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A B S T R A C T   

Preventive maintenance of power lines, including cutting and pruning of tree branches, is essential to avoid 
interruptions in the energy supply. Automatic methods can support this risky task and also reduce time- 
consuming. Here, we propose a method in which the orientation and the grasping positions of tree branches 
are estimated. The proposed method firstly predicts the straight line (representing the tree branch extension) 
based on a convolutional neural network (CNN). Secondly, a Hough transform is applied to estimate the direction 
and position of the line. Finally, we estimate the grip point as the pixel point with the highest probability of 
belonging to the line. We generated a dataset based on internet searches and annotated 1868 images considering 
challenging scenarios with different tree branch shapes, capture devices, and environmental conditions. Ten-fold 
cross-validation was adopted, considering 90% for training and 10% for testing. We also assessed the method 
under corruptions (gaussian and shot) with different severity levels. The experimental analysis showed the 
effectiveness of the proposed method reporting F1-score of 96.78%. Our method outperformed state-of-the-art 
Deep Hough Transform (DHT) and Fully Convolutional Line Parsing (F-Clip).   

1. Introduction 

Deep learning has been widely explored jointly with robotics in 
multiple areas, such in industry (Guan et al., 2021; Wang et al., 2021), 
agriculture (Yang et al., 2021;Chen et al., 2021;Lu et al., 2021;Tang 
et al., 2020;da Silva et al., 2019), and medicine (Shafiei et al., 2021; 
Luongo et al., 2021). Likewise, utility companies can benefit from these 
research areas. With the increase of cities, power grids have become 
larger and complex, making it difficult the manual maintenance of these 
systems. Robots with computer vision systems can be useful in grid 
maintenance. 

Electric energy is one of the most critical assets in our daily lives. 
However, the electric power grid is very susceptible to situations like 
extreme weather events (Alam et al., 2020), leading to electricity 

shortages. Even though trees in cities are relevant, providing many ad-
vantages (Zamboni et al., 2021), tree branches can also become a 
problem when reaching the power lines. Mainly, electricity shortages 
are caused by tree branches that damage posts and wires. Thus, pre-
ventive maintenance is crucial to keep the work conditions of the grid 
and prevent possible accidents and shortages. The pruning of tree 
branches that get close to the power lines is part of the preventive 
maintenance, and it should be done frequently (Parent et al., 2019). 

Nowadays, the cutting is done manually by a trained specialist. This 
manual method introduces risks for the professional responsible for the 
cut, is costly, hardware intensive, and time-consuming (Siebert et al., 
2014). The maintenance can deal with different scenarios, depending on 
the state of the tree. In many cases, they will face limited vision due to 
overgrown branches and twigs, making their work even harder. 
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Depending on the branch’s risk to the electricity network, the energy 
supply in the region is interrupted to properly clean the right of way, 
which ends up harming consumers. On the other hand, some norms 
establish the maximum time and amount of times that the energy 
concessionaire can be without serving its consumers during a specific 
period; this includes maintenance, accidents, and natural phenomena. If 
the company exceeds these limits, a fine is charged on top of the excess. 
In this context, methods that can automatically locate the tree branch 
without involving human beings are essential for safer and quicker 
power grid maintenance. 

Deep learning approaches, mainly those based on convolutional 
neural network (CNN), have been successfully applied in remote sensing 
applications (Ma et al., 2019; Osco et al., 2021b; Yuan et al., 2021). 
When applying remote sensing to electrical engineering, previous works 
focused on detecting and classifying poles/towers in aerial images 
(Zhang et al., 2018b; Odo. et al., 2020; Gomes et al., 2020). Most of the 
studies for the tree trunk and branch detection were done for agricul-
tural proposes (Zhang et al., 2018a; Majeed et al., 2018; Amatya et al., 
2016; Zhang et al., 2021; Majeed et al., 2020) and are mainly based on 
semantic segmentation techniques (Zahid et al., 2021). A disadvantage 
of semantic segmentation techniques is the requirement of dense la-
beling, i.e., each pixel on images has to be labeled. Also, these studies 
often work only with a single tree species, limiting the applications for 
more heterogeneous situations. For automatic pruning, some studies 
reconstructed a 3D model of the trunks and branches in precision 
farming (Karkee and Adhikari, 2015; Karkee et al., 2014). Despite these 
initial efforts in agriculture, there is a lack of studies for detecting tree 
branches with the purpose of power grid maintenance. 

Few studies aim to automate the pruning of trees in power grids 
context. In Molina and Hirai (2017) a drone-based mechanism was 
developed to fly to the branch of interest and grab it to perform the cut; 
however, the entire process is manual, it needs a person to fly it to the 
tree branch, grab it and cut it. In Straub and David Reiser (2021,) a 
LiDAR (light detection and ranging) is used to create a 3D map of the 
tree and then decide which branch to cut, which is very interesting, but 
they need to teach the system how to position the saw and make it 
autonomous. Also, LiDAR sensors are expensive, and deep learning- 
based methods applied to 3D point cloud segmentation are less mature 
when compared to image-based solutions (Guo et al., 2020). In order to 
automate the pruning process, it is essential to correctly detect the tree 
branch and the point where we need to cut the branch. To that end, RGB 
sensors present themself as cheaper and easier to process than sensors 
like LiDAR. 

The present proposal is a step towards automatic branch pruning. 
This scenario considers a robotic arm to cut the branches automatically. 
Here, our focus is on the vision sensor, which is one of the components of 
a robotic pruner (Zahid et al., 2021). A robotic arm with a camera 
attached is positioned by an operator pointing near the branch of in-
terest. Due to laws and environmental issues, only the branches at risk 
with the energy grid should be pruned. Currently, a technician handles 
the robotic arm that grabs the branch to be pruned. However, in many 
cases, the technician has the field of vision obscured while operating the 

arm from the ground. With the image from the camera (robotic arm), the 
system needs to determine the cut point and angle supporting the fine 
adjustment of the arm. With these information, the robotic arm auto-
matically prunes the branch. Therefore, this study focuses on the 
following problem: giving an image from the camera attached to the tip 
of the robotic arm, which is the branch orientation, and where is the grip 
position to perform the cut? Here, we propose a novel method capable of 
detecting a tree branch and consequently its orientation and the cut 
point. The proposed model combines CNN with Hough Transform and a 
grasping point propose module. Thus, our model can be used by utility 
companies to increase safety and efficiency in the tree pruning process 
and grid maintenance by automating the process and reducing the need 
for human intervention. 

To the best of our knowledge, no prior study has focused on pro-
posing a deep learning method for supporting the pruning of tree 
branches based on RGB images in power grids context. We propose a 
deep learning line-based extraction method, which is few explored in the 
computer vision community compared to other tasks. Unlike previous 
studies (see review articles (He and Schupp, 2018; Zahid et al., 2021) for 
apple trees), we focus on detecting tree branches in different tree spe-
cies, which is a more challenging task. We evaluated our model in 
different scenarios, presenting a quantitative and qualitative analysis, 
and compared it with the state-of-the-art method for line detection. 
Finally, a single line as ground truth facilitates the labeling of images 
(two points) and presents an interesting scientific challenge (weakly 
supervised learning). In addition, our main objective is to detect the 
angulation of the tree branch to supply the robotic arm, which can be 
accomplished with a single line. In fact, the branch’s dense labeling 
(semantic segmentation), commonly used in this context (Zahid et al., 
2021), can make it easier to detect. However, the results showed that, 
for our application, the use of a single line is sufficient. Thus, it would 
not be necessary to predict all the pixels of the branch (optimal variance 
related to the thickness), but only the central pixels. 

In summary, our original contributions are described as follows:  

1. Construction and labeling of an image dataset to detect tree 
branches;  

2. Development of a new lightweight method based on deep learning 
for straight line detection;  

3. Results superior to the state-of-the-art in detecting tree branches 
using straight lines. 

2. Materials and Methods 

2.1. Image Dataset 

To achieve our goal, we build a novel dataset of tree branch images1. 
As far as we know, this is the first dataset of images for this task. For this 

Fig. 1. Example of images in the dataset containing: (a) an isolated main tree branch, (b) a main tree branch with others in the background, (c) a curved, and (d) a 
bifurcated tree branch. These scenarios make it difficult to identify the tree branch orientation. 

1 https://sites.google.com/view/geomatics-and-computer-vision/home 
/datasets 
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purpose, we crawled images using related phrases and words as search. 
Afterward, a data cleaning step discarded repeated or out-of-context 
images. The images were resized to 128 × 128 pixels. 

