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A B S T R A C T   

Fine-scale land disturbances due to mining development modify the land surface cover and have cumulative 
detrimental impacts on the environment. Understanding the distribution of fine-scale land disturbances related 
to mining activities, such as oil well sites, in mining regions is of vital importance to sustainable mining 
development. For efficient mapping, automated identification and extraction of the oil well sites using high- 
resolution satellite images are required. In this work, we proposed the Oil Well Site extraction (OWS) Mask R- 
CNN based on the original Mask R-CNN (Region-based Convolutional Neural Networks), to accurately extract 
well sites using multi-sensor remote sensing images. For improvement of mapping efficiency, two modifications 
were made to Mask R-CNN: (1) replacing the backbone of Mask R-CNN with D-LinkNet, and (2) adding a se-
mantic segmentation branch to Mask R-CNN to force the whole network to focus on the relationship between line 
objects and oil well sites. As imagery data were from multiple sensors (RapidEye 2/3 and WorldView 3), a pre- 
trained Residual Channel Attention Network (RCAN) was applied to super-resolve the images with different 
resolutions. Several key spatial features, such as nearby roads and area size, have also been used in the oil well 
site mapping process. The experimental results indicate that our OWS Mask R-CNN considerably improves the 
average precision (AP) and the F1 score of Mask R-CNN from 51.26% and 25.7% to 60.93% and 61.59%, 
respectively.   

1. Introduction 

Oil or natural gas production is important for economic development 
around the world. However, oil and gas mining developments inevitably 
have detrimental impacts on the environment. The most used technol-
ogy for oil and gas production is through the construction of in-situ 
drilling sites, where the development of a series of well sites and other 
facilities is needed (Zhang et al., 2018a). The in-situ mining with foot-
prints of well sites and resource roads in a massive number can certainly 
lead to landscape transformation, landscape fragmentation, and result in 
cumulative impacts on the environment (Yang et al., 2018). Taking oil 
sands production in Alberta, Canada as an example, the in-situ oil sands 
mining development in Alberta has undergone a period of rapid 
expansion in the past few years, which plays a key role in Alberta’s, even 

Canada’s economy (Gosselin et al., 2010). However, there is a rise of 
concern about environmental impacts resulting from land disturbances 
related to oil sands production. A number of studies have demonstrated 
that land disturbances can have long-term effects on the population of 
various species, ranging from songbirds to carnivores (Bayne et al., 
2005; Dyer et al., 2001; Machtans, 2006; Nielsen et al., 2007). There-
fore, the identification, mapping and monitoring of land disturbances 
and potential risks associated with mining activities at local and regional 
scales becomes a requirement for sustainable mining development 
(Erzurumlu and Erzurumlu, 2015). 

Earth observation and remote sensing techniques have provided an 
effective approach to extracting information about land surface distur-
bance footprints to support environmental assessment and risk analysis 
related to mining activities of oil sands production (Yang et al., 2018). In 
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previous operational mapping, visual interpretation became a conven-
tional method to extract oil well sites from remote sensing images. 
However, this method is time-consuming and heavily relies on profes-
sional knowledge (Yang et al., 2018). Hence, automated extraction of oil 
well sites was urgently needed. Moreover, the manual extraction 
method was inefficient for processing a massive volume of data. In 
recent years, machine learning techniques have prevailed in the remote 
sensing community due to their high processing performance and low 
reliance on human knowledge. Methods like decision trees (DT) and 
other traditional machine learning methods were widely used in remote 
sensing applications for classification and regression tasks (Schulz et al., 
2018). Features used in these methods were commonly constructed 
using expert knowledge. In other words, feature learning in deep 
learning (DL) instead of feature engineering in conventional machine 
learning automated the entire process (Ok, 2013). Moreover, with so-
phisticated innovations, deep learning produced end-to-end architec-
tures to solve complex problems with higher accuracy when trained on a 
huge amount of data (Ball et al., 2017). Deep learning-based algorithms 
are widely used in a variety of remote sensing applications, such as 
building detection (Sun et al., 2017), road segmentation (Zhang et al., 
2018c), and topological map generation (Ma and Zhao, 2017). There-
fore, deep learning-based methods are promising for oil site extraction. 

