the performance of the network. Finally, it can be found
that a committee with all three modules produces the highest
detection performance, which indicates that the three modules
complement each other.
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(a) SSD300 (b) RetinaNet (c) Cascade R-CNN (d) CenterNet

(e) YOLOv4 (f) YOLOF   (g) YOLOv5s   (h) Ours

Fig. 9. Detection results by different methods in a case of few occlusions. It can be observed that only our OD-UTDNet can detect all five trees in this
figure, while none of the compared algorithms can detect the far-left tree. For SSD300 and YOLOv4, they cannot even detect one tree in the image. Once
again, the Cascade R-CNN detector suffers from mis-detection problems.

TABLE III
ABLATION STUDY ON OD-UTDNET. AS OBSERVED, OUR FULL MODEL

(V3) OUTPERFORMS OTHER ALTERNATIVES.

Variants Base V1 V2 V3

DACSP w/o X X X
SC Conv w/o w/o X X

GFocal loss w/o w/o w/o X

AP 30.8 35.0 36.6 37.7
AP50 71.1 75.4 77.6 78.5

V. CONCLUSIONS AND FUTURE WORK

In this work, for the first time, we have established a high-
quality urban tree image dataset to facilitate research on the
automatic detection of trees. Accordingly, a lightweight yet ef-
fective detection framework is proposed, called OD-UTDNet,
for automatically detecting occluded and dense urban trees. To
cope with the heavy occlusion in tree detection tasks, a Dilated
Attention Cross Stage Partial (DACSP) module is developed
to expand the receptive field of the model while enhancing its
feature extraction capability. Additionally, the self-calibrated
convolution network is introduced to further enlarge the fields-
of-view of each convolutional layer and enrich the output
features, thus reducing the impact of occlusion on tree detec-
tion. Moreover, the GFocal loss is introduced to address dense
scenes in urban tree detection. Finally, extensive evaluations
demonstrate that our OD-UTDNet performs favorably against
twelve representative state-of-the-art algorithms.

In the future work, we plan to employ other powerful
network architectures, such as GCNs or Transformers, to
develop a more effective urban tree detection framework. In
addition, we will further label the trees in UTD according to
their species and conduct a classification study.
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M. Holopainen, C. Heipke, M. Hirschmugl, F. Morsdorf, E. Næsset,
J. Pitkänen, S. C. Popescu, S. Solberg, B. Wolf, and J. Wu, “An
international comparison of individual tree detection and extraction using
airborne laser scanning,” Remote. Sens., vol. 4, no. 4, pp. 950–974, Mar.
2012.

[23] S. Malek, Y. Bazi, N. Alajlan, H. Al-Hichri, and F. Melgani, “Efficient
framework for palm tree detection in UAV images,” IEEE J. Sel. Top.
Appl. Earth Obs. Remote. Sens., vol. 7, no. 12, pp. 4692–4703, Dec.
2014.

[24] J. Secord and A. Zakhor, “Tree detection in urban regions using aerial
lidar and image data,” IEEE Geosci. Remote. Sens. Lett., vol. 4, no. 2,
pp. 196–200, Apr. 2007.

[25] P. Srestasathiern and P. Rakwatin, “Oil palm tree detection with high
resolution multi-spectral satellite imagery,” Remote. Sens., vol. 6, no. 10,
pp. 9749–9774, Oct. 2014.

[26] H. Jiang, S. Chen, D. Li, C. Wang, and J. Yang, “Papaya tree detection
with UAV images using a gpu-accelerated scale-space filtering method,”
Remote. Sens., vol. 9, no. 7, p. 721, Jul. 2017.

[27] M. S. Iqbal, H. Ali, S. N. Tran, and T. Iqbal, “Coconut trees
detection and segmentation in aerial imagery using mask region-based
convolution neural network,” arXiv:2105.04356, May. 2021. [Online].
Available: https://arxiv.org/abs/2105.04356

[28] S. Hartling, V. Sagan, P. Sidike, M. Maimaitijiang, and J. Carron, “Urban
tree species classification using a worldview-2/3 and lidar data fusion
approach and deep learning,” Sensors, vol. 19, no. 6, p. 1284, Mar. 2019.

[29] T. Dong, Z. Jian, G. Sibin, S. Ying, and F. Jing, “Single-tree detection
in high-resolution remote-sensing images based on a cascade neural
network,” ISPRS Int. J. Geo Inf., vol. 7, no. 9, p. 367, Sep. 2018.

[30] M. Liu, Z. Han, Y. Chen, Z. Liu, and Y. Han, “Tree species classification
of lidar data based on 3d deep learning,” Measurement, vol. 177, p.
109301, Jun. 2021.

