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Abstract—Estimating urban surface temperature at high res-
olution is crucial for effective urban planning for climate-driven
risks. This high-resolution surface temperature over broader
scales can usually be obtained via satellite remote sensing for
historical period. However, it can be hard for future predictions.
This paper presents a Physics Informed Hierarchical Perception
(PIHP) network, a novel approach for accurate, high-resolution
and generalizable urban surface temperature estimation. The key
to our approach is leveraging the implied temperature-related
physics information of the land surface structure from high-
resolution multi-spectral satellite images, thus achieving precise
estimation or prediction for high spatial resolution urban surface
temperature. Specifically, a semantic category histogram is first
designed to describe the land surface structures. Based on this,
a hierarchical urban surface perception network is proposed
to capture the complex relationship between the underlying
land surface features, upper atmosphere conditions and the
intracity temperature. The proposed PIHP-Net makes it possible
to generate models that can generalize across different cities,
thus to estimating or predicting high-resolution urban surface
temperature when the satellite land surface temperature (LST)
observation is not available. Experiments over various cities in
different climate regions in China show, for the first time, errors
less than 2 Kelvin (for most of the cases) at the high resolution
(60-by-60 meters grids), thus making it possible to predict future
intracity temperature from forcing meteorology and multi-spectral
satellite imagery.

Index Terms—Land surface temperature, downscaling, multi-
spectral satellite imagery, deep neural network.
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I. INTRODUCTION

C ITIES, as the hotspots of concentrated population and
infrastructure, are where major climate-driven impacts

occur [1], [2]. Effective urban planning and infrastructure-
based growth strategies rely on high-resolution urban climate
predictions [3], [4]. High-resolution and high-precision Land
Surface Temperature (LST) prediction has been extremely
challenging, especially over urban surfaces, because of their
large heterogeneity [5], or the complicated natural and human
behaviours, such as seasonal change, diurnal temperature
differences, urbanization, population density, energy structure,
etc [6], [7], [8], [9]. We acknowledge that ”high resolution”
has different definitions for different fields. For example,
sub-hundred meters resolution is typical in satellite remote
sensing retrieval studies, and might not be considered as high
resolution. However, in climate modeling studies, predicting
intracity LST for future time horizon could be very challeng-
ing. Seasonal forecasts or long-term projections from climate
models are either at coarse resolutions (>1 km) [3], [4] or
completely missing urban landscapes [10]. The objective of
this study is to establish an machine learning-based framework
to predict intracity LST that can be used for urban climate ap-
plications using remote sensing data and deep neural networks,
rather than LST retrieval. Therefore, the definition of ”high
resolution” in this study means sub-hundred meters, aligned
with urban climate studies.

Recent works [10], [11] employed the physics informed
machine learning (PIML) paradigm to build an urban climate
emulator to predict the citywide average temperatures on the
global scale, demonstrating the large potential of incorporating
physical understanding into machine learning for the urban
temperature prediction. These PIML methods have also been
demonstrated in modeling weather and climate processes[12]
and other ecosystems[13]. Such a trend inspires us to deeply
dig into the underlying physical reasons for the temperature
prediction, not just considering it a sheer computer vision
problem.

State-of-the-art methods to estimate LST can be mainly
classified into two categories: physics-based methods and
statistics-based methods. Physics-based models exploit the
dynamic processes between the urban canopy and the atmo-
spheric boundary layer to solve the temperature field [14],
[15]. These methods are very computationally demanding and
thus usually low-resolution (several kilometers and above). On
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the other hand, statistical methods seek to establish empirical
relationships between the LST and other observational data,
such as meteorological variables, land cover, geography, and
vegetation indices [16], [17], [18], [19], [20], [21]. However,
such methods are limited by the availability of the data and
suffer from generalization ability and low accuracy [22].

Dynamic models leverage process-based equations that aim
to resolve the physics within the urban canopy and atmo-
spheric boundary layer to solve the temperature field. These
models are highly computationally expensive and thus can
hardly operate at a high spatial resolution, and have been
limited by the physics represented in the model and the avail-
ability of urban surface characteristic datasets. For example,
the dynamic downscaling methods using some widely-used
models such as the Weather Research and Forecast (WRF)
model [23] are usually conducted at 1-2 km resolution at
the finest [4], [24], [25]; whereas the Computational Fluid
Dynamics (CFD) based models are limited to very small scales
such as a single urban block or street canyon [26], [27]. Their
modeling accuracy is further subjected to the accuracy of the
parameterization and representation of the physical processes
in the models. These methods can hardly be applied for
high-resolution urban temperature estimation, because of the
infeasibility in resolving the very small physics scale.

Statistical models, on the other hand, seek to establish
empirical relationships between LST and the auxiliary data,
such as land cover, vegetation indices, and/or other obser-
vational data [28], [29], [30], [31]. Empirical at its core,
traditional statistical downscaling methods are limited by: (i)
the complexity of statistical methods used, (ii) the availability
and reliability of the observed records, (iii) the relatively
arbitrary choices of the features, and (iv) omission of the
physics represented in the statistical models [32], [33], [34],
[35]. These barriers significantly limit the traditional urban
temperature estimation from generalization both spatially (i.e.,
upscaled to a larger region or applied to other study locations)
and temporally (i.e., future forecast).

Recent efforts have started to explore the applications of
both deep neural networks and physics-informed machine
learning to tackle Earth and environmental science challenges.
These applications pointed to some potentially promising
avenues to address the aforementioned critical yet unresolved
research gaps. Specifically, [36] modeled the lake temperatures
across the depth and over time by combining physics-based
models and deep learning methods. [37], [38] leveraged the
advantages of convolutional neural network (CNN) in the pro-
cessing of multi-channel images [39], [2], [40], applying CNN
to sea surface temperatures maps and the oceanic heat content
maps. These methods mainly targeted the LST prediction of
homogeneous surfaces such as woodlands and waters, but
nevertheless demonstrate a promising potential of the physics-
informed neural networks paradigm. However, it is unknown
whether this paradigm can successfully predict the intracity
LST over urban surfaces which are largely heterogenous and
with complex 3D structures.