The resulting dataset is composed of 1868 images, where each image 
contains at least one main tree branch. As the objective is to identify the 
main tree branch, the remaining must be ignored by the methods. Fig. 1 
shows four image examples of the dataset, the first (Fig. 1a) with a single 
tree branch in the foreground, and the second (Fig. 1b) with many 
secondary tree branches close to the primary. The Figs. 1c and 1d 
illustrate some challenging images that include different shapes of 
branches. Also, there are images with variations in lighting conditions, 
weather conditions (e.g., snow, sun), capture devices, image quality, 
blurring, and different backgrounds. 

All images were manually labeled with the direction of the main tree 
branch using a straight line. For forked or curved branches, the longest 
apparent section of the branch has been labeled with a straight line. 

Fig. 2 shows the labeling for dataset images. Labeling with a straight line 
is important to define the grip angle but also to simplify the labeling 
process. On the other hand, simplified labeling poses a challenge to the 
learning of automatic methods. 

2.2. Proposed Method 

The proposed method can be described in three main steps as shown 
in Fig. 3. The first step is to predict the probability that a pixel belongs to 
the line representing the main tree branch in the image. Due to recent 
results, this prediction is performed by a Convolutional Neural Network 
(CNN) as shown in Fig. 3(a). In the second step, the Hough transform is 
applied in the prediction to find a line (Fig. 3(b)). Finally, a point in the 
line is chosen for the grip (Fig. 3(c)). The sections below describe each 
step in detail. 

The labeled line of the main tree branch is one pixel thick (Fig. 2). As 

Fig. 2. Examples of labeling a straight line for the main tree branch.  

Fig. 3. Proposed method to estimate the line of the main tree branch in an image. The (a) first step performs the pixel-by-pixel prediction using a CNN, while the (b) 
second step estimates a straight line using the Hough transform. In the (c) last step, a point belonging to the line is calculated for the branch grip. 
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the imbalance between pixels belonging to the line and the background 
is large, CNNs have difficulty learning such scenarios. The CNN can 
simply predict all pixels as background and still get a low loss, causing 
learning not to occur correctly. 

To solve this issue, we dilate the line by applying a Gaussian kernel 
with standard deviation σ to each pixel belonging to the line. In ground 
truth, the central part of the line has higher values that decrease as it 
moves away from the labeled line (this drop is controlled by the standard 
deviation σ). Due to this drooping behavior of the Gaussian kernel, it is 
not necessary to cover the entire branch in the ground truth, but only a 
region larger than the one-pixel-thick line. Therefore, the σ can be 
empirically determined in the validation set without a great influence on 
the results. 

2.2.1. Straight line prediction 
This step consists of predicting a line that describes the main tree 

branch in the image. For this, a CNN was proposed for pixel-wise pre-
diction. Each value of the feature map represents the probability of the 
pixel belonging to the line. The CNN is composed of the following layers 
as shown in Fig. 4. The input image is initially processed by a convo-
lution layer with 32 filters of size 3× 3, and its dimension is halved 
(64 × 64) with a max-pooling layer. Then, the feature map goes through 
three convolution layers with 16 filters each for extracting deep features. 
A transposed convolution increased the resolution of the feature maps 
returning to the original size of 128 × 128 pixels. Finally, the last 
convolution layer containing one filter is applied to predict the proba-
bility that each pixel belongs to the tree branch line. All convolution 
layers use the PReLU activation function except the last layer that uses 
the ReLU activation function. We evaluated the CNN with ReLU, PReLU, 
and other activation functions, but PReLU provided the best results in 
the validation set. Therefore, CNN prediction P(x, y) corresponds to the 
probability that pixel x, y belongs to the line representing the main tree 
branch. 

The CNN proposed above is a lightweight version that can be easily 
embedded on devices. There is also the possibility to use heavier CNNs at 
this stage. To evaluate this possibility, we also used UNet (Ronneberger 
et al., 2015) with EfficientNetB0 as the backbone for line prediction. 

2.2.2. Hough Transform 
The CNN prediction does not directly represent a straight line or tree 

branch orientation despite obtaining good results. Thus, the second step 
of the proposed method applies the Hough transform to estimate a line 
from the prediction P(x, y) for each pixel. 

Before applying the Hough transform, we segment the prediction P 
through a threshold τ. All pixels with probability P(x, y) greater than or 
equal to τ are maintained according to Eq. 1. To improve segmentation 
quality, we propose to use a variable threshold automatically calculated 

for each image. Instead of using a fixed threshold, a variable threshold is 
calculated as τ = 0.35⋅maxx,yP(x, y) . Thus, the binarized prediction 
maintains only the regions with a high probability of occurrence. The 
variable threshold directly affects the quality of the straight line 
generated by the Hough transform. 

Q(x, y) =
{

1, if P(x, y)⩾τ,
0, otherwise. (1)  

where P(x, y) is the probability of the pixel x, y belonging to the tree 
branch line and Q the segmented prediction keeping the pixels with 
higher probability. 

Given the binary prediction Q, the Hough transform is applied to 
estimate the most probable line. In this transform, a line represents the 
size of the segment r and the angle θ with the x-axis. Thus, the repre-
sentation of the line is given by r = xcosθ + ysinθ. Pixels in Q vote for 
candidate lines represented by r and θ as per the previous equation. The 
most voted r, θ pair correspond to the most likely lines in the image. As 
our problem is identifying the line of the main tree branch, we only get 
the most likely line L. 

2.2.3. Grasping 
The previous steps of the proposed method provide the most likely 

tree branch line. This line provides the direction and position of the tree 
branch for positioning and angling both the grapple and the saw to 
perform the branch cut. 

In addition, we propose a point on the tree branch for grasping. For 
this, consider the pixels (x, y) belonging to the most likely line L, and the 
prediction P performed by the CNN. The point (x, y) ∈ L with the highest 
probability on P is defined as the grip point pg, i.e., pg = argmax(x,y)∈LP(x,
y). Fig. 3(c) illustrates the grip point in red. As the point pg has the 
highest probability in the CNN prediction, this point is the most likely to 
belong to the branch and can be considered a good location for grasping. 

Fig. 4. CNN architecture for pixel-wise line prediction. It is composed of eight layers: five convolution (orange), one max-pooling (red) and one transposed 
convolution. 

Fig. 5. Result of applying the Gaussian to the labeled line (σ = 4.0).  
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2.3. Experimental Setup 

2.3.1. Proposed Method Training 
To solve the imbalance between pixels belonging to the line and the 

background, we dilate the line by applying a Gaussian kernel with 
standard deviation σ to each pixel belonging to the line. Experiments 
showed that the CNN has better convergence for σ = 4.0. In Fig. 5 we 
have the annotation of a line and the result after applying the Gaussian 
kernel. It is possible to observe that the line has a greater thickness and 
the values are not constant, which also helps the CNN learn. The central 
part of the line has higher values that decrease as it moves away from the 
original line. We also applied data augmentation by rotating the images 
at 90, 180, and 270-degree angles, thus increasing the dataset by a factor 
of 4 to extend the training set. 

The training procedure used MSE as loss function (Mean Squared 
Error), Adaptive Gradient Clipping (Brock et al., 2021) and the Adam 
optimizer with an initial learning rate of 10− 3 with a reduction by a 
factor of 10 on a plateau measured in the loss of the validation set, and a 
batch size of 128. We used Early Stopping (10 epoch patience), which 
continuously operated before epoch 50 due to the fast convergence with 
the ground truth improved using line expansion. 

2.3.2. Evaluation Metrics 
To evaluate the performance of the proposed method, we use the k- 

fold cross-validation with k = 10. Thus, the results are the average of the 
folds. As evaluation metrics, we compare the predicted and labeled line 
through Precision (P), Recall (R) and F1-score according to Eqs. (2)–(4), 
respectively. 

P =
TP

TP + FP
(2)  

R =
TP

TP + FN
(3)  

F1 − score =
2TP

2TP + FP + FN
(4)  

where TP, FP and FN correspond to True Positives, False Positives and 
False Negatives, respectively. 

To calculate TP, FP and FN for straight lines, we follow the meth-
odology suggested in (Osco et al., 2021a). A true positive TP represents a 
point on the predicted line at a maximum distance δ from any point on 
the labeled line. A false positive FP represents a point on the predicted 
line that is not close (i.e., distance greater than δ) to any point on the 
labeled line. Finally, a false negative FN represents a point on the labeled 
line that is not close to any point on the predicted line. The value δ 

indicates the maximum acceptable deviation between the predicted and 
labeled line points. During the experiments, we set the metrics as δ = 10,
15 and 20 pixels. 