[31] S. Briechle, P. Krzystek, and G. Vosselman, “Silvi-net - A dual-cnn
approach for combined classification of tree species and standing dead
trees from remote sensing data,” Int. J. Appl. Earth Obs. Geoinformation,
vol. 98, p. 102292, Jun. 2021.

[32] M. P. Ferreira, D. R. A. de Almeida, D. de Almeida Papa, J. B. S.
Minervino, H. F. P. Veras, A. Formighieri, C. A. N. Santos, M. A. D.
Ferreira, E. O. Figueiredo, and E. J. L. Ferreira, “Individual tree de-
tection and species classification of amazonian palms using uav images
and deep learning,” For. Ecol. Manag., vol. 475, p. 118397, Nov. 2020.

[33] Q. Xie, D. Li, Z. Yu, J. Zhou, and J. Wang, “Detecting trees in street
images via deep learning with attention module,” IEEE Trans. Instrum.
Meas., vol. 69, no. 8, pp. 5395–5406, Aug. 2020.

[34] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2005, pp. 886–893.

[35] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2014,
pp. 580–587.

[36] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M.
Smeulders, “Selective search for object recognition,” Int. J. Comput.
Vis., vol. 104, no. 2, pp. 154–171, Apr. 2013.

[37] R. Girshick, “Fast r-cnn,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 1440–1448.

[38] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” Advances in neural
information processing systems (Nips), vol. 28, pp. 91–99, Dec. 2015.

[39] Z. Cai and N. Vasconcelos, “Cascade r-cnn: High quality object detection
and instance segmentation,” IEEE Trans. Pattern Anal. Mach. Intell.,
May. 2019.

[40] X. Lu, B. Li, Y. Yue, Q. Li, and J. Yan, “Grid r-cnn,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 7363–7372.

[41] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 7263–
7271.

[42] A. Bochkovskiy, C. Wang, and H. M. Liao, “Yolov4: Optimal speed and
accuracy of object detection,” arXiv:2004.10934, Apr. 2020. [Online].
Available: https://arxiv.org/abs/2004.10934

[43] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv:1804.02767, Apr. 2018. [Online]. Available: https://arxiv.org/abs/
1804.02767

[44] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in Proc. Eur. Conf. Comput. Vis. (ECCV). Springer, Sep.
2014, pp. 740–755.

[45] M. Everingham, L. V. Gool, C. K. I. Williams, J. M. Winn, and
A. Zisserman, “The pascal visual object classes (VOC) challenge,” Int.
J. Comput. Vis., vol. 88, no. 2, pp. 303–338, Sep. 2010.

[46] C.-Y. Wang, H.-Y. M. Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and I.-
H. Yeh, “Cspnet: A new backbone that can enhance learning capability
of cnn,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops
(CVPRW), Jun. 2020, pp. 390–391.

[47] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network
for instance segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2018, pp. 8759–8768.

[48] W. Shi and R. Rajkumar, “Point-gnn: Graph neural network for 3d object
detection in a point cloud,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 1711–1719.

[49] D.-J. Chen, H.-Y. Hsieh, and T.-L. Liu, “Adaptive image transformer for
one-shot object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2021, pp. 12 247–12 256.

[50] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image super-
resolution using very deep residual channel attention networks,” in Proc.
Eur. Conf. Comput. Vis. (ECCV), Sep. 2018, pp. 286–301.

[51] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2018, pp.
7132–7141.

[52] Z. Qin, P. Zhang, F. Wu, and X. Li, “Fcanet: Frequency channel attention
networks,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp.
783–792.

[53] L. Tychsen-Smith and L. Petersson, “Improving object localization with
fitness NMS and bounded iou loss,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2018, pp. 6877–6885.

[54] Q. Chen, Y. Wang, T. Yang, X. Zhang, J. Cheng, and J. Sun, “You
only look one-level feature,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2021, pp. 13 039–13 048.

[55] P. Sun, R. Zhang, Y. Jiang, T. Kong, C. Xu, W. Zhan, M. Tomizuka,
L. Li, Z. Yuan, C. Wang et al., “Sparse r-cnn: End-to-end object
detection with learnable proposals,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2021, pp. 14 454–14 463.

[56] “Colabeler,” May, 2021. [Online]. Available: http://www.colabeler.com

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2022.3184300

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lanzhou University. Downloaded on June 21,2022 at 00:38:11 UTC from IEEE Xplore.  Restrictions apply. 

https://arxiv.org/abs/1904.07850
https://arxiv.org/abs/1904.07850
https://zenodo.org/record/4418161
https://arxiv.org/abs/2105.04356
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
http://www.colabeler.com


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

Yongzhen Wang received the M.S. degree in 2019.
He is currently pursuing the Ph.D. degree with
the School of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics
(NUAA), Nanjing, China. His research interests in-
clude deep learning, image processing and computer
vision, particularly in the domains of object detec-
tion, image dehazing, and image deraining. He has
served as a PC member for AAAI 2022.

Xuefeng Yan is a professor of the School of Com-
puter Science and Technology, Nanjing University of
Aeronautics and Astronautics (NUAA), China. He
obtained his PhD degree from Beijing Institute of
Technology in 2005. He was the visiting scholar
at Georgia State University in 2008 and 2012.
His research interests include intelligent computing,
MBSE/complex system modeling, simulation and
evaluation.

Hexiang Bao received the B.E. degree from Hefei
University, in 2017. He is currently pursuing the
M.S. degree with computer science and technology
from Nanjing University of Aeronautics and Astro-
nautics (NUAA). His research interests include deep
learning, image processing, and object detection.

Yiping Chen (M’11–SM’20) received the Ph.D.
degree in information and communications engi-
neering from the National University of Defense
Technology, Changsha, China, in 2011. She is a
research associate professor with the Fujian Key
Laboratory of Sensing and Computing for Smart
Cities, School of Informatics, Xiamen University,
China. From 2007 to 2011, she was an Assistant
Researcher with Chinese University of Hong Kong,
China. Her current research interests include remote
sensing image processing, mobile laser scanning

data analysis, 3D point cloud computer vision and autonomous driving. She
has published more than 70 papers in referred journals, including IEEE
Transactions on Intelligent Transportation Systems, IEEE Transactions on
Geoscience and Remote Sensing, IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, and conferences, including CVPR,
IGARSS, and ISPRS. She was a receipt of the 2020 Best Reviewer of the
IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing.

Lina Gong is currently a lecturer in the College
of Computer Science and Technology, Nanjing Uni-
versity of Aeronautics and Astronautics, China. She
received her Ph.D. degree in the Computer software
and theory from China University of Mining and
Technology, China. She also studied as a visitor one
year in the Software Analysis and Intelligence Lab
(SAIL), School of Computing, Queen’s University,
Canada. Her research interests include Deep learn-
ing, software analysis, software testing and mining
software repositories.

Mingqiang Wei received his Ph.D degree (2014)
in Computer Science and Engineering from the
Chinese University of Hong Kong (CUHK). He is
a professor at the School of Computer Science and
Technology, Nanjing University of Aeronautics and
Astronautics (NUAA). Before joining NUAA, he
served as an assistant professor at Hefei University
of Technology, and a postdoctoral fellow at CUHK.
He was a recipient of the CUHK Young Scholar
Thesis Awards in 2014. He is now an Associate
Editor for the Visual Computer Journal, Journal of

Electronic Imaging, Journal of Image and Graphics, and a Guest Editor for
IEEE Transactions on Multimedia. His research interests focus on 3D vision,
computer graphics, and deep learning.

Jonathan Li (Senior Member, IEEE) received the
Ph.D. degree in geomatics engineering from the
University of Cape Town, South Africa, in 2000.
He is a Professor with the Department of Geog-
raphy and Environmental Management and cross-
appointed with the Department of Systems Design
Engineering, University of Waterloo, Canada and
a Fellow of the Engineering Institute of Canada.
His main research interests include image and point
cloud analytics, mobile mapping, and AI-powered
information extraction from LiDAR point clouds and

earth observation images. He has co-authored over 500 publications, including
300+ in refereed journals and 200+ in conference proceedings. Dr. Li is
a recipient of the 2021 Geomatica Award, 2020 Samuel Gamble Award,
and 2019 Outstanding Achievement Award in Mobile Mapping Technology.
He is currently serving as the Editor-in-Chief of International Journal of
Applied Earth Observation and Geoinformation, Associate Editor of IEEE
TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, and
Canadian Journal of Remote Sensing.

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2022.3184300

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lanzhou University. Downloaded on June 21,2022 at 00:38:11 UTC from IEEE Xplore.  Restrictions apply. 


	Introduction
	Related Work
	Conventional Tree Detection Techniques
	Tree Detection via Deep Learning
	Object Detection

	OD-UTDNet
	Overview of OD-UTDNet
	Dilated Attention Cross Stage Partial network
	Self-Calibrated Convolutions
	Generalized Focal Loss

	Experiments and discussion
	Dataset
	Implementation Details
	Comparison with State-of-the-arts
	Ablation Study

	Conclusions and future work
	References
	Biographies
	Yongzhen Wang
	Xuefeng Yan
	Hexiang Bao
	Yiping Chen
	Lina Gong
	Mingqiang Wei
	Jonathan Li