Different from building footprints, road networks, and other small 
objects, such as vehicles, ships, and oil tanks, oil well sites are hard to 
extract because of the diversity of geometric and spectral features. 
Because of oil and gas production, the oil well sites are always shaped 
irregularly as shown in Fig. 1. In addition, because of vegetation re-
covery after oil and gas production, vegetation will cover the oil well 
sites, which makes it harder to detect and extract oil well sites. There-
fore, while DL methods were widely used in remote sensing applications, 
there were very few works for the applications of deep learning-based 
methods in oil industrial facility extraction. In the work of Zhang 
et al. (2018a), the method You Look Only Once (YOLO) v2 was applied 
to detect the location of oil well sites and achieved an accuracy of 92% in 
bounding box detection results. Faster R-CNN (Regional Convolutional 
Neural Network), a two-stage detector, was also used for detecting oil 

wells from remote sensing images (Wang et al., 2021), which achieved a 
high recall of 92.4% (Song et al, 2020). However, the detailed mask of 
well site footprint is also important for scientific analysis of land 
disturbance. Therefore, in addition to locating oil well sites, extracting 
masks of oil well sites should be taken into account in automated oil well 
sites detection and extraction. Instance segmentation methods from 
computer vision fit perfectly for the purpose, which detect the locations 
of target objects and extract the masks of target objects; but these 
methods have not yet been applied in oil well site detection and 
extraction. In our work, we developed an oil well site extraction method 
based on Mask R-CNN, which detects not only the location (bounding 
boxes) of oil well sites but also their masks. The motivations of this work 
are 1) to develop a new instance segmentation-based oil well sites 
extraction and 2) to build the connection between oil well sites and road 
networks in the detection process. 

The contribution of this work is two folds: 

(1) A new algorithm, OWS Mask R-CNN, for oil well site identifica-
tion and extraction from remote sensing images.  

(2) A new framework to extract oil well sites including the fusion and 
post-processing of multi-modality images. 

In this paper, a review of commonly used deep learning-based 
methods for object extraction is given in Section 2. In Section 3 the 
study area and data used in this work are described. In Section 4, our 
proposed OWS Mask R-CNN method and metrics used for performance 
evaluation are described in detail. The results from the experiments are 
presented in Section 5. In Section 6, we conclude the paper with our 
findings from experiments. 

2. Literature review 

2.1. The development of instance segmentation. 

Automated extraction of oil/gas well sites from satellite images falls 
into the tasks of object detection and instance segmentation. The former 

Fig. 1. High-definition images acquired from Google Earth.  
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aims at localizing and classifying objects in images and output bounding 
boxes, confidence score of localization, and class of each object. The 
latter in addition produces segmentation masks for each detected object. 
Both object detection and instance segmentation are key tasks in com-
puter vision. In this section, we briefly introduce object detection and 
instance segmentation methods recently proposed in the computer 
vision field. Deep learning-based object detection methods and instance 
segmentation are commonly classified into two types: one-stage or 
regression-based methods, and two stage methods. 

After the proposal of R-CNN (Girshick et al., 2014), deep learning- 
based object detection methods overtook traditional object detection 
methods. In R-CNN, the selective search method was used first to 
generate candidate regions, which was followed by feature extraction, 
classification, and localization. The existence of region proposal step 
divided object detection and instance segmentation into two stages. To 
improve the performance of R-CNN, Spatial Pyramid Pooling Network 
(SPP-Net) was proposed (He et al., 2015). By employing the idea from 
SPP-Net and Region Proposal Networks (RPN), Fast R-CNN and Faster R- 
CNN were proposed to show high performance (Girshick, 2015; Ren 
et al., 2016). Mask R-CNN was developed based on Faster R-CNN by 
adding a mask segmentation branch and replacing Region of Interest 
(RoI) pooling with RoI Align in feature tailoring after feature extraction 
(He et al., 2017). In 2018, cascade strategy was applied in object 
detection and instance segmentation (Cai and Vasconcelos, 2018). As 
explained by its name, in Cascade R-CNN (Cascade Mask R-CNN), two 
intermediate stages for object detection (and mask segmentation) were 
added between feature extraction and object detection (instance seg-
mentation) heads of Faster R-CNN (Mask R-CNN), which resulted in 
Cascade R-CNN (Cascade Mask R-CNN). After Cascade R-CNN, there 
were other methods, such as Dynamic R-CNN (Zhang et al., 2020), but 
the improvement of these methods was limited. For two-stage instance 
segmentation, Hybrid Task Cascade (HTC) was proposed by involving 
interleaved execution, mask information flow, and semantic segmenta-
tion branch on top of Cascade Mask R-CNN (Chen et al., 2019). Both 
Cascade Mask R-CNN and HTC showed higher performance compared to 
Mask R-CNN, while both require more time in the training and testing 
phases. In our work, our modification is similar to those in HTC, while 
we use semantic features from the CNN backbone instead of shared 
features. 