Since the angle of the proposed line is important for the correct grip 
of the tree branch, we use the Angular Precision (also used in Zhao et al. 
(2021)) that compares the angular difference between the predicted and 
labeled line (Eq. 5). We can see that this metric normalizes values be-
tween 0 and 1. 

A = 1 −
|θg − θh|

π/2
(5)  

where θg and θh correspond to the angle of the labeled and predicted 
line, respectively. 

3. Results and Discussion 

During the experiments, the division of the training and testing set 
followed cross-validation with ten folds. Fig. 6 presents the loss function 
obtained during the training of the proposed method in folds eight. The 
curve behavior is adequate as the loss drops and stabilizes during the 
training epochs. Furthermore, we can observe that the loss in the 
training and validation set is close, showing the generalization of 
learning without overfitting. The other folds had similar behavior. 

3.1. Quantitative Analysis 

To quantitatively assess the generalization of the proposed method. 
Table 1 and Fig. 7 presents the results for each fold of the cross- 
validation. We can observe that the proposed method achieved strong 
results even for a considerable variation in the test set. Considering the 
average results, the angular accuracy is 0.84, and the F1-score is 0.89 

Fig. 6. Loss function during training in a fold of the cross validation. The loss 
rapidly decreased and stabilized indicating that the training process 
were adequate. 

Table 1 
Result of the proposed method for each fold of the cross validation using the 
angular precision (A), precision (P), recall (R) and F1-score with δ = 15.  

Fold A P R F1-score  

Fold 1 0.8496 0.9173 0.8930 0.8920  
Fold 2 0.8625 0.9201 0.8966 0.8974  
Fold 3 0.8465 0.9085 0.8960 0.8941  
Fold 4 0.8420 0.9142 0.8913 0.8882  
Fold 5 0.8420 0.9033 0.8756 0.8767  
Fold 6 0.8521 0.9127 0.8994 0.8980  
Fold 7 0.8317 0.9069 0.8942 0.8886  
Fold 8 0.8587 0.9268 0.9091 0.9079  
Fold 9 0.8407 0.9147 0.8879 0.8897  
Fold 10 0.8509 0.9338 0.9013 0.9030  
μ(±σ) 0.84(±0.009) 0.91(±0.009) 0.89(±0.009) 0.89(±0.009)

Fig. 7. Results for each ten-fold cross-validation (represented as dots) consid-
ering the Angular Precision (A), Precision (P), Recall (R) and F1-score metrics. 
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with small standard deviation values showing consistent results among 
different folds. These results demonstrate that the tree branch and its 
orientation are well detected by the proposed method. 

Previous results were obtained using δ = 15; therefore, the metrics 
considered a maximum deviation of up to 15 pixels. Table 2 presents the 
average of the F1-score, Recall and Precision obtained for the cross 
validation folds using δ = 10, 15, 20. Therefore, it is possible to observe 
the variation of the results considering more adjusted lines (δ = 10) or 
more distant (δ = 20) concerning the ground truth. The proposed 
method presents relevant results when considering more adjusted lines, 

with F1-score, R and P of 0.8197, 0.8192 and 0.8516. 

3.2. Qualitative Analysis 

The proposed method was tested qualitatively on an entirely new 
image set containing 36 images of tree branches under uncontrolled 
capture conditions. The metrics in this set achieved good values with F1- 
score of 0.9678,R of 0.9674 and P of 0.9698, considering δ = 15. 

Fig. 8 shows four examples of this test. The first column shows the 
input image where the prediction with the proposed method was per-
formed. In the second and third columns, we can see the prediction and 
line generated by the Hough transform together with a point for the grip. 
Finally, we show the ground truth line (orange) and the predicted line 
(blue) in the last column. These results indicate that the proposed 
method successfully generalizes the learned features, despite being 
relatively simple and efficient. 

The grip point was also suitable for being inside the tree branch (red 
dot in the third column of Fig. 8). Since this point computes the highest 

Table 2 
Average of F1-score, Recall and Precision for each threshold (δ).  