In this study, we propose a Physics Informed Hierarchical
Perception Network (PIHP-Net) to predict high-resolution
urban LST directly from climate modeled forcing meteorology

Fig. 1. Distribution of the selected urban in China.

at a higher atmospheric level and land surface satellite imagery.
Guided by the process-based physics understanding, such a
network leverages the high-resolution multispectral satellite
images, which are low-cost to acquire, to achieve accurate
LST prediction at an high spatial resolution. Specifically, the
semantic category histogram is first designed to describe the
urban surface structure; then, the LST is decomposed by
the bidimensional empirical mode decomposition to capture
features at various scales. Based on this, a hierarchical urban
surface perception scheme is proposed via a multi-branch
network structure. This scheme captures the complex relation-
ship between the land surface structures, upper atmosphere
conditions and the intracity temperatures, and thus capable
of generating accurate urban LST estimation results at a high
resolution, when in the situation that LST cannot be generated
in the future period or due to cloud cover.

II. STUDY AREA AND DATA

In this work, 31 major or provincial capital cities in China
are selected as the study area, see Fig. 1. The selected
cities cover seven administrative regions of China and contain
diverse types of terrain including metropolis, mountain, water,
etc. We collected a suite of datasets from various sources in
the study region to implement our PIHP-Net, described below.
All of them are highly urbanized and populated. Research on
these cities has great significance for assisting urban planning,
carbon neutrality, and climate prediction. Specifically, four
datasets are collected and processed in this paper, as described
below:

The first dataset is the Landsat-based Ready-to-use (RTU)
land surface temperature product from the CASEarth Data-
Bank system1, which is based on the USGS’s Landsat8
OLI/TIRS sensor with a resolution of 30 meter. A single chan-
nel algorithm was used to retrieve LST in this product [41]. In
this study, we collected the data from 2014 to 2019. All of the
selected regions cover the urban area. Since we aim to estimate
the block level urban temperature from the satellited image,

1http://databank.casearth.cn/
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Fig. 2. Illustration of the generation process of GSCFM. (a) Satellite remote
sensing images of Fuzhou, China. (b) Visualized map of the labeled. Inferred
semantic categories (water, buildings, vegetation, soil, roads/pavements, and
unknown) with text colored by the label color.

thus the 60m-by-60m of the urban grid has been divided in our
experiments. Thus, the corresponding LST data has also been
aggregated to 60m resolution. An example visualized map is
shown in Fig. 5 (a).

The second dataset is the Nationwide remote sensing images
of the major and provincial capital cities in China, along with
the semantic label. Fig. 2 (a) and (b) show the examples of
second dataset of Fuzhou, China, in which (b) is the visualized
result of the semantic label, with the different urban surface
properties denoting as various colors. These multi-spectral
remote sensing images have a resolution of 1 meter from the
Google Earth website 2 for all major provinces and key cities
in China. Besides the spectral information, we find that the
LST is also highly correlated with the properties of the under-
lying surface. So a pixelwised labeling of the remote sensing
image is also involved in this dataset. Specifically, each pixel
is automatically labeled with predefined categories (including
water, buildings, vegetation, soil, and roads/pavements, etc.) by
the state-of-art classification technique [42] and the accuracy
of the classification is 96.5%.

The third dataset is the temperature measured a by the
weather station from the website of China’s National Green-
house Data System3. The dataset contains temperatures mea-
sured at weather stations in urban centers in 30 cities for each
day from 2014-2019. And the kind of temperatures used is
daily average air temperature at 2m.

The fourth dataset is the Normalized Difference Vegetation
Index(NDVI) of the Landsat-based Ready To Use (RTU) prod-
ucts from the CASEarth DataBank system4, which is based on
the USGS’s Landsat8 OLI/TIRS sensor with a resolution of
30 meter. And Normalized Difference Built-up Index (NDBI),
for Landsat 8 data from USGS Global Visualization Viewer
website5, NDBI = (Band 6 – Band 5) / (Band 6 + Band5)[43].
Meanwhile, all of the selected regions are the same to first
dataset.

The last dataset is the atmospheric forcing data, provided by
the NASA MERRA-2 reanalysis data system [44]. These data
are publicly accessible from the NASA MERRA-2 website6.
The resolution of such data is 0.5o latitude × 0.625o longitude.

2https://earth.google.com/
3http://data.sheshiyuanyi.com/WeatherData/
4http://databank.casearth.cn/
5https://glovis.usgs.gov/
6https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/

TABLE I
ATMOSPHERIC AND LOCATION DATA. THE AIR TEMPERATURE IN THIS
STUDY MEANS THE ATMOSPHERIC TEMPERATURE AT THE REFERENCE

HEIGHT (60M ABOVE THE SURFACE CANOPY TOP) IN REANALYSIS DATA
OR CLIMATE MODELS.

Type Name

Land Surface Forcings
Surface absorbed longwave radiation

Surface income shortwave flux
Land Surface Diagnostics Total precipitation land

Single-Level Diagnostics

Atmospheric temperature max
Atmospheric temperature mean
Atmospheric temperature min

Analyzed Meteorological Fields

Surface pressure
Atmospheric temperature at the reference height

Eastward wind
Northward wind

Specific humidity

The atmospheric forcing data have a temporal resolution of
days and reflect the overall weather conditions of the city on
that day. A list of these variables is shown in Table I.

Due to the limitation of national policy, the raw high-
resolution multispectral satellite remote sensing images are not
open source. As an alternative, we open-source the calculated
Geographical Semantic Category Fraction Matrix (GSCFM,
details can be viewed in the Methods section) of all cities. The
complete dataset will be released via the FTP server later.

III. METHODS

Considering the temperature prediction as a simple image-
based regression problem, the network may be confused by
the complex image pattern. Thus, the relationship between the
underlying surface, upper air condition, and the LST may fail
to be captured by the network.

We propose a physics-informed hierarchical urban surface
temperature perception scheme to guide the overall estima-
tion process by related physical factors. First, by employing
previous image ground targets classification network [42],
the satellite imagery is first assigned a pixel-wise semantic
label according to the geophysical categories. In this work,
11 urban surface categories (cultivated land, garden land,
forest land, grassland, buildings, roads, structures, excavated
land, bare land, water, unknown or covered with snow) are
applied. Finally, the 11 categories are divided into 6 major
categories. Second, we design a grid-wised (60-by-60 meters)
semantic category histogram to further aggregate the urban
surface features. Such a dense urban surface descriptor, and
the atmospheric forcing and weather station observation data
are fed into the network. Then, by passing a proposed bidi-
mensional empirical mode decomposition-based hierarchical
network, the mapping relationship between the urban surface
temperature and the input data can be captured at different
scales, producing the estimated temperature for each grid of
the testing city.

A flowchart of predicted LST is shown in Fig. 3. Imple-
mentation of the whole is performed by three stages: 1) data
spatial matching and preprocessing; 2) prediction of LST; and
3) correction and generation of LST. In the stage of data spatial
matching and preprocessing, labeled remote sensing image,
NDVI, NDBI, and atmospheric forcing are matched under the
same space. For NDVI, NDBI, and atmospheric forcing are
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Fig. 3. Flowchart of the proposed method for predicting the 60-m LST from labeled remote sensing image, NDVI, NDBI, and atmospheric forcing data.

mapped onto each 60m grid, different scales of GSCFM are
constructed as input to PIHP-Net. In the second stage, LST
is predicted through trained PIHP-Net. Finally, in the stage
of correction and generation of LST, the LST from stage II
goes through forcing correction to obtain a 60m precision LST.
Details of forcing correction are given in Section III-B3.

A. Physics informed hierarchical perception scheme

1) Geographical semantic category fraction matrix: To
introduce the structural distribution information of local city
embedded in remotely sensed image into neural network, a
straightforward approach is to import the entire image directly
into the network. However, we found that this approach has
difficulty capturing the general relationship between tempera-
ture and land surface information, because the high complexity
of the urban surface features leads to poor generalization
of the whole system. So we designed a semantic category
histogram to summarize the potential factors that influence
the local-scale urban surface temperature. This descriptor is
subsequently denoted as the Geographical Semantic Category
Fraction Matrix (GSCFM).

The GSCFM contains the ground structure information from
labeled remote sensing images with a spatial resolution of
1-by-1 m. The ground structure information is set to 5-by-
5 m as one cell and calculated from the labeled images
within each cell, as described below. Each cell is described
by a high-dimensional feature, which implies the underly-
ing surface characteristics that affect the local temperature.
In our approach, the five main temperature-related structure
categories (including water, buildings, vegetation, soil, and

(b) (c)(a)

5m

0.2 0.7

0.1 0.1

0.2 0.7

0.1 0.1

0.2 0.7

0.1 0.1

M

M

Fig. 4. The illustration of the generation process of GSCFM. (a) The
background is part of the land surface semantic label image, and a dummy
black box represents the 5-by-5 meter cells. (b) Visualized result of different
categories in every cell, different colors represent different categories. (c) For
each cell, we can calculate the percentage of each category in one cell. There
are d categories in total, so each cell corresponds to a vector of 1× d. And
for a 60-by-60 meter grid, we can select M×M cells to describe the surface
structure and domain information of this gird, and this is one example of the
GSCFM with size M ×M × d.

roads/pavements) are summarized by previous semantic label-
ing works, with various colors in the dots indicating different
urban surface properties. The urban LST data were obtained
from NASA’s Landsat satellite measurements with a spatial
resolution of 60-by-60 m. For each 60-by-60 m grid, we build
a larger matrix by a batch of 5-by-5 meter cells. The matrix
size is M ×M ×d, where M denotes the number of cells and
d denotes the dimension of the feature vector of one cell. Each
category of GSCFM in one cell is defined by the following
equation:
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d(l) =
C (Sl)

C(S)
(1)

where S denotes the set of pixels on a particular cell, C(·)
denotes the number of points in S, Sl denotes the number
of pixels with category l in S. Fig. 4 shows examples of the
constructed GSCFM.

2) Multi-scale hierarchical urban surface perception: Due
to the complexity of the surface structure and the fact that
the temperature of a single 60-by-60m grid may be influenced
by the surrounding surface structure, the network is hard to
capture the relationship between the GSCFM and LST directly.
Inspired by previous signal processing works [45], [46], [47]
and to reduce the complexity of the Non-linear transformation
in the neural network, we propose a bidimensional empir-
ical mode decomposition (BEMD) to decompose raw data
into multi-scales. Empirical mode decomposition (EMD) is
a classical signal analysis tool [48] that decomposes data into
a series of low frequency bases, which are called ’intrinsic
mode functions (IMF)’. The BEMD algorithm treats the image
as a signal and decomposes it to obtain different IMFs, and
each IMF contains the information of different scales. Thus,
our idea is to build the connections between the IMFs of the
LST image and the GSCFM at different scales. Such a multi-
scale perception scheme allows the network to capture the
relationship between the urban surface and the temperature in
various scales, leading to better estimation results.

Consider the LST data as a one-channel image, denoted as
I(p). Then, the decomposition process can be formally written
as:

I(p) = h(p) + r(p), (2)

Here, h(·) is the intrinsic mode representing fine-scale dis-
tribution information. r(·) is the residue layer obtained by
averaging the envelopes of local maxima E(·) and minima
e(·), i.e. r(p) = (E(p) + e(p))/2. For the computation
and localization of local extrema, we use directly finding the
extrema from each sub-square neighborhood. In addition, we
simply use uniform cubic spline interpolation to compute the
envelopes E(·) of maxima and e(·) of minima from the local
extrema. Such a decomposition can be recursively applied to
obtain multi-scale intrinsic mode functions, as written by:

I(p) =

n∑
i=1

hi(p) + rn(p). (3)

Hear, n denotes the number of recursions. As shown in Fig. 5,
three decomposition operations are applied, where Fig. 5(a) is
the original LST image. Fig. 5(b)-(d) are the acquired intrinsic
mode functions that reflect the temperature signals in different
scales. Fig. 5(e) is the residual image after 3 iterations. These
modes along with the residual are connected with different
branches of the network, to guide the GSCFM in different
spatial scales.

B. Network Architecture
The proposed PIHP-Net, as shown in Fig. 6, consists of two

parts, multi-scales encoder and information parallel decoder.

(a)

(b) (c)

(d) (e)

(a)

(b) (c)

(d) (e)

Fig. 5. Illustration of the result of BEMD, each colorbar’s number represents
the temperature in Celsius (°C). (a) LST of Fuzhou, China. (b)-(d) are intrinsic
mode functions that reflecting the temperature signals in different level of
detail information. (e) is the residual term from BEMD.

1) Multi-scales encoder: For the sake of multi-scale
GSCFM data, accordingly we apply the multi-scale encoder to
them. The input of our multi-scales encoder is varied spatial
scale GSCFM (control by different M ), NDVI, NDBI, (match
to the GSCFM) and forcing. Here we set M = 35+10∗ i, i =
1, ..., n to obtain different scales GSCFM, then leveraging
Local-surface feature extractor to encode the feature from
them, respectively.

After the encoding operation, the local surface feature
information into latent vector Fi, for i = 1, ..., n. All Fi are
then concatenated, forming a latent feature map P , with size
of 1024×n. Next, the multilayer perceptron (MLP) is applied
to integrate the latent vector P into the final latent vector F0,
size of F0 = 1024, which contains different scales of GSCFM
information. A batch of independent Forcing feature extractor
will be used to extract the large-scale atmospheric feature Gi,
for i = 0, ..., n. For all independent channel, we concatenate
Fi and Gi to generate Hi, which contains the information of
broader-scale atmospheric forcing factors and high-resolution
local urban surface feature information.

The details of Local-surface feature extractor and Forcing
feature extractor are as follows:

(i) Local-surface feature extractor
In order to dig the structural information of the urban

surface, we first introduce ResNet [39], which aims to extract
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Fig. 6. An overview of the proposed physics-informed hierarchical perception network (PIHP-Net).

local surface features and spatial structure information from
the proposed GSCFM. This branch enables the neural network
to capture high-resolution variations in the temperature of
the urban surface. This network consists of a 5-stage deep
residual network, each stage containing two residual blocks.
The first block is composed by two 3×3 convolutional layers
sequentially. The stride is set as 2 and 1, respectively, and a
skip connection is used to align the output shapes. The second
block consists of two convolutional layers, where the stride is
set as 1. The last stage consists of a 3×3 convolution operator,
which adjusts the output size instead of a pooling operation.
Batch normalization and ReLU layers are applied after each
convolutional layer.

(ii) Forcing feature extractor

Considering the impacts of atmospheric states on the LST,
we employ a MLP to encode the primary atmospheric forc-
ing variables from the physics-based climate model. This
procedure can be considered as a deep learning ’solver’ of
the physical equations in those process-based models, in a
way to mimic the dynamic simulations [10]. For the MLP,
we introduce five layers to encode the feature vector into a

vector G, with size 256. SeLU [49] is used to avoid gradient
explosion and vanishing.

2) Information parallel decoder: In order to decode the
aggregated feature Hi to predict LST, we fed them into
regression branch, respectively. Each branch is comprised
of three fully-connected layers. Next, each Hi is mapped
to temperature Ŷi by the corresponding regression branch.
Following the previous work [36], we employ the root mean
squared error (RMSE) and the L2 normalization of the network
weights to measure the loss.

3) Forcing correction: In the whole framework, the upper-
level atmosphere condition is related to the forcing data, in
which humidity, radiation, precipitation and the temperature of
the upper atmosphere are involved. However, due to the fact
that the LST is actually related to the near-surface temperature,
there is an intrinsic deviation between the mean value of LST
and the forcing data. To demonstrate this, we collect about
40 pieces of data over different seasons for 30 major cities
under different climate regions in China. Then the mean value
of the underlying surface in the LST data, along with mean
value of upper air in the corresponding forcing data are applied
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Fig. 7. Comparing the temperature from weather stations, forcing and average
LST. The ordinate represents the temperature in Celsius (°C).. The abscissa
represents the city number.

to generate a scatter plot, as shown in Fig. 7.
In Fig. 7, the average 6.38K distance between the LST

and forcing can be observed, and such bias may largely
affect the prediction result. To address this issue, we initially
planed to find the mapping relationship between the mean
value of LST and forcing by a simple branch in the network.
However, limited by the period of satellite, the LST data are
sparse and thus difficult to train the branch. Therefore, in our
approach, the data from the weather station are included as
the intermediate. The weather station data is dense and easy to
acquire for cities, and most importantly, it matches really well
with the mean value of LST. As shown in the red line in Fig. 7,
the average bias of 0.42K to the LST can be observed. Such an
observation inspires us to fit the mean value of weather station
by the input forcing, thus to correct the upper air forcing closer
to the near-surface cases.

Specifically, the branch is simple: the mean value of LST
is predicted by leveraging the MLP to fit the weather station
data, and then the middle result is used as the input of the
decoder network.

4) Loss function.: Following the previous work [36], we
employ the root mean squared error (RMSE) and the L2

normalization of the network weights to measure the loss. Each
Hi, for i = 0, ..., n, has independent loss Lossi, which is used
to guide the training of the network, and the final loss L is
the sum of them. The overall loss can be written as:

L =

n∑
i=0

Lossi (4)

Lossi = argmin
W,b

L(LSTi, Ŷi) + λR(W) (5)

L(Y, Ŷ ) =
1

N

N∑
j=1

(yj − ŷj) (6)

R(W) = ∥W∥2 (7)

Here, Yi, for i = 1, ..., n − 1 is LSTi, which is generated
by BEMD, and Y0, Yn represent the ground truth set. Ŷi, for
i = 0, ..., n represent the predicted results set from Hi. W
and b are the combined coefficients of weights and bias terms,
yj ∈ Y, ŷj ∈ Ŷ , j = 1, ..., N , N is the data size of Y, Ŷ , and
λ is the weight of the regularization term.

IV. RESULTS AND DISCUSSION

A. Implementation details and baselines

1) Implementation details: The models are evaluated quan-
titatively on test sets based on the root mean square error
(RMSE), defined as:

RMSE =

√√√√ n∑
i=1

(ŷi − yi)
2
/n (8)

We implement our PIHP-Net on PyTorch [50]. The Network
uses end-to-end training mode. In the training phase, we adopt
Adam solver [51] with an initial learning rate 0.001, which
decayed by 0.51/500for each epoch.

2) Baselines: To our knowledge, the proposed PIHP-Net is
the first physics informed deep neural network, which attempt
to estimate the urban temperature at an high resolution (60-by-
60 meters). In consideration the huge calculated amount of the
dynamic equation based methods at such resolution, our com-
parisons are mainly focused on previous statistic model based
methods, such as linear regression [52], K-Nearest Neighbors
(KNN) regression [53], random forest regression [54], and
deep neural network-based method, such as ResNet [39]. All
the statistic model-based methods are implemented based on
Scikit-learn [55], specifically, the parameter settings of these
methods are as follows:

• Linear Reg uses linear regression for simulation. We
concatenate GSCFM and forcing as input. Specifically,
each dimension of the M ×M × d matrices is averaged
to a specific value, and the original matrix is reshaped to
a 1× d vector. This vector is then imported into various
regression methods. That is, linear models take the form:

y =
∑
i

βixi + ε (9)

where y is the response (LST), xi is GSCFM and forcing
reshaped to a 1 × d vector, βi is how the LST changes
linearly with each xi, and ε is the normally distributed
error.

• KNN Reg is KNN regression. Specifically, the number
of neighbours in the KNN regression is set as 4. The
maximum depth of the tree is set as 30. The input feature
is the same as Linear Reg.

• RF Reg is random forest regression. The number of trees
in the random forests regression is set as 150.

• ResNet is based on ResNet50, and the corresponding
parameters are the same as the ResNet in our network.

B. Ablation study and sensitive analysis

In this section, we design a series of experiments to evaluate
the effects of the various components in the proposed PIHP-
Net.

1) Ablation of hierarchical urban surface perception
scheme: The motivation of the proposed BEMD based hierar-
chical perception scheme is that PIHP-Net senses the surface
structure information at different scales. The hierarchical per-
ception scheme helps network more accurately simulate the
surface temperature of the city. A group of experiments is
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TABLE II
THE AVERAGE TEMPERATURE RMSE OF ABLATION OF HIERARCHICAL

URBAN SURFACE PERCEPTION SCHEME

Guangzhou Zhangzhou Shenyang Avg. Error (Kelvin)
PIHP-Net0 0.62 0.64 0.66 0.64
PIHP-Net1 0.58 0.58 0.62 0.59
PIHP-Net2 0.56 0.56 0.59 0.57
PIHP-Net3 0.52 0.53 0.55 0.53
PIHP-Net4 0.56 0.59 0.63 0.59

TABLE III
THE RMSE FOR DIFFERENT LAND COVERS OF PIHP-NET3 IN THE

ABLATION OF HIERARCHICAL URBAN SURFACE PERCEPTION SCHEME.

Guangzhou Zhangzhou Shenyang Avg. Error (Kelvin)
water 0.32 0.36 0.39 0.36
soil 0.41 0.45 0.49 0.45

roads/pavements 0.58 0.61 0.54 0.58
buildings 0.62 0.63 0.60 0.62
vegetation 0.45 0.49 0.51 0.54
unknown 0.71 0.66 0.75 0.71

total 0.52 0.53 0.55 0.53

designed to demonstrate the effectiveness of such a scheme,
and confirm the appropriate layer number.

We selected 12 pieces of data, for the cities Guangzhou,
Zhangzhou, and Shenyang in China, between January 1, 2015
and December 31, 2019. These data are selected to cover
different seasons of the year, and to ensure the reliability of
the evaluation results. All the data are handled as cloud-free
to avoid aberrant temperature sampling by satellites. For each
piece of data, the 70% area is chosen as the training data, and
the rest 30% is applied for testing.

In the experiment, the average RMSE of the data for the
PIHP-Net with different numbers of the layer are collected,
and the corresponding results are shown in Table II. Where
PIHP-Net0 denotes the network without hierarchy, i.e. with
number of branch 1. PIHP-Net1, PIHP-Net2, PIHP-Net3 and
PIHP-Net4 correspond to the number of the perception branch
2−5. The results demonstrate that the hierarchical perception
scheme brings about 6% performance increasing (the average
temperature RMSE decreased from 0.64 to 0.59). With the
increasing number of perception branch, the best performance
appears at PIHP-Net3, corresponding to 4 branches, and the
RMSE increased 17% in total. Such results demonstrate that,
the proposed hierarchical perception scheme makes the PIHP-
Net better capture the nonlinear relationship between the LST
and the urban surface structures. In addition, the average
RMSE of the data for the PIHP-Net3 with different land
covers are collected, and the corresponding results are shown
in Table III. Except for unknown, the average RMSE of
roads/pavements and buildings are higher at 0.62 K and 0.58
K, respectively. The average RMSE of water is the lowest,
is 0.36 K. This difference may be due to the fact that the
temperature of water varies less, while the temperature of
roads/pavements and buildings are more sensitive to environ-
mental as well as human factors.

2) Ablation of the aggregate layer: As shown in Fig. 6, in
our proposed PIHP-Net, an aggregate branch of the original
LST data is also involved. In the experiments, we observe
that the original LST image contributes significantly to the
prediction results. In order to verify this, an ablation study is

TABLE IV
THE ABLATION OF HOW THE AGGREGATE BRANCH AFFECT THE RESULTS

Guangzhou Zhangzhou Shenyang Avg. Error(Kelvin)
PIHP3 without

aggregate branch 0.62 0.65 0.70 0.66
PIHP3 with

aggregate branch 0.52 0.53 0.55 0.53

TABLE V
THE AVERAGE TEMPERATURE RMSE OF SENSITIVE ANALYSIS OF PIHP

NETWORK FOR INPUT DATA ERROR

Guangzhou Zhangzhou Shenyang Avg. Error (Kelvin)
without error 0.52 0.53 0.55 0.53

5% error of labeled
remote sensing image 0.56 0.58 0.61 0.58
10% error of labeled
remote sensing image 0.59 0.61 0.64 0.61
15% error of labeled
remote sensing image 0.62 0.65 0.70 0.66
10% error of LST 0.59 0.61 0.61 0.60
20% error of LST 0.65 0.63 0.71 0.66
30% error of LST 0.71 0.78 0.82 0.77

designed. Whereas the experiment data and process are the
same as the Section IV-B1, the number of hierarchical layers
is set as 4, and the results with and without the aggregate
branch are collected, as listed in Table IV. The average RMSE
of various cities is shown separately; the overall performance
gains approximately 19% increasing for different cities. The
underlying reason of this improvement is likely that the
aggregate branch can correct the error in the LST edge part
of the decomposition by BEMD.

3) Sensitive analysis of PIHP network: In our proposed
PIHP-Net, the input training data mainly consists of GSCFM
constructed from the labeled remote sensing images as well as
LST ground truth. To analyze the sensitivity of the network to
input data errors, the sensitive analysis to them is conducted
as follows:

The sensitive analysis experiments are based on the ablation
studies in Table II(where the same data and cities are selected).
We have added the noise to 5%, 10%, and 15% of the real
data by random sampling. Where the noise has been added
to two sources of data (labele of remote sensing images and
the LST ground truth) separately. For the LST data, where the
noise of ±2K has been added to the clean data. The results of
different percentage errors are collected, as listed in Table V.

For the labeled remote sensing images, the RMSEs under
5%, 10%, and 15% percent of noise, increase 9%, 15%, 23%
respectively. For the LST data, the RMSEs are 13%, 24%,
44% higher, respectively.

The supplemented experiments show that the error of the
input training data has a significant impact on the experimental
results, and the results are more sensitive to the errors of the
LST than the label of remote sensing images.

C. Comparisons

To comprehensively compare the proposed approach and
previous statistical models and deep neural network-based
methods, two additional groups of experiments are designed.
Specifically, the first group of experiments focuses on the
single city evaluation to verify the performance for estimating
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Fig. 8. The experiment of Single city temperature prediction visualization
plots on Xiamen, Zhangzhou, Guangzhou, Hefei and Zhengzhou, China. Each
colorbar’s number represents the temperature in Celsius (◦C). The vertical
coordinates represent the city names and the horizontal coordinates represent
the truth value, our simulation and the error, respectively. All visualization
plots are averaged results from the corresponding multiple data.

a certain city at different times. The second group of exper-
iments, on the other hand, pays more attention to the large
scale evaluation, where most of the major cities in China are
involved is showing the fidelity of the proposed PIHP-Net.

1) Single city temperature prediction: We conducted this
experiment in 9 key cities distributed in major regions of
China. Data from a single city at multiple time points are
applied for training, and the temperatures at other time points
are applied for testing. Because the surface structure of a city
barely changes in 1−2 years, while the atmospheric condition
changes dramatically and is closely related to the seasons.
Thus, for each city, 6 − 8 pieces of data over four seasons
are chosen for training, and 2 − 4 pieces of data are applied
for testing.

Methods of linear regression, KNN regression, and random
forest regression (denoted as Linear Reg, KNN Reg and
RF Reg separately) and the previous deep network ResNet
are employed for comparison. The proposed GSCFM is not
included for these baselines because we aim to figure out how
the physics-informed GSCFM affects the results. The corre-
sponding parameter settings are mentioned in Section IV-A2.
The comparison without the hierarchical perception scheme is
also involved, denoted as PIHP-Net0.

The average RMSE for each city is collected, with corre-
sponding results listed in Table VI and the average errors over
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Fig. 9. Experimental single-city temperature prediction visualization plots on
Shijiazhuang, Yinchuan, Shenyang and Chongqing.

all nine cities for each method are shown in the last column.
It is viewed that, previous statistic model-based approaches
get the average error more than 3.3K over all the cities. The
linear model got the worst results with 4.69K, because the
relationship between the LST, underlying surface, and upper
atmosphere is complex and nonlinear. The results of KNN
and random forest regression are similar, and appear unstable
over different cities (with about 3.33K for the best case and
5.20K for the worst case). Thanks to the proposed GSCFM
and the hierarchical perception scheme, our approach obtains
an average error of 1.83K for all cases. It is worth noting
that for some of the cities such as Zhangzhou, Guangzhou
and Shijiazhuang, the prediction error is close to the typical
observational error of the satellite (e.g., about 1K). The
average error of ResNet (i.e. without the physics information
GSCFM and hierarchical perception scheme), is 2.36K, i.e.,
22% higher than our approach. The average error of PIHP-
Net0 is 2.24K, i.e., 18% higher. A visualization of the results
for the nine cities is shown in Fig. 8 and Fig. 9.

2) ”Unseen” city temperature prediction: In this part, we
attempt to evaluate the ability of PIHP-Net to predict the
temperature of an unseen city in the training set. Such an
experiment includes almost all the major cities in China.
Considering the large area of China, this group of experiments
is developed following the official major regions division of
China, which are South, Southwest, Northwest, Northeast,
Central, North, and East.

For each region, 2− 4 cities, and 4 pieces of data for each
city of over different seasons are chosen for training, as shown
in Table VII. Then, the remaining 1 − 2 cities with 3 − 6
pieces of data are applied for testing. Similarly, methods of
Linear Reg, KNN Reg, RF Reg, ResNet and PIHP-Net0 are
employed for comparison. The average errors over all testing
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TABLE VI
OVERALL PERFORMANCE COMPARISON OF DIFFERENT APPROACHES ON THE EXPERIMENT OF SINGLE CITY FUTURE TEMPERATURE PREDICTION. A

SMALLER VALUE INDICATES A BETTER PERFORMANCE. THE AVERAGE ERRORS OVER ALL THE NINE CITIES OF EACH METHOD ARE SHOWN IN THE LAST
COLUMN

Model
RMSE (Kelvin)

Xiamen Zhangzhou Guangzhou Hefei Zhengzhou Shijiazhuang Yinchuan Shenyang Chongqing Avg. Error
Linear Reg 4.61 4.26 5.05 4.50 5.63 4.44 6.23 3.37 4.13 4.69
KNN Reg 3.99 3.78 3.33 3.41 4.14 3.59 5.20 4.50 3.98 3.99
RF Reg 3.84 3.40 3.37 3.48 4.07 3.36 4.93 3.79 3.54 3.75
ResNet 2.72 2.18 1.75 1.81 2.63 2.32 3.25 2.10 2.47 2.36

PIHP-Net0 2.60 2.03 1.65 1.79 2.57 2.20 3.06 1.96 2.34 2.24
PIHP-Net 2.00 1.78 1.32 1.44 2.13 1.78 2.52 1.66 1.87 1.83

TABLE VII
SPLIT OF TESTING AND TRAINING CITIES FOR EACH REGION

Region City for training City for testing
South China Nanning,Guangzhou,Haikou,Hong Kong Macao

Southwest China Guiyang,Chongqing,Chengdu Lhasa
Northwest China Xining,Yinchuan,Urumqi Xi’an,Lanzhou
Northeast China Changchun,Harbin Shenyang
Central China Wuhan,Changsha Zhengzhou
North China Shijiazhuang,Hohhot Taiyuan
East China Nanchang,Nanjing,Jinan Hangzhou,Fuzhou

TABLE VIII
COMPARISON OF RMSE ON SEVEN REGIONS FOR TEMPERATURE PREDICTION OF TESTING CITIES USING PIHP-NET AND OTHER BASELINE METHODS.

THE AVERAGE ERRORS OVER ALL TESTING CITIES OF EACH METHOD ARE SHOWN IN THE LAST COLUMN

Model

RMSE (Kelvin)
South China Southwest China Northwest China Northeast China Central China North China East China Avg. ErrorMacao Lhasa Xi’an Lanzhou Shenyang Zhengzhou Taiyuan Hangzhou Fuzhou

Linear Reg 5.06 7.03 6.84 6.30 5.22 5.70 3.49 5.66 6.83 5.7
KNN Reg 4.00 5.93 5.55 4.90 3.72 4.54 2.82 4.64 5.46 4.62
RF Reg 4.13 5.88 5.28 5.19 3.63 4.26 3.33 4.33 5.24 4.58
ResNet 2.20 4.44 4.20 3.66 2.03 2.52 1.74 2.44 2.60 2.87

PIHP-Net0 1.91 3.93 3.76 3.42 1.83 2.25 1.54 2.23 2.42 2.59
PIHP-Net 1.80 3.77 3.46 3.17 1.72 2.10 1.43 2.09 2.26 2.42

cities of each method are collected, as shown in Table VIII.
The results show that, as the testing scale increases, the overall
prediction error suffers, decreasing in different degrees for
various methods. Specifically, results of previous statistical-
based works remain unstable, maximum prediction error is
more than 7.03K at the city of Lhasa, and the average error
over all the test cities also exceeds 4K.

For the deep networks, average errors of 2.87K, 2.59K and
2.42K for ResNet, PIHP-Net0 and our approach, respectively,
are observed. As shown in Fig. 10 and Fig. 11, due to the
more complicated underlying urban surface and the vagaries
of climate, the advantage of the proposed PIHP is still demon-
strated but not as substantial as compared to the single city
prediction.

D. Discussion

In this section, we focus mainly on the error analysis
of the experimental results, where some of the interesting
factors besides the underlying surface and atmospheric forcing
conditions are observed to react on the intracity LST. Thus,
in this section, some of the instructive experimental results
are presented, aiming to inspire more accurate intracity LST
estimation systems in the future.

1) Errors from regional climate: As shown in Fig. 10
and Table VIII, it is worth to noting that, for two regions,
Southwest and Northwest China, the prediction error for cities
Lhasa, Xi’an, and Lanzhou significantly exceed the average.
To find out the potential reasons, we first view the administra-
tive division of China, as shown in Fig. 12. The Southwest and
Northwest cover the largest area, about 50o longitude and 39o

latitude, significantly larger than other regions. Such a large
geographical span brings vagaries of climates for these two
areas.

For the Southwest, the testing city Lhasa is located on the
Tibet Plateau, with an average altitude of 3650m, while the
training cities of this area Guiyang, Chengdu, and Chongqing,
are all located at the Szechwan Basin, with an altitude of
250m. Such geographical conditions bring extremely differ-
ential climate features for the training and testing cities, thus
leading to the poor estimation performance.

For the Northwest, a similar situation is observed. Where
Urumqi locates near the Junggar Basin, with desert all around.
Xining locates on the Qinghai plateau, with an average alti-
tude of 2200m. Yichuan locates in the Helan mountain area.
Lanzhou locates at Yellow River Valley basin, on the Loess
Plateau. Xi’an locate at Kuan-chung Plain, with 8 river systems
around. All the five major cities in Northwest China have their
own unique geographical and climatic characteristics, leading
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Fig. 10. Experimental ”Unseen” city temperature prediction visualization
plots on Macao, Lhasa, Xi’an, Lanzhou and Shenyang.
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Fig. 11. The ”Unseen” city temperature experiment prediction visualization
plots on Zhengzhou, Taiyuan, Hangzhou and Fuzhou.

to biased estimations.
To verify such hypothesis, two additional experiments are

applied specifically to these two regions. For the Southwest,
Guiyang and Chongqing are applied for training to test

Southwest

Northwest

North

South

East

Northeast

Central

Urumqi

Lhasa

Guiyang

Xi’an

Fig. 12. The seven regions of China. The red dots represent cities in the
northwest and the yellow dots represent cities in the southwest.

TABLE IX
THE RESULTS FOR THE FIVE CITIES ARE IN THE SPECIAL TRAINING SET

Chengdu Lanzhou Xi’an Urumqi Xining
RMSE 1.88 3.42 3.38 3.71 4.03

Chengdu. For the Northwest, we plan to augment the network
knowledge, so just one testing city is applied, here Lanzhou,
Xi’an, Urumqi and Xining are applied as the testing cities
separately. Corresponding results are listed in Table IX. The
three cities in Southwest are with similar geographical and
climatic conditions, thus getting satisfactory results 1.88K.
However, for the Northwest, due to the complex geography
environment, the testing results are still not satisfactory (3.42K
for Lanzhou, 3.38K for Xi’an, 3.71K for Urumqi and 4.03K
for Xining). This suggests how to introduce the unique local
climatic factors into the network is an interesting point for
future research.

2) Errors from artificial terrain: It is also worth noting that
the artificial flat structures large area often lead to higher er-
rors, such as ports and airports. Fig. 13 (b) and (d), correspond
to airports and ports in Xiamen. The dates of LST from left to
right in (c) and (e) are captured on March 11, 2018, February
25, 2019, and March 30, 2019, respectively. The climate
conditions of these data are similar, however, the temperature
represents high dynamic fluctuation. A possible reason could
be that, for the flat structures, due to their characteristics of
fast heat absorption and dissipation, the temperature tends to
change rapidly even at different times of the same day. Such
a property makes the urban LST highly correlate to the exact
time point of the day when the data is captured, Thus leading
to higher prediction error at these areas.

3) Errors from human behaviour: Errors related to anthro-
pogenic activities can be observed from our results as well;
such errors always occurred in the industrial estates regions.

One typical case is shown in Fig. 14 (a) and (b), in the
single city temperature prediction experiment IV-C1, at Hefei
city. The region highlighted by the red box in (a) contains
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Fig. 13. Illustration of satellite images and LST in Xiamen. (a) Satellite remote sensing images of Xiamen. (b)-(c) Satellite image of Xiamen Gaoqi Airport
and the LST data of the corresponding area. (d)-(e) Satellite images of Xiamen Haitian Pier and LST data of the corresponding area.
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Fig. 14. Illustration of the prediction accuracy analysis of the experimental results in Hefei. (a) Satellite remote sensing images of Hefei. (b) The red boxed
area in satellite map (a) contains a large number of factories. (c) LST visualization results for Hefei on Jan 23, 2019. (d) LST visualization results for Hefei
on February 05, 2018. (e) Prediction error visualization of Hefei.

a large number of factories and industrial campuses, and the
prediction error in this region is shown in Fig. 14 (e), where
dense high error points are observed.

The original LST data are visualized for further in-depth
error analysis. Figure (c) shows a typical training case, where
a region with a local high temperature is observed in the

red box area. Figure (d) shows one of two applied testing
samples, correspond to the dates of February 5, 2018. The
high-temperature region that should have appeared has become
less obvious. This is because the date of February 5, 2018
is near to the Chinese New Year holiday, and most of these
factories are shut down, leading to higher errors in this region.
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Therefore, anthropogenic heat could have large impacts on the
urban surface temperatures at such a high resolution, and such
a factor should be considered in the future work of intracity
temperature prediction.

V. CONCLUSION

In this paper, we propose a physics informed hierarchical
perception network – PIHP-Net – for high-resolution and high-
precision urban surface temperature prediction from upper-
atmospheric forcing fields and land surface satellite imagery.
This network can be used to predict intracity urban LST in
future time periods when the future forcing meteorology can
be easily obtained from regional climate models. The PIHP-
Net employees a designed multi-scale encoder to construct
different scales Geographical Semantic Category Fraction
Matrix (GSCFM), thus extracting different scales of urban
surface structure. Based on this, a hierarchical urban surface
perception scheme is proposed via a multi-branch network
structure. Such a scheme is able to capture the complex non-
linear relationship between the land surface and temperature
in different scales. Extensive experimental results show that
the PIHP-Net consistently outperforms previous baselines on
the high resolution urban LST prediction tasks.

We conducted designed experiments 31 major or provincial
capital cities in China to evaluate the performance of the
proposed PIHP-Net comprehensively. The estimation errors of
the previous static model-based method for 60-by-60 meters
grids is about 6 Kelvin, for most cases of our experiments,
the errors are less than 2 Kelvin, thus making it possible to
estimate or predict intracity temperature from multi-spectral
satellite imagery. Compared to previous statistical models, the
proposed approach has at least more than 30% performance
improvement, either for single or multiple city predictions.
These results demonstrate the validity and efficacy of our
proposed approach.

Major contributions of this paper include the following three
aspects:

1) We propose to exploit high-resolution, largely available
multi-spectral satellite images to tackle the challenging
high-resolution urban temperature estimation problem.

2) We develop, for the first time, a novel physics informed
hierarchical perception network, PIHP-Net, for accurate,
high-resolution and generalizable urban surface temper-
ature estimation. Benefiting from a proposed novel se-
mantic category histogram and a hierarchical perception
scheme, the PIHP-Net can generate accurate urban LST
estimation results (at least more than 30% improvement
compared to previous statistical model-based works) at
a high resolution (60-by-60 meters grids).

3) We build a novel group dataset related to the urban LST.
Such datasets cover all the major cities (31 cities were
used) in China, which will support comprehensive and
large-scale experiments for further research at this field.

Our results also suggest that surface structural properties
and human activities greatly influence on the surface temper-
ature at a high resolution, both spatially and temporally. For
cities that span a large area, forcing meteorology, as well as

urban forms, are the main factors that determine the surface
temperature variations.
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