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Abstract: Mobile robots lack a driver or a pilot and, thus, should be able to detect obstacles au-
tonomously. This paper reviews various image-based obstacle detection techniques employed by
unmanned vehicles such as Unmanned Surface Vehicles (USVs), Unmanned Aerial Vehicles (UAVs),
and Micro Aerial Vehicles (MAVs). More than 110 papers from 23 high-impact computer science
journals, which were published over the past 20 years, were reviewed. The techniques were di-
vided into monocular and stereo. The former uses a single camera, while the latter makes use of
images taken by two synchronised cameras. Monocular obstacle detection methods are discussed in
appearance-based, motion-based, depth-based, and expansion-based categories. Monocular obstacle
detection approaches have simple, fast, and straightforward computations. Thus, they are more
suited for robots like MAVs and compact UAVs, which usually are small and have limited processing
power. On the other hand, stereo-based methods use pair(s) of synchronised cameras to generate
a real-time 3D map from the surrounding objects to locate the obstacles. Stereo-based approaches
have been classified into Inverse Perspective Mapping (IPM)-based and disparity histogram-based
methods. Whether aerial or terrestrial, disparity histogram-based methods suffer from common
problems: computational complexity, sensitivity to illumination changes, and the need for accurate
camera calibration, especially when implemented on small robots. In addition, until recently, both
monocular and stereo methods relied on conventional image processing techniques and, thus, did
not meet the requirements of real-time applications. Therefore, deep learning networks have been the
centre of focus in recent years to develop fast and reliable obstacle detection solutions. However, we
observed that despite significant progress, deep learning techniques also face difficulties in complex
and unknown environments where objects of varying types and shapes are present. The review
suggests that detecting narrow and small, moving obstacles and fast obstacle detection are the most
challenging problem to focus on in future studies.

Keywords: obstacle detection; image-based; UAV; MAVs; deep learning methods

1. Introduction

The use of mobile robots such as Unmanned Aerial Vehicles (UAVs), Unmanned
Ground Vehicles (UGVs) has increased in recent years for photogrammetry [1–3], and
many other applications (see Table 1). A remotely piloted robot should be able to detect
obstacles automatically. In general, obstacle detection techniques can be divided into three
groups: Image-based [4,5], sensor-based [6,7], and hybrid [8,9]. In sensor-based methods,
various active sensors such as lasers [10–13], radar [14,15], sonar [16], ultrasonic [17,18],
and Kinect [19] have been used.
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Table 1. The recent papers on robot applications.

Title Ref Applications

Design of a UGV powered by solar energy for precision
agriculture [20] Agriculture

A new algorithm for landslide geometric and deformation
analysis supported by digital elevation models [21] Automated derivation of

landslide geometry
Double adaptive intensity-threshold method for uneven lidar

data to extract road markings [22] Autonomous driving

High-resolution terrain modelling using airborne LiDAR data
with transfer learning [23] Terrain modelling

Optimising sector ring histogram of oriented gradients for human
injured detection from drone images [24] Finding injured people

Using geometric constraints to improve the performance of image
classifiers for automatic segmentation of traffic signs [25] Autonomous driving

Embedded design and implementation of a mobile robot for
surveillance applications [26] Surveillance

Assessing the impact of understory vegetation density on solid
obstacle detection for off-road autonomous ground vehicles [27] Autonomous driving

Fast-PGMED: Fast and Dense Elevation Determination for
Earthwork Using Drone and Deep Learning [28] Elevation determination

Sensor-based methods have their own merits and disadvantages. For instance, in
addition to being reasonably priced, sonar and ultrasonic sensors can determine the di-
rection and position of an obstacle. However, sonar and ultrasonic waves are affected
by both constructive and destructive interference of ultrasonic reflections from multiple
environmental obstacles [29]. In some situations, radar waves may be an excellent alternate,
mainly when no visual data is available. Nevertheless, radar sensors are not small or
light, which means installing them on small robots is not always feasible [30,31]. Moreover,
infrared waves have a limited Field Of View (FOV), and their performance is dependent
on weather conditions [32]. Despite being a popular sensor, LiDAR is relatively large and,
thus, cannot permanently be installed on small robots like MAVs. Therefore, despite their
popularity and ease of use, active sensors may not be ideal for obstacle detection when
weight, size, energy consumption, sensitivity to weather conditions, and radio-frequency
interference issues matter [32,33].

Alternative to active sensors is lightweight cameras that provide visual information
about the environment the robot travels in. Cameras are passive sensors and are used
by numerous image-based algorithms to detect obstacles using grayscale values [34] and
point [35] or edge [36,37] features. They can provide details regarding the amount of the
robot’s movement or displacement and the obstacle’s colour, shape, and size [38]. In addi-
tion to enabling real-time and safe obstacle detection, image-based techniques are not dis-
turbed by environmental electromagnetic noises. Additionally, the visual data can be used
to guide the robot through various image-based navigation techniques currently available.

Hybrid techniques integrate data from active and passive sensors, which would benefit
and also suffer from the weaknesses of both systems [39–41]. Several studies have been
carried out in this field (see Table 2). However, it should be noted that fusing the data
from multiple sources has difficulties and complexities, such as accurate calibration of
multi-sensor systems [8,42,43]. Additionally, only a few studies have been conducted on
the real-time use of multiple heterogeneous sensors, typically asynchronous [42]. The
data collected by various sensors is not homogeneous and usually requires complicated
data processing.
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Table 2. The recent papers on hybrid obstacle detection techniques.

Title Ref Content

Multimodal obstacle detection and collision
avoidance for micro aerial vehicles [44] Developing a lightweight 3D laser scanner and visual

obstacle detection using wide-angle stereo cameras
Multilayered mapping and navigation for

autonomous micro aerial vehicles [45] Integrating a three-dimensional (3D) laser scanner, two
stereo camera pairs, and ultrasonic distance sensors

Autonomous walking with a guiding stick for the
blind using echolocation and image processing [46]

Using ultrasonic sensors, image sensors and a
Smartphone app to navigate the user to the

destination

Obstacle detection system for small UAVs using
ads-b and thermal imaging. [47]

Integrating a TIR camera and an Automatic
Dependent SurveillanceBroadcast (ADS-B)

receiver

Autonomous navigation in a warehouse with a
cognitive micro aerial vehicle [48]

Integrating a dual 3D laser scanner, three stereo camera
pairs, an IMU, an RFID reader, and a powerful onboard

computer running the ROS middleware
So-net: joint semantic segmentation and obstacle

detection using a deep fusion of monocular camera
and radar

[49] Using radar and vision-based deep learning
perception framework

Multimodal obstacle detection in unstructured
environments with conditional random fields [50] Fusing lidar and camera

Deep feature-level sensor fusion using skip
connections for real-time object detection in

autonomous driving
[9] Sensor fusion of the visible camera with the

millimetre-wave radar and the thermal camera

This paper reviews image-based obstacle detection techniques that can acquire and
analyse visual information from their environment. We discuss the strengths and weak-
nesses of state-of-the-art image-based obstacle detection methods developed for unmanned
vehicles like UAVs and USVs. The remaining part of this article consists of these sections.
In Section 2, the presented techniques are classified, and the main criteria used to evaluate
them are described. Then, in Sections 3 and 4, image-based obstacle detection methods
are reviewed and discussed. Then in Section 5, overall discussions and future prospects
are presented mainly based on the authors’ perspectives. Finally, conclusions are made in
Section 6, where suggestions for future research are also presented.

2. Classification of Obstacle Detection Techniques

Different papers have been published on image-based obstacle detection in the last
two decades. The papers used in this review have all been extracted from journals. Various
databases were searched with terms like “vision-based obstacle detection”, “monocular ob-
stacle detection”, “stereo-based obstacle detection”, “UAV obstacle detection”, “combining
active sensors and cameras, hybrid methods”, and “sensors and navigation”. Hundreds of
papers were studied, more than 110 of which have been used here to develop our review
framework and shape the presented discussions.

Image-based obstacle detection methods can be divided into monocular and stereo
(Figure 1). The former uses a single image, whereas the latter utilises images captured by
two synchronised cameras. Monocular methods are discussed in four groups: appearance-
based, motion-based, depth-based, and expansion-based. Stereo-based approaches are
studied separately in IPM-based and disparity histogram-based categories.
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Figure 1. Classification of image-based obstacle detection methods.

To ensure safe and accurate navigation, an obstacle detection algorithm should have
the following abilities:

(a) Narrow and small obstacle detection

Narrow and small obstacles, such as rope, wire, and tree branches, are represented by
a few pixels in an image. Thus, they are challenging to detect, and an accident can easily
happen if they are not adequately identified.

(b) Moving obstacle detection

The robot must recognise moving obstacles such as birds, mobile robots, and humans.

(c) Obstacle detection in all directions

In complex environments, the detection should not only be carried out in the moving
direction but also in all other directions; otherwise, objects (e.g., a bird) approaching the
robot from an angle not included in its FOV can disturb its operation or even cause it
to crash.

(d) Fast/real-time obstacle detection

The response speed of a robot to obstacles depends on the speed of the obstacle detec-
tion algorithm. It can crash if the algorithm is not fast enough (relative to the robot’s speed).

For the sake of simplicity, the terms Narrow and Small Obstacle Detection (NSOD),
Moving Obstacle Detection (MOD), Obstacle Detection in All Directions (ODAD), and
Fast Obstacle Detection (FOD) are used in this paper. In the following, monocular and
stereo image-based obstacle detection techniques are discussed in detail. At the end of each
section or subsection, papers published since 2015 are also listed to indicate current trends
and interests of researchers. The last four columns of each Table show whether any of the
above criteria are addressed in a paper.

3. Monocular Obstacle Detection Techniques

Monocular image-based obstacle detection methods use a single camera mounted in
front of or around the robot (Figure 2). They are divided into four categories [51]: appearance-
based [32,52], motion-based [53], depth-based [54], and expansion-based [5,35,55]. Details
will follow.
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Figure 2. A single camera mounted in front of the mobile robot: (a) [32]; (b) [56]; (c) [57]; (d) [30].

3.1. Appearance-Based

These methods consider an obstacle as a foreground object against a uniform back-
ground (i.e., ground or sky). They work based on some prior knowledge from the relevant
background in the form of the edge [30], colour [34], texture [56], or shape [32] features. Ob-
stacle detection is performed on single images taken sequentially using a camera mounted
in front of the robot. The acquired image is examined to see if it conforms to that of sky or
ground features; if it does not, it is considered an obstacle pixel. This process is performed
for every pixel in the image. The result is a binary image in which obstacles are presented
in white and the rest in black pixels.

In terrestrial robots, the ground data such as road or floor are detected first. Then,
to detect the obstacles, ground data is used. Ulrich and Nourbakhsh [56] proposed a
technique where each pixel in the image is labelled as an obstacle or ground using its pixel
values. Their system is trained by moving the robot within different environments. As a
result, in practical situations, if the illumination conditions vary from those used during the
training phase, obstacles will not effectively be identified. In another study, Lee et al. [32]
used Markov’s Random Field (MRF) segmentation to detect small and narrow obstacles
in an indoor environment. However, the camera should not be more than 6.3 cm away
from the ground [32]. An omnidirectional camera system and the Hue Saturation Value
(HSV) colour model were used to separate obstacles by Shih An et al. [58]. They created a
binary image and filtered out the noise using a width-first search technique to cope with
image noise. In another study [59], object-based background subtraction and image-based
obstacle detection techniques were used for static and moving objects. They used a single
wide-angle camera for real-time obstacle detection. Moreover, Liu et al. [57] proposed
a real-time monocular obstacle detection method to identify the water horizon line and
saliency estimation for USVs like boats or ships. The system was developed to detect
objects below the water edge that may pose a threat to USVs. They claimed their method
outperforms similar state-of-the-art techniques [57].

Conventional image processing techniques do not usually meet the expectations of
real-time applications. Therefore, recent research has focused on increasing the speed of
obstacle detection using Convolutional Neural Networks (CNNs). For example, to increase
the speed, Talele et al. [60] used TensorFlow [61] and OpenCV [62] to detect obstacles
by scanning the ground for distinct pixels and classifying them as obstacles. Similarly,
Rane et al. [63] used TensorFlow to identify pixels different from the ground. Their method
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was real-time and applicable to various environments. To recognise and track typical
moving obstacles, Qiu et al. [52] used YOLOv3 and Simple Online and Real-time Tracking
(SORT). To solve the low accuracy and slow reaction time of existing detection systems, the
You Only Look Once v4 (YOLOv4) network, which is an upgraded version of YOLO [64],
was proposed by He et al. [65]. It improved the recognition of obstacles at medium and
long distances [65].

Furthermore, He and Liu [66] developed a real-time technique for fusing features to
boost the effectiveness of detecting obstacles in misty conditions. Additionally, Liu et al. [67]
introduced a novel semantic segmentation algorithm based on a spatially constrained
mixture model for real-time obstacle detection in marine environments. A Prior Estimation
Network (PEN) was proposed to improve the mixture model.

As for airborne robots, most research looks for a way to separate the sky from the
ground. For example, Huh et al. [30] separated the sky from the ground using a horizon
line. They then determined moving obstacles using the particle filter algorithm. Their
method could be used in complex environments and low-altitude flights. Despite being
efficient in detecting moving obstacles, their technique could not be used for stationary
obstacles [30]. In another study, a method was introduced by Mashaly et al. [34] to find the
sky in a complex environment, with obstacles separated from the sky in a binary image [34].
De Croon and De Wagter [68] suggested a self-supervised learning method to discover the
horizon line [68]. In another study [59], a single wide-angle camera was used for real-time
obstacle detection. The object-based background subtraction and image-based obstacle
detection techniques were used for static and moving objects.

The strengths and weaknesses of many appearance-based algorithms published be-
tween 2015 and 2021 are summarised in Table 3. As can be seen, appearance-based methods
have been used on various robots. Every study has had its concerns. One research has inves-
tigated narrow and small obstacle detection (i.e., [32]), whereas moving obstacle detection
has been the centre of focus in a few others. Except for Shih An et al. [58], other articles have
focused on detecting obstacles in front of the robot. It is also evident that the attention in the
last three years has been on the speed of obstacle detection procedures. Appearance-based
methods are generally limited to environments where obstacles can easily be distinguished
from the background. This assumption can easily be violated, particularly in complex envi-
ronments containing objects, like buildings, trees, and humans [69] with varying shapes
and colours. Some of the techniques are affected by the distance to the object or the noise in
the images. Moreover, when using deep learning approaches, the detection of obstacles is
primarily affected by the change in the environment and the number and types of samples
in the training data set. Therefore, we suggest using a semantic segmentation algorithm
performed by deep learning networks, provided that sufficient training data is available.
Another alternative would be to enrich appearance-based methods by providing them with
distance to object data that can be obtained using a sensor or a depth-based algorithm (see
the following sections).

Table 3. The recent papers on appearance-based obstacle detection techniques.

Ref Used for: Principle Strength(s) Weakness(es)

N
SO

D

M
O

D

O
D

A
D

FO
D

[30] UAV
Detection and tracking
airborne obstacles in a
complex background

Moving obstacle
detection

Inability to detect
stationary
obstacles

- X - -

[34] UAV Sky segmentation
Efficiency in

complex
environments

Not separating far
and near
obstacles

- - - -
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Table 3. Cont.

Ref Used for: Principle Strength(s) Weakness(es)

N
SO

D

M
O

D

O
D

A
D

FO
D

[32] Car

Inverse perspective
mapping is used to

obtain geometric cues
for obstacle detection

obstacle detection

Small and narrow
obstacle detection

Camera
installation at a little

distance from the ground.
Inefficiency for UAVs and

cars

X - - -

[68] Mobile robot
Self-supervised

learning to find the
horizon line

Efficiency in different
environments

Unsuccessful in office
environments - - - -

[58] Mobile robot
Combining an

improved dynamic
window approach

(IDWA) and an
artificial potential field

to avoid obstacles

- Omnidirectional ob-
stacle detection Insufficient in

real-world
environments

- - X -

- Noise-reducing,
which makes obsta-
cle detection more
precise

[60] Mobile robot Use of TensorFlow and
OpenCV Real-time

The resolution of the
camera is very poor,

which affects
the accuracy of

obstacle
detection

- - - X

[63] Mobile robot Use of TensorFlow Real-time Low-resolution images - - - X

[52] Agriculture
machine

Use of improved
YOLOv3 and Deep

SORT

Moving obstacle
detection
Real-time

Requiring
enriched training data is - X - X

[59]
Dual-lens

camera
sensor robot

Use of a local object
background

subtraction method

- Use of a wide-angle
camera Real-time

Incomplete obstacle
detection - X - X

[65] Train
Use of the

improved-YOLOv4
network

High accuracy and
real-time obstacle

detection

The
environment, the amount
and type of data impact

- - - X

[57] USV

Horizon line detection
to detect obstacles

below the estimated
horizon line

Real-time Inefficiency for cars and
UAVs - - - X

[66] Car

Feature fusion to
improve the

performance of the
camera sensor in
obstacle detection

under misty weather

Obstacle detection under
foggy weather

Real-time
Low accuracy - - - X

[67] USV

Semantic
segmentation for
real-time obstacle

detection

Real-time
Weak navigation when

there is a strong reflection
and confusing obstacles

- - - X

3.2. Motion-Based

In motion-based methods, it is assumed that nearby objects have sharp movements
that can be detected using motion vectors in the image. The process involves taking two
successive images or frames in a very short time. At first, several match points are extracted
on both frames. Then, the displacement vectors of the match points are computed. Since
objects closer to the camera have larger displacements, any point with a displacement value
that exceeds a particular threshold is considered an obstacle pixel.
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Various studies have been conducted in this field. Jia et al. [70] introduced a novel
method that uses motion features to distinguish obstacles from shadows and road markings.
Instead of using all pixels, they only used corners and Scale Invariant Feature Transform
(SIFT) features to achieve real-time obstacle detection. Such an algorithm can fail if the
number of mismatched features is high [70].

Optical flow is the data used in most motion-based approaches. Ohnishi and Imiya [71]
prevented a mobile robot from colliding with obstacles without having a map of the
environment. Gharani and Karimi [53] used two consecutive frames to estimate the optical
flow for obstacle detection on smartphones to help visually impaired people navigate
indoor environments. Using a context-aware combination data method, they determined
the distance between two consecutive frames. Tsai et al. [72] used Support Vector Machine
(SVM) [73] to validate Speeded-up Robust Features (SURF) [74] point detector locations
as obstacles. In this research dense optical flow approach was used to extract the data for
training SVM. Then, they used obstacle points and measures related to the spatial weighted
saliency map to find the obstacle locations. The algorithm presented in their research
applies to mobile robots with a camera installed at low altitudes. Consequently, it might
not be possible to use it on UAVs that usually fly at high altitudes.

Table 4 summarises the articles published since 2015 on motion-based methods. Except
for research by Jia et al. [70], none of the four mentioned criteria were investigated in
these studies.

Table 4. Recent papers on motion-based obstacle detection techniques.

Ref Used for: Principle Strength(s) Weakness(es)

N
SO

D

M
O

D

O
D

A
D

FO
D

[70] Car Use of motion features

Real-time
performance by utilising
feature points rather than

all pixels

Algorithm failure occurs if
there are too many miss

detections or mismatched
feature points

- - - X

[53] Blind
people

Computing optical
flow and tracking

certain points

Both moving and
stationary obstacle

detection

Incorrect detection of
some points on lamps,

floors, and
reflective surfaces

- - - -

[72] Mobile
robot

Combining obstacle
points and

salience map

Effective
obstacle

detection in outdoor
environments

May not be used on UAVs
that usually fly at high

altitudes
- - - -

Motion-based obstacle detection relies mainly on the quality of the matching points.
Thus, its quality can decrease if the number of mismatched features is high. In addition, if
the optical flow is used for motion estimating, care must be taken for image points close to
the centre. This is because, in optical flow, the number of motion vectors is not high. Indeed,
detecting obstacles in front of the robot using optical flow is still challenging [75,76]. To
resolve this problem, we suggest using an expansion-based approach to detect obstacles in
the central parts of the images. This integration ensures the strength of the expansion-based
technique in detecting frontal objects is employed, while the other parts are analysed by
the motion-based method. Alternatively, we may use deep learning networks to solve
such problems.

3.3. Depth-Based

Like motion-based methods, depth-based approaches obtain depth information from
images taken by a single camera. There are two ways to accomplish this, the first being
motion stereo and the second being deep learning. Two cameras are placed on the robot’s
sides in the former, and a pair of consecutive images are captured. Although these images
are only taken using a single camera, they can be considered as a pair of stereo images,
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from which the depth of object points can be estimated. For this, the images are searched
for matching points. Then, using standard depth estimation calculations [77], the depth of
object points is computed. Pixels whose depth is less than a threshold value are regarded
as obstacles.

A recent alternative to the above process is employing a deep learning network. At
first, the network is trained using appropriate data, so it can produce a depth map from a
single image [78]. Samples of such networks can be found in [79,80]. The process then tests
any image taken by the robot’s camera to determine the depth of its pixels. Then, similar to
a classic approach, pixels having a depth smaller than a threshold are considered obstacles.

However, instead of using motion vectors, a complete three-dimensional model of
the surroundings is constructed and used to detect nearby obstacles [81,82]. Some of these
methods use motion stereo. For example, Häne et al. [83] used motion stereo to produce
depth maps using four fisheye images (Figure 3). In this system, an object on the ground
was considered an obstacle. Such an algorithm cannot detect moving obstacles. Moreover,
it provides a complete map of the environment which requires complex computations.

Figure 3. Fisheye cameras mounted on the front, rear and side of the car [83].

In another research, Lin et al. [84] used a fisheye camera and an Inertial Measurement
Unit (IMU) for autonomous navigation of a MAV. As part of the system, an algorithm was
developed to detect obstacles in a wide FOV using fisheye images. Each fisheye image
was converted into two pinhole images without distortion with a sum horizontal viewing
angle of 180◦. Depth estimation was based on keyframes. Because the depth can only be
estimated when the drone moves, this system will not work on MAVs when in hovering
mode. Moreover, as the quality of the parts on the sides of a fisheye image is low, the
accuracy of the resulting depth image can be low. Besides, the production of two horizontal
pinhole images can decrease the vertical FOV and, thus, limit the areas where the obstacles
can be detected.

Artificial neural networks and deep learning have been used to estimate depth in recent
years [85]. Contrary to methods like 3D model construction, deep learning-based techniques
do not require complex computations for obstacle detection. Kumar et al. [86] used four
single fisheye images and a CNN to estimate the depth in all directions. They used LiDAR
data as ground truth for depth estimation to train the network. The dataset they used in
their self-driving car had a 64-beam Velodyne LiDAR and four wide-angle fisheye cameras.
In this study, the distortion of the fisheye image was not corrected. It is recommended to
improve the results by using more consecutive frames to exploit the motion parallax and
better CNN encoders [86]. Their research required further training. Therefore, another
future goal for this work is to improve semi-supervised learning using synthetic data and
run unsupervised learning algorithms [86]. In another study, Mancini et al. [87] developed
a new CNN framework that uses image features obtained via fine-tuning the VGG19
network to compute the depth and consequently detect obstacles.

Moreover, Haseeb et al. [88] presented DisNet, a distance estimation system based on
multi-hidden-layer neural networks. They evaluated the system under static conditions,
while evaluation of the system mounted on a moving locomotive remained a challenge. In
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another research, Hatch et al. [54] presented an obstacle avoidance system for small UAVs,
in which the depth is computed using a vision algorithm. The system works by incorporat-
ing a high-level control network, a collision prediction network, and a contingency policy.
Urban and Caplier [76] developed a navigation module for visually impaired pedestri-
ans, using a video camera in an intelligent light-weighted glasses device. It includes two
modules: a static data extractor and a dynamic data extractor. The first is a convolutional
neural network used to determine the obstacle’s location and distance from the robot. In
contrast, using a fully connected neural network, the dynamic data extractor computes the
Time-to-Collision by stacking the obstacle data from multiple frames.

Furthermore, some researchers have developed methods to create and use a semantic
map of the environment to recognise obstacles [89,90]. A semantic map is a representation
of the robot’s environment that incorporates both geometric (e.g., height, roughness) and
semantic data (e.g., navigation-relevant classes such as trail, grass, obstacle, etc.) [91]. When
used in urban autonomous vehicle applications, they can provide autonomous vehicles
with a longer sensing range and more excellent manoeuvrability than onboard sensory
devices. Some studies have used multi-sensor fusion to improve the robustness of their
segmentation algorithms to create semantic maps. More details can be found in [92–96].

Table 5 presents several papers that use depth-based approaches for obstacle detection.
As can be seen, the main concern is detecting obstacles on keyframes or using deep learning
approaches to improve the speed. In addition, the detection of objects in all directions has
been looked at, as the development of autonomous cars and intelligent navigation systems
for MAVs have become hot topics in recent years.

Table 5. Recent papers on depth-based obstacle detection techniques.

Ref Used for: Principle Strength(s) Weakness(es)

N
SO

D

M
O

D

O
D

A
D

FO
D

[83] Car
Depth map generation

with motion
stereo system

Obstacle detection in
all directions

Inability to identify
moving obstacles - - X -

[84] MAV
Depth estimation based

on keyframes
Obstacle detection with

wide FOV

- MAV is unable to
detect impediments
when hovering - - X -

- Low-quality fish-
eye images have a
negative impact on
detection accuracy

[86] Car Use of CNN network Obstacle detection in
all directions

Need for appropriate
training data - - X -

[87] UAV
Use of image features

obtained via fine-tuning
the VGG19 network

Fast obstacle detection The need for adequate
initial training - - - X

[88] -
Use of Multi

Hidden-Layer Neural
Network, named DisNet

Reliable estimation of
distances in static

railway scenes

Extraction of inaccurate
object bounding boxes that

limit obstacle detection
- - - -

[54] UAV Use of hybrid
neural network

Efficiency in a complex
outdoor environment at

comparatively
high speeds

Poor performance
due to noise - - - -

[76] visually
impaired

Focus on the
Time-to-Collision
network’s ability

Time-efficient Inability to correctly detect
different types of obstacles - - - X
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In summary, depth-based approaches are well suited for detecting stationary obstacles.
Most traditional techniques require a complete map of the environment, which needs
intensive computations. Although deep learning-based depth estimation has widely been
employed in recent years, some issues still need attention. For example, to achieve good
results, the network must be deep, as we know. This, in turn, increases memory usage and
calculation complexity [97]. Another critical issue is that extensive high-quality training
data is usually needed to train the network properly, which may not readily be available,
especially for complex environments. Indeed, for a system to be practical, calculating
the depth in complex scenes remains challenging. In situations where the objects to be
identified are not diverse, a solution would be to use a semantic segmentation approach to
identify the object’s pixels in the images. After that, a depth estimation algorithm can be
used to estimate the distance between the objects and the camera mounted on the robot.

3.4. Expansion–Based

These methods employ the same principle used by humans to detect obstacles, i.e.,
the object expansion rate between consecutive images. As we know, an object continuously
grows larger when it approaches. Thus determining obstacles, points and/or regions on
two sequential images can be used to estimate the object’s enlargement value. This value
could be computed between homologous areas, distances, or even the SIFT scales of the
extracted points. In expansion-based algorithms, if the enlargement value relating to an
object exceeds a specific threshold, that object is considered an obstacle.

Expansion-based methods use the objects’ enlargement rate in between successive
images. They use a concept similar to human perception. Several expansion-based studies
have been conducted. In these methods, the obstacle is defined as an object enlarged or re-
sized in consecutive frames. Therefore, sequential frames and various enlargement criteria
are used to detect obstacles. For example, Mori and Scherer [98] used the characteristics
of the SURF algorithm to detect the initial positions of obstacles that differed in size. This
algorithm has simple calculations but may fail due to the slow reaction time to obstacles.
Zeng et al. [69] used edge motion in two successive frames to identify approaching ob-
stacles in another research. If the object’s edge shifts outwards (relative to its centre in
successive frames), the object becomes large [69]. This approach applies to both fixed
and mobile robots when the background is homogeneous. However, if the background is
complicated, this approach only applies to static objects. Aguilar et al. [99] only detected
obstacles conforming to some primary patterns. They use this concept to detect specific
obstacles. As a result, obstacles other than those following the predefined patterns cannot
be identified.

To detect obstacles, Al-Kaff et al. [35] used SIFT [100] to extract and match points
across successive frames. He then formed the convex hull of the matched points. The
points were regarded as obstacle points if the change in their SIFT scale values and the
convex hull area exceeded a certain threshold (Figure 4). The technique may simultaneously
identify both near and far points as obstacles. As a result, the mobile robot will have limited
manoeuvrability in complex environments. In addition, the ratio of change of the convex
hull region criterion will lose its efficiency if the corresponding points are wrong.

Badrloo and Varshosaz [55] used points with an average distance ratio greater than a
specified threshold to identify obstacle points to solve this problem. Their technique was
able to distinguish far and near obstacles properly. Others have solved the problem in
different ways. For example, like Badrloo and Varshosaz [55], Euclidean distance was ac-
quired between each point and the centroid of all other matched points by Padhy et al. [37].
Escobar et al. [101] computed the optical flow to obtain the expansion rate for obstacle
recognition in unknown and complex environments in another study. In another study,
Badrloo et al. [102] used the expansion rate of region areas for accurate obstacle detection.
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Figure 4. The change in obstacle size is demonstrated by approaching it [35].

Recently, deep learning solutions have been proposed to improve both the speed and
the accuracy of obstacle detection, especially in complex and unknown environments. For
instance, Lee et al. [5] detected obstacle trees in tree plantations. They trained a machine
learning model, the so-called Faster Region-based Convolutional Neural Network (Faster
R-CNN), to detect tree trunks for drone navigation. This approach uses the ratio of an
obstacle height in the image to the image height. Additionally, the image widths between
trees were used to find obstacle-free pathways.

Compared to other monocular techniques, expansion-based approaches employ a
simple principle, i.e., the expansion rate. Such techniques are fast, as they do not require
extensive computations. However, they may fail when the surrounding objects become
complex. Thus, in recent years, deep neural networks have been employed to meet the
expectations of real-time applications.

Table 6 summarises the papers reviewed in this section. As can be seen, most tech-
niques have been implemented for flying robots (i.e., MAV and UAV). Only one paper
has addressed moving object detection, and only one has aimed for fast detection of ob-
stacles. Perhaps, this has been because, by default, expansion-based techniques are fast.
Thus, detection accuracy in complex environments seems to be the primary concern, with
little success.
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Table 6. Recent papers on expansion-based obstacle detection techniques.

Ref Used for: Principle Strength(s) Weakness(es)

N
SO

D

M
O

D

O
D

A
D

FO
D

[69] UAV Brain-inspired
rasterisation

Efficiency for both fixed
and mobile

cameras in a simple
background

In the complex background,
this approach does not
apply to mobile robots

- X - -

[99] compact
MAV Use of SURF Reduced computational

complexity
Weak in the identification of
other obstacles such as trees - - - -

[35] MAV
Use of keypoints scale
ratio and convex hull

area ratio

Can be used in
complex environments

- Lack of distinguishing be-
tween near-far obstacles - - - -

- The impact of correspond-
ing incorrect points

[55] UAV Use of distance ratio Ability to distinguish
near-far obstacles

Moving the camera loses
its effectiveness - - - -

[101] MAV Use of optical flow Navigation in complex
environments

Problems with the use of
optical flow - - - -

[37] UAV
Use of Euclidean

distance expansion
Depth estimation from a

single camera

- Inefficiency when the
UAV’s velocity increases - - - -

- Inefficiency when the
obstacle does not have
proper texture

[5] UAV
Use of Faster
R-CNN and

image heights of trees
Ability to detect trees

Unable to detect objects other
than trees (e.g.,
people, cars)

- - - X

[102] MAV Use of regions
expansion rate

Accurate and complete
obstacle detection Time-consuming - - X -

As seen from the above, expansion-based approaches use points or convex hulls to
detect obstacles to increase speed. This leads to the inclusion of incomplete obstacle shapes,
which can limit its accuracy. A recent method provides regions of an obstacle for complete
and precise obstacle detection [102], although it does not yet meet the requirements of real-
time applications. We suggest using methods based on deep neural networks to accelerate
the complete and precise detection of obstacles in expansion-based methods.

3.5. Summary

In this section, monocular obstacle detection techniques were reviewed. Due to their
high speed and low computational complexity, most obstacle detection techniques today
are monocular. Yet they need to advance from different points of view. Appearance-based
methods are generally limited to environments where obstacles can easily be distinguished
from the background. This assumption can easily be violated, particularly in complex
environments containing objects of varying shapes and colours, such as buildings, trees, and
humans [69]. Moreover, when using deep learning approaches, the detection of obstacles is
primarily affected by the change in the environment and the number and types of samples
in the training data set. We suggested using or combining them with a distance to object
calculation method. From the review, we saw that the main attention in recent years had
been the speed of obstacle detection.

Motion-based obstacle detection relies mainly on the quality of the matching points.
Thus, its quality can decrease if the number of mismatched features is high. Indeed,
detecting obstacles in front of the robot using optical flow is still a challenge [75,76]. The
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current trend is to use deep learning networks to solve such problems. Therefore, we
suggest using another method, such as the expansion-based, for the centre part of the
image and a motion-based method for the rest.

As for the depth-based methods, they are well suited for detecting stationary obstacles.
Although producing a complete depth map of the surroundings is not the goal of obstacle
detection, most depth-based algorithms need such data to work, which is computationally
intensive. Therefore, we propose to only extract objects in 2D and then use a depth-based
approach only to compute the depth of the identified objects. Several papers also observed
that in using depth-based methods, the main trend is to detect obstacles on keyframes or to
use deep learning approaches to improve the speed. In addition, the detection of objects in
all directions has been looked at, as the development of autonomous cars and intelligent
navigation systems for MAVs have become hot topics in recent years.

Finally, compared to the other monocular methods, expansion-based methods employ
a simple principle, i.e., the expansion rate of objects. Most expansion-based methods have
been implemented for aerial robots (i.e., MAV and UAV). Such methods are fast, as they do
not require extensive computations. However, they may fail when the surrounding objects
become complex. Thus, in recent years, deep neural networks have been employed to meet
the expectations of real-time applications. By default, expansion-based methods are fast.
Thus, the detection accuracy in complex environments seems to be the primary concern of
such techniques, which, by far, have not had much success.

4. Stereo-Based Obstacle Detection Techniques

Obstacle detection based on stereo uses two synchronised cameras fixed on the
robot [36]. Figure 5 depicts a stereo camera pair mounted on a car to detect obstacles.
These methods can be classified into two groups: IPM-based and disparity histogram-
based [103].

Figure 5. Stereo-based obstacle detection: (a) A pair of stereo cameras mounted on a car to detect an
obstacle [36]; (b) Laser scanners and six cameras mounted on the autonomous vehicle at Southwest
Jiaotong University take photos and point clouds in 360◦.

4.1. IPM–Based Method

The IPM-based methods were primarily used to detect all types of road obstacles [104] and
to eliminate the perspective effect of the original images in lane detection problems [105,106].
Currently, IPM images are mostly used in monocular methods [107–109].

Assuming the road has a flat surface, the IPM algorithm produces an image repre-
senting the road seen from the top, using internal and external parameters of the cameras.
Then, the difference in the grey levels of pixels in the overlapping regions is computed,
from which a polar histogram image is generated. If the image textures are uniform, this
histogram contains two triangles/peaks: one for the lane and one for the potential obstacle.
These peaks are then used to detect the obstacle, i.e., non-lane object. In effect, obstacle
detection relies on identifying these two triangles based on their shapes and positions. In
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practice, it becomes difficult to form such ideal triangles due to the diversity of textures in
the images, objects of irregular shapes, and variations in the brightness of the pixels.

There is limited research on stereo IPM obstacle detection [110]. An example is that
by Bertozzi et al. [110] for short-range obstacle detection. This method detects obstacles
using the difference between the left and right IPM images. Although it may be accu-
rate in some conditions, it has a limited range and cannot show the actual distance to
obstacles. Kim et al. [111] used a stereo pair of cameras to create two IPM images for each
camera. These images were then combined with another IPM image created using a pair of
consecutive images taken with the camera having a smaller FOV to detect the obstacles.

Although IPM-based methods are very fast, they have two notable limitations. First,
since they use object portions with uniform texture or colour for obstacle detection [112,113],
they can only be used to detect objects like a car that has a uniform material [114]. Second,
errors in the homography model, unknown camera motion, and light reflection from the
floor can generate noise in the images [114]. Indeed, implementing the IPM transform
requires a priori knowledge of the specific acquisition conditions (camera location, orien-
tation, etc.) and some assumptions regarding the objects being imaged. Consequently, it
can only be utilised in structured environments, where, for instance, the camera is fixed
or when the system calibration and the surrounding environment can be monitored by
another type of sensor [115]. Due to the limitations of this method, we recommend using it
only for lane detection and obstacle detection in cars. This is because the necessary data
and conditions for this method in unknown environments, particularly when using drones,
are not necessarily available. Table 7 summarises the papers reviewed in this section.

Table 7. Recent papers on IPM-based obstacle detection methods.

Ref Used for: Principle Strength(s) Weakness(es)

N
SO

D

M
O

D

O
D

A
D

FO
D

[110] Car
Use of the

difference between the
left and right IPM

Highly accurate
- limited range

- - - -

- Not calculating the pre-
cise distance

[111] Mobile
robot

Use of stereo
cameras with two

distinct FOVs
low-cost Low-resolution images - - - -

4.2. Disparity Histogram-Based

Two cameras are installed at a fixed distance in front of the robot in these methods. The
cameras have similar properties like focal length and FOV. They simultaneously capture
two images of the surroundings. The acquired images are rectified. The distance between
the matched pixels (disparity) is then calculated. This is repeated for all of the image
pixels. The result is a disparity map, which is then used to compute the depth map of the
surrounding objects [116]. Pixels having a depth smaller than a threshold are considered
obstacle points. The majority of stereo-based obstacle detection techniques developed so
far are disparity histogram-based which are reviewed in this section.

Disparity histogram-based methods can be discussed for robots on the ground and in
the air. In the following, we will review both groups.

4.2.1. Disparity Histogram-Based Obstacle Detection for Terrestrial Robots

Disparity histogram-based obstacle detection techniques were initially developed for
terrestrial robots. Kim et al. [117] proposed a Hierarchical Census Transform (HCT) match-
ing method to develop car parking assistance using images taken by a pair of synchronised
fisheye cameras. As the quality of points at the edges of a fisheye image is low, the detection
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was only accurate enough in areas close to the image centre. Moreover, the algorithm’s
accuracy decreased when shadows and complicated or reflective backgrounds were present.
Later, Ball et al. [118] introduced an obstacle detection algorithm that could continuously
adapt to changes in the illumination and brightness in farm environments. They developed
two distinct steps for obstacle detection. The first removes both the crop and the stubble.
After that, stereo matching is performed only on the remaining small portions to increase
the speed. The technique is unable to detect hidden obstacles. The second part bypasses
this constraint by defining obstacles as unique observations in their appearance and struc-
tural cues [118]. Salhi and Amiri [119] proposed a faster algorithm implemented on Field
Programmable Gate Arrays (FPGA) to simulate human visual systems.

Disparity histogram-based techniques rely on matching computationally intensive
algorithms. A solution to speed up the computations is to reduce the matching search
space. Jung et al. [103] and Huh et al. [36] removed the road pixels to reduce the search
space and regarded the other pixels as obstacles for vehicles travelling along a road. To
detect the road, they used the normal FOV cameras. As a result, only obstacles in front of
the vehicle could be detected. In a similar approach, to guide visually impaired individuals,
Huang et al. [120] used depth data obtained using a Kinect scanner to identify and remove
the road points. Furthermore, Muhovič et al. [121] approximated the water surface by
fitting a plane to the point cloud, and outlying points are processed further to identify
potential obstacles. As a recent technique, Murmu and Nandi [122] presented a novel lane
and obstacle detection algorithm that uses video frames captured by a low-cost stereo vision
system. The suggested system generates a real-time disparity map from the sequential
frames to identify lanes and other cars. Moreover, Sun et al. [123] used 3D point cloud
candidates extracted by height analysis for obstacle detection instead of using all 3D
point clouds.

With the development of neural networks, many researchers have recently turned
their attention to deep learning methods [124–126]. Choe et al. [127] proposed a stereo
object matching technique that uses 2D contextual information from images and 3D object-
level information in the field of stereo matching. Luo et al. [128] also used CNNs that
can produce extremely accurate results in less than one second. Moreover, in disparity
histogram-based obstacle detection studies, Dairi et al. [124] developed a hybrid encoder
that combines Deep Boltzmann Machines (DBM) and Auto-Encoders (AE). In addition,
Song et al. [129] trained a convolutional neural network using manually labelled Region Of
Interest (ROI) from the KITTI data set to classify the left/right side of the host lane. The 3-D
data generated by stereo matching is used to generate an obstacle mask. Zhang et al. [125]
introduced a method that uses stereo images and deep learning methods to avoid car
accidents. The algorithm was developed for drivers reversing and with a limited view of
the objects behind. This method detects and locates obstacles in the image using a faster
R-CNN algorithm.

Haris and Hou [130] addressed how to improve the robustness of obstacle detection
methods in a complex environment by integrating an MRF for obstacle detection, road
segmentation, and the CNN model to navigate safely. Their research evaluated the detection
of small obstacles left on the road [130]. Furthermore, Mukherjee et al. [131] provided a
method for detecting and localising pedestrians using a ZED stereo camera. They used the
Darknet YOLOv2 to locate and achieve more accurate and rapid obstacle detection results.

Compared with traditional methods, deep learning has the advantages of robustness,
accuracy, and speed. In addition, it can achieve real-time, high-precision recognition and
distance measurement through the combination of stereo vision techniques [125]. Table 8
provides a summary of the papers reviewed in this section. The majority of studies detected
obstacles for cars. Additionally, the algorithms used in these studies used neural networks
to reduce the matching search space and increase the accuracy of obstacle detection.
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Table 8. Recent papers on disparity histogram-based obstacle detection techniques for
terrestrial robots.

Ref Used for: Principle Strength(s) Weakness(es)

N
SO

D

M
O

D

O
D

A
D

FO
D

[120] Blind people

Remove the surface and
solve the

problems of
over-segmentation

Effective in a low light
environment Cannot be used outdoors - - - X

[117] Car
Presenting the

HCT-based stereo
matching method,

Real-time
obstacle

detection under a variety
of lighting
conditions

- The accuracy of obsta-
cle detection, particu-
larly for small obstacles,
is limited by low-quality
images of the fisheye

- X X -

- Difficult to use in sit-
uations with shadows,
complicated backgrounds,
and reflective surfaces

[118] Agricultural
cars

Describes a
vision-based obstacle
detection system that
continually adapts to
environmental and

illumination variations

Obstacles are detected in
a variety of

lighting
conditions

Unable to detect obstacles
that have been disguised in
their appearance or structure

- - - -

[119] Car Use of FPGA Real-time
The communication

between the modules is still
to be optimised

- - - X

[121] USV Use of 3-D Point Cloud Real-time Problem of detecting large
objects (e.g., coast and piers) - - - X

[124] Car
Use of unsupervised,

deep-learning
approaches

Real-time
Negative effect of high

image noise on the method’s
performance

- - - X

[129] Car Use of convolutional
neural network

lightweight
stereo

vision-based driving
lane detection

Need appropriate training - - - X

[125] Car Use of deep learning and
binocular vision Real-time and effective

Detecting pedestrians and
ignoring other obstacles
such as cars, trees, etc.

- - - X

[130] Autonomous
vehicle Use of MRF Small obstacle detection

Need to train the model on
multiple training

dataset
X - - X

[122] Self-driving car Generating a disparity
map Real-time low-resolution camera - - - X

[131] Car
Combining CNN and

sensor fusion
algorithms

Fast and
credible results Need appropriate training - - - X

[123] Car
Use of 3D point cloud

candidates and a
variant of RANSAC

Road obstacle
detection such as

potholes and cracks

Incomplete obstacle
detection due to 3D point
cloud candidates selection

- - - X

4.2.2. Disparity Histogram-Based Obstacle Detection for Aerial Robots

Despite terrestrial robots mainly being surrounded by known objects, aerial robots
move in unknown environments. Processing disparity histogram-based methods can be
too heavy for onboard MAV microprocessors. To simplify the search space and speed up
the depth calculation, McGuire et al. [38] used vertical edges within the stereo images to



Remote Sens. 2022, 14, 3824 18 of 26

detect obstacles. Such an algorithm would not work in complicated environments where
horizontal and diagonal edges are present.

Tijmons et al. [132] introduced the strategy of Droplet to identify and use only strong
matched points and, thus, decrease the search space. In this study, the resolution of
the images was reduced to increase the speed of disparity map generation. When the
environment becomes complex, the processing speed of this technique decreases. Moreover,
reducing the resolution may eliminate tiny obstacles such as tree branches, rope, and wire.

Barry et al. [4] concentrated only on fixed obstacles at a 5–10 m distance from a UAV
to speed up the process. The algorithm was implemented on a light drone (less than 1 kg)
and detected obstacles at 120 frames per second. The baseline of the cameras was only
14 inches. Thus, in addition to being limited to detecting fixed objects, a major challenge
of this work would be its need for accurate calibration of the system to obtain reliable
results. Lin et al. [133] considered dynamic environments and stereo cameras to detect
moving obstacles using depth from stereo images. However, they only considered the
obstacles’ estimated position, size, and velocity. Therefore, some characteristics of objects
such as direction, volume, shape, and influencing factors like environmental conditions
were not considered. Hence, such algorithms may have difficulty detecting some of the
moving obstacles.

One of the state-of-the-art methods is that by Grinberg and Ruf [134], which includes
several components: image rectification, pixel matching, semi-global matching optimisation
(SGM), compatibility check, and median filtering. This algorithm runs on an ARM processor
of the Towards Ubiquitous Low-Power Image Processing Platforms (TULIPP). Therefore,
image processing shows a performance suitable for real-time applications on a UAV [134].

The papers discussed in this section are summarised in Table 9. Overall, disparity
histogram-based methods for ground and airborne mobile robots have common problems.
One of them is computational complexity. To reduce computation time, the search space
has to be reduced. In all the studies mentioned above, research has mainly focused on
the speed issue by reducing the computing process or decreasing the resolution of the
images. In this regard, removing the road segments has proven helpful for ground mobile
robots and autonomous vehicles [22]. To reduce the number of computations, we propose
combining disparity histogram-based and mono methods. This way, the mono method
identifies the potential obstacles, while using the disparity histogram-based technique, the
distance to those obstacles is estimated.

Table 9. Recent papers on disparity histogram-based obstacle detection techniques for aerial robots.

Ref Used for: Principle Strength(s) Weakness(es)

N
SO

D

M
O

D

O
D

A
D

FO
D

[38] UAV
Computationally efficient

optical flow and stereo
algorithm

Reducing computational
complexity to increase
navigational efficiency

- Inefficiency in complex en-
vironments - - - X

- Limited FOV

[132] MAV
Use of only strong

matched points and
reduction of

images resolution

Fast

- Reducing image dimen-
sions leads to the elimina-
tion of small obstacles - - - X

- limited viewing angle

[4] UAV Detecting only obstacles
at a certain depth Real-time Instability due to the need for

very exact camera calibration - - - X

[133] MAV Depth estimation Moving obstacle
detection

The obstacle’s velocity
estimation may be very noisy - X - -

[134] UAV
Computation of the

U-disparity and
V-disparity maps

Real-time FPGAs have limited
memory capacity - - - X
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The second problem is sensitivity to illumination variations, which have been tackled
using deep learning networks in recent years. The third problem is the accurate calibration
of the stereo cameras. Suppose the stereo cameras are not calibrated correctly. The detection
error increases very quickly over time. This is due to system instability which will affect
the accuracy of computing the distance from the obstacle, especially when the baseline of
the cameras is small, e.g., when they are mounted on small-sized UAVs.

4.3. Summary

In this section, stereo-based approaches were reviewed in two groups, i.e., IPM-
based and Disparity histogram-based. They use a pair of synchronised images to detect
obstacles. Despite their strengths, they suffer from limitations, making them less popular
than monocular approaches. The IPM-based techniques work mainly in specific conditions
and usually require prior knowledge to detect obstacles. Thus we only recommend using
them for terrestrial applications like lane and obstacle detection to guide autonomous cars.
They have a very difficult time when implemented on drones, as drones usually fly in
unknown environments.

As for disparity histogram-based methods, a common problem is a computational
complexity. To reduce computation time, the search space has to be reduced. This can be
done by, for example, decreasing the resolution of the images or by removing the road
segments (for ground mobile robots). To address this problem, we propose combining
disparity histogram-based and monocular methods. This way, obstacles can be determined
using monocular methods, while their depth can be obtained by disparity histogram-based
techniques. The second problem is sensitivity to illumination variations, which deep
learning networks have recently tackled. The third problem is the accurate calibration of
the stereo cameras which should also be considered in developing a proper stereo-based
obstacle detection algorithm.

5. Discussion and Prospects

In this paper, we discussed various obstacle detection methods. Nowadays, obstacle
detection is a hot topic and a crucial part of most commercial unmanned vehicles. Almost
every system under development includes an obstacle detection mechanism. Two types
of techniques were reviewed: monocular and stereo. Monocular techniques, divided
into appearance-based, motion-based, depth-based and expansion-based approaches, face
different problems. Appearance-based methods are generally limited to environments
where obstacles can easily be distinguished from the background. Motion-based obstacle
detection relies mainly on the quality of the matching points. Indeed, detecting obstacles
in front of the robot using optical flow is still an important challenge [75,76]. Moreover,
most traditional depth-based methods require a complete map of the environment, which
needs intensive computations. That is why deep learning-based depth estimation has
widely been employed in recent years to improve speed. Compared to other monocular
methods, expansion-based methods employ a simple principle, i.e., the expansion rate.
Such methods are fast, as they do not require extensive computations. However, they may
fail when the surrounding objects become complex. Thus, in recent years, deep neural
networks have been employed to meet the expectations of real-time applications. By
default, expansion-based methods are fast. Thus, the remaining problem is the accuracy
of detecting obstacles in complex environments, which has been the primary concern, of
course, with little success.

Stereo-based methods were also studied in two groups, i.e., IPM-based and Disparity
histogram-based, the latter reviewed separately for ground and airborne mobile robots.
Stereo techniques have almost common problems. One of them is computational complexity.
In all the studies, research has mainly focused on the speed issue by reducing the computing
process or decreasing the resolution of the images. In this regard, removing the road
segments has proven helpful for ground mobile robots and autonomous vehicles. The
second problem is sensitivity to illumination variations, which have been tackled using
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deep learning networks in recent years. The third problem is the accurate calibration of the
stereo cameras.

Based on this review, most algorithms’ challenges are the ability to detect narrow,
small, and moving obstacles in all directions and in real-time. Table 10 lists the papers we
have found published since 2015 that address such abilities. As can be seen, the amount of
research on detecting narrow and small obstacles is low, and, as such, detecting narrow and
small obstacles is still a notable challenge. We believe that detecting these obstacles should
be one of the areas to focus on in future research. Since the quality of detection increases
with advancements in image resolution, we perceive that stronger algorithms will become
available in the near future.

Table 10. The research overview of various methods of obstacle detection about the suggested criteria.

Criteria
NSOD MOD ODAD FOD

Methods

Monocular

Appearance-based [32] [30,52,59] [58] [52,57,59,60,63,65–67,135,136]
Motion-based - - - [70]
Depth-based - - [83,84,86] [76,87]

Expansion-based - [69] - [5]
Stereo [4,130] [117,133] [118] [4,38,119–125,129,131,132,134]

Additionally, the ability for real-time or high-speed obstacle detection should be one
of the key areas of future research. Indeed the development of fast obstacle detection
systems for unmanned vehicles is now more needed than ever. For instance, self-driving
automobiles need to constantly detect obstacles such as pedestrians, other vehicles, bicycles,
and animals at an incredibly fast rate to ensure driving safety. The obstacle detection speed
is also crucial for the fast-moving UAVs within cluttered areas like forest canopies. An
option for achieving this is to use deep learning. Another option is to develop parallel
processing hardware and software, which, in recent years, have shown could substantially
enhance the processing speed. Through the review, we realised that single-image methods
are the fastest methods due to their low computational complexity. It appears that their
performance will even increase in the future as extremely fast deep learning algorithms
continue to evolve.

One notable finding was that most techniques employ cameras with FOVs ranging
from 57◦ to 92◦. This angle of view covers only a portion of the area in front of a robot.
As a result, obstacles beyond the camera’s FOV cannot be identified. To deal with this
problem, as previously stated, there have been systems that use fisheye cameras to detect
obstacles approaching the robot from any direction. A solution is to employ a monocular
or stereo-based obstacle detection algorithm that uses a single/pair of synchronised fisheye
cameras. However, as with MAVs or UAVs, if the stereo baseline is small, very precise
calibration of the system is required, or the system becomes unstable over time. This
means that implementing a stereo fisheye obstacle detection algorithm on flying robots
is a challenging task that should be closely examined and/or explored in future studies.
Moreover, robots utilising fisheye cameras have difficulty dealing with objects projected
close to the sides of the fisheye image.

Another issue that should be considered in future research is detecting fast-moving
objects, especially in crowded areas. An application of this is the development of an
algorithm to detect moving cars, humans, and bicycles in urban areas for a self-driving car.

In Table 11, image-based methods are compared based on accuracy, speed and cost. In
terms of accuracy, expansion–based approaches can be very accurate, as recent research on
this method has focused on fully obstacle detection. In addition, if the system calibration
is accurate, stereo methods will be accurate. Appearance-based and expansion–based
approaches are faster since their calculations are simple and less expensive. In addition, all
monocular approaches are cost-effective due to the use of one camera.
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Table 11. Comparison of image-based methods based on accuracy, speed and cost. Asterisk symbols
indicate the effectiveness of the method.

Criteria Accuracy Speed Cost
Methods

Monocular

Appearance-based * *** **
Motion-based * * **
Depth-based ** * **

Expansion-based *** *** **
Stereo *** * *

6. Conclusions and Suggestions for Future Works

This paper explored and reviewed image-based obstacle detection techniques imple-
mented mainly on UAVs and autonomous vehicles. Two groups of algorithms/systems
were reviewed: monocular and stereo. Monocular algorithms were discussed in appearance-
based, motion-based, depth-based, and expansion-based sub-groups, while stereo tech-
niques were reviewed separately for IPM-based and disparity histogram-based methods.

Monocular-based obstacle detection approaches use only one camera. They have
simple computations and are fast. As a result, researchers have implemented/investigated
these methods extensively for aerial and terrestrial robot navigation. Due to the small
size, low processing power, and weight limitations of MAVs or small UAVs, most studies
have used monocular methods. On the other hand, stereo-based methods use a pair(s) of
synchronised cameras to capture images for generating a 3D map from the surrounding
objects in real-time. The map is then used to locate the obstacle. Unfortunately, such
methods are not computationally cost-effective [4,38]. To resolve this issue, researchers
usually require a powerful Graphics Processing Unit (GPU) [99].

Moreover, they should rely on accurate system calibration. This is because any error
can affect the system’s stability over time [4]. Nevertheless, one of the primary benefits of
these methods is calculating the distance between the robot and the obstacle.

In recent years, the research has focused mainly on using deep learning networks for
fast and accurate obstacle detection. We suggest obtaining the training data from publicly
available datasets to generate dense probabilistic semantic maps in urban environments
automatically. This can provide robust labels for environmental objects such as roads, trees,
buildings, etc.

There has been significant progress in increasing the speed of computations, though,
in terms of accuracy; there is still a long way to go, especially for complex environments
where objects of varying types and complexities are present. Moreover, the review suggests
that detecting narrow and small and moving obstacles are the most challenging prob-
lems to focus on in future studies. Detecting such obstacles is particularly important for
aerial robots.
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