Metrics δ = 10 δ = 15 δ = 20   

F1-score 0.8197 0.8936 0.9257   
R 0.8192 0.8945 0.9268   
P 0.8516 0.9158 0.9430    

Fig. 8. Examples of the (a) original image, (b) CNN prediction, (c) Hough transform (blue line), and (d) ground truth (orange line).  
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probability of the points on the line, it is not necessarily at the center of 
the tree branch. This is important for tree branches occluding with other 
ones or even leaves. For example, the second row in Fig. 8 shows a tree 
branch in occlusion with another smaller one that could interfere with 
the grip. Even with these challenges, the proposed point is in a region 
without occlusion. 

An important step in the proposed method is the variable threshold τ. 
Although the threshold adapts to each image, it does not guarantee that 
only points within the tree branch will be detected. However, outliers (if 
present) are the minority and the application of the Hough transform 
tends to ignore them and detect only the main line. Fig. 9 presents an 

example varying the threshold from 0.1, 0.35 (default) to 0.6. As we can 
see, even with the presence of outliers (Figs. 9a and 9b), the Hough 
transform was able to robustly detect the line. 

To visualize the learning of the proposed method, Figs. 10 and 11 
illustrate the feature map of the convolution layers after processing the 
input image with a vertical and horizontal tree branch. Understanding 
the final prediction of a CNN requires interpreting the activation of fil-
ters in the inner layers. In general, the early layer filters extract general 
features (e.g., Fig. 10b and 11b). Activation maps highlighted in red, for 
example, detect regions with vertical and horizontal edges. Other maps, 
like the one in the upper left, are activated on diagonal edges. On the 

Fig. 9. Example by varying the threshold on branch detection. The orange and blue lines represent ground truth and prediction respectively.  

Fig. 10. Feature map of the (b) fourth layer, (c) tenth layer and (d) the last layer after processing the (a) input image containing a vertical branch.  
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other hand, the deeper layers specialize in identifying the main branch 
and the regions around it (e.g., Figs. 10c and 11c). Due to the large 
number of examples during training, our method was able to generalize 
and recognize the main branch (see Figs. 10d and 11d). 

3.3. Comparison with Literature Method 

In this section, we compare the proposed method with the Deep 
Hough Transform (DHT) (Zhao et al., 2021) and Fully Convolutional 
Line Parsing (F-Clip) (Dai et al., 2021), two recent and state-of-the-art 
methods for line detection. For the proposed method, two versions 
were used: the lighter version with the proposed CNN and a heavier 
version with the UNet. DHT combines the traditional Hough transform 
with deep features into an end-to-end framework for detecting lines in 
images. F-Clip proposes a CNN to directly predict the center position, 
length and angle of the line in the image (We used version HG1-D2). 
Although DHT and F-Clip can be applied in edge detection, they are 
able to learn rich contextual semantics of lines. After training in our 
dataset, it proved to be robust in detecting tree branches, as our images 
also show natural scenes. 

Table 3 shows the comparative results between the methods. The 
proposed method has a small improvement in relation to DHT, being 
0.9678 (lightweight) and 0.9684 (UNet) against 0.9661 in the test im-
ages, as shown in the first line of the table. On the other hand, both 
versions of the proposed method were superior to the F-Clip. This shows 
that the proposed method is competitive with the state-of-the-art, even 
with a simple CNN with few layers. 

Table 3 also presents the results for test images corrupted with two 
types of noise (Gaussian and Shot) and two severities (low and high). 
With Gaussian noise, the low and high severities correspond respectively 
to the Gaussian distribution with standard deviation equal to 0.08 and 
0.12 (Hendrycks and Dietterich, 2019). On the other hand, Poisson 

distribution with 60 and 25 was used in the Shot noise for low and high 
severities, respectively (Hendrycks and Dietterich, 2019). 

As expected, the noise affects tree branch detection in all methods. 
For the low severity in Gaussian noise, the proposed method with UNet 
obtained the best result followed by the DHT, an improvement from 
0.7943 to 0.8748. The lightweight version of the proposed method also 
obtained relevant results due to its low computational cost compared to 
other methods. For high severity, the UNet version of the proposed 
method provided the best results. However,the proposed method in its 
lightweight version provided an improvement of approximately 0.2 in 
relation to DHT and competitive results compared to F-Clip. 

For Shot noise, the proposed method in its two versions were supe-
rior to DHT and F-Clip in both severities, improving from 0.7564 and 
0.7097 to 0.9085 in low severity and from 0.5433 and 0.6963 to 0.7994 
in high severity. Fig. 12 illustrates examples of tree branch detection 
with both noise and severities. These results show that the model pre-
sents strong robustness. 

Finally, we evaluated the computational cost of methods for image 
inference. For that, we ran each of the methods on 50 images with 128 ×

128 pixels and reported the average inference time for an image and its 
respective frames per second (FPS) in Table 4. For these experiments, we 
used colab which has a Tesla K80 GPU. As we can see, F-Clip is the 
fastest method with 60.86 frames per second, followed by DHT and our 
method. 

3.4. Discussion 

Tree branches can be a significant problem when reaching the power 
lines, causing electricity shortages. The cutting, in general, is done 
manually by specialists, introducing risks for them. They face limited 
vision due to overgrown branches and twigs, making their work even 
harder. Here, we propose a deep learning approach to support automatic 
branch pruning, focusing on the vision sensor. We assume a camera in a 
robotic arm positioned by an operator pointing near the branch of 
interest. 

As we intend to perform the processing in loco, real-time solutions 
are required with high accuracy. The practical use of the methods must 
balance accuracy and efficiency. For this evaluation, Fig. 13 presents a 
plot of F1 versus time (ms) for all methods. F1 is given by the average of 
the tests with and without noise from Table 3. The methods closer to the 
lower right corner have higher F1 and lower inference time. We can see 
that the proposed method with UNet outperforms the others in terms of 
accuracy by a good margin; however, it is more computational expen-
sive with an inference time of 52 ms (19 frames per second). Finally, we 
can verify from Fig. 13 that our lightweight model provides a good 
balance between accuracy and time. 

Fig. 11. Feature map of the (b) fourth layer, (c) tenth layer and (d) the last layer after processing the (a) input image containing a horizontal branch.  

Table 3 
Comparison (F1-score) between the proposed method, DHT, and F-Clip in 
Gaussian and Shot noise. Best results are in boldface.  

Corruption Severity F-Clip DHT Ours Ours     
Lightweight UNet 

non-corruption - 0.9371 0.9661 0.9678 0.9684 

Gaussian low 0.7700 0.7943 0.7138 0.8748  

high 0.6794 0.4653 0.6627 0.7849 

Shot low 0.7097 0.7564 0.7931 0.9085  

high 0.6963 0.5433 0.7227 0.7994  
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For future works, multi-scale fusion and attention mechanisms can 
be applied to improve the accuracy; however, it is important to be aware 
of the processing time, as it is very important in this application. 

4. Conclusion 

We proposed a deep learning-based method capable of obtaining the 
position and angulation of branches of a wide variety of species of trees 
in conjunction with a candidate grip point. We built a novel dataset of 
1868 images with at least one main tree branch. We provide a 

quantitative analysis under different corruption scenarios and a quali-
tative analysis of the results. We also compared our results with the Deep 
Hough Transform (DHT), the state-of-the-art method for line detection. 

Our results show that our model presents comparable performance to 
novel methods for line detection (DTH). Further, our model out-
performed DTH for high severity corruption scenarios, showing the 
robustness of our model. We highlighted that our model is capable of 
proposing a candidate grip point. Furthermore, energy companies can 
benefit from this model, helping to make a safe and accurate predictive 
maintenance of the power grid. Our work can be used to build powerful 
tools helping companies to infinity sensitive areas of the power grid 
quickly and safely. We intend to adapt the method to detect multiple tree 
branches simultaneously aiming to advance in the procedure automa-
tion. We also intend to embed the proposed method on a device to run in 
real time, and manually label a suitable point for grasping and perform 
the prediction with CNN. 

Fig. 12. Comparison between DHT (second row), F-Clip (third row), our lightweight version (fourth row), and our UNet version (fifth row) for images with Gaussian 
and Shot noises at low and high severities. The ground truth is presented in the first row of images. 

Table 4 
Computational cost for image inference by the methods.   

F-Clip DHT Ours Ours    
Lightweight UNet 

Time (ms) 16.43 33.80 43.70 52.57 

FPS 60.86 29.59 22.89 19.02  
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