Object detection methods in the YOLO family are well-known one- 
stage methods. By taking the object detection task as the regression task, 
they are faster compared to two-stage detectors. Bounding boxes and 
class probabilities were directly output from images, not candidate re-
gions. The latest YOLO detector is PaddlePaddle YOLO v2 (Huang et al., 
2021), while after YOLO v3 (Farhadi and Redmon, 2018) there were few 
modifications made compared to previous algorithms. Starting from 
YOLO v4 (Bochkovskiy et al., 2020), newly developed optimization 
methods, such as better activation and better loss function, rather than 
major modifications on architectures were introduced to YOLO to 
improve the detection performance. Those optimization methods are 
supposed to further improve the performance of our method, but we 
leave these for future studies. You Only Look At CoefficienTs (YOLACT) 
and YOLACT++ were instance segmentation methods developed based 
on YOLO v3 (Bolya et al., 2019a,b; Bolya et al., 2020). Although these 
methods gave the highest accuracy among one-stage instance segmen-
tation methods, their accuracy was lower than two-stage instance seg-
mentation methods. Therefore, Mask R-CNN serves as the baseline in 
this work. 

2.2. The applications of instance segmentation in remote sensing. 

The application of instance segmentation in remote sensing is limited 
by the availability of training data. Even though the iSAID (Waqas Zamir 
et al., 2019) and MWPU VHR-10 (Su et al., 2020) were released, only 
limited object types were included, and the publicly available datasets 
cannot fulfill all requirements in remote sensing for instance 

segmentation. 
From the existing literature, part of the research focused on single 

object detection, such as building footprint extraction and vehicle 
detection, while others focused on multiple object detection. For object 
detection, Zhao et al. (2018) used Mask R-CNN to extract building 
footprint from high spatial resolution satellite images and then pro-
cessed extraction results using building boundary regularization. To 
extract building footprints in an end-to-end manner, Marcos et al. 
(2018) developed Deep Structured Active Contours (DSAC) by involving 
the Active Contour Model in a convolutional neural network. The 
method gave a high performance for building footprint extraction from 
aerial images in their experiment. Li et al. (2019) developed an end-to- 
end building footprint extraction method named PolyMapper, which 
was re-examined and improved by Zhao et al. (2021). In their methods, a 
recurrent neural network was added after a CNN network. Both of them 
showed high performance on aerial images compared to Mask R-CNN. 
For vehicle detection, Mou and Zhu (2018) applied a semantic 
boundary-aware multi-task learning network to extract vehicles from 
aerial images, which resulted in better performance compared to using 
semantic segmentation methods. There are also applications detecting 
multiple objects, which mainly use large datasets, such as iSAID and 
MWPU VHR-10. 

For multiple object detection, Su et al. (2020) proposed a new 
method based on Cascade Mask R-CNN and named it High-Quality 
Instance Segmentation Network (HQ-ISNet). In the method, sophisti-
catedly designed RoI pooling was adopted. In addition, High Resolution 
Feature Pyramid Pooling (HRFPN) and ISNet v2 were applied to pre-
serve high-resolution features and improve the accuracy of mask seg-
mentation. The experiment on the Synthetic Aperture Radar (SAR) Ship 
Detection Dataset (SSDD) and iSAID dataset showed the high perfor-
mance of the proposed method compared to the state-of-the-art 
methods. Zhang et al. (2021) proposed a new method, Semantic 
Attention and Scale Complementary Network, by adding a Semantic 
Attention module (SEA) and a Scale Complementary Mask Branch 
(SCMB) to Mask R-CNN. The SEA makes the network focus on the objects 
of interest and the SCMB improves the accuracy of mask segmentation. 
The experiment on iSAID and MWPU VHR-10 showed the new method 
processes competitive performance against the state-of-the-art methods. 
Zeng et al. (2021) proposed a Consistent Proposals of Instance Seg-
mentation Network (CPISNet) based on Cascade Mask R-CNN. They 
developed an Adaptive Feature Extraction Network (APEN) for multi- 
level feature extraction, the Proposal Consistent Cascaded (PCC) archi-
tecture for bounding boxes refinement, and the Elaborated RoI Extractor 
(ERoIE) for mask RoIs extraction. The experiment on iSAID and MWPU 
VHR-10 showed the high performance of CPISNet compared to the state- 
of-the-art methods. 

All applications mentioned above do not consider multi-source data, 
which is quite common in remote sensing. All Mask R-CNN based 
methods proposed in these publications modify FPN, RoI extractor, or 
head part which works for mask segmentation and bounding boxes 
detection. However, few works focussed on the feature extractor, while 
it is important for later modules and the performance of the whole 
network. In addition, oil well site detection is rarely explored, while it is 
an important task. Therefore, we conducted the work to explore oil well 
site detection with the newly proposed instance segmentation method 
using multi-source satellite images. 

3. Study area and data 

3.1. Study area 

Alberta is one of the provinces in Canada ranging from 49◦N to 60◦N 
and from 110◦W to 120◦W (Fig. 1). Whereas the western part of the 
province borders the Rocky Mountains, the eastern part is occupied by 
the Great Plains; the latter predominates in Alberta, Canada, accounting 
for about 90% of ~ 66000 km2 in total. The Alberta province is well- 
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known for abundant mineral resources, especially oil sands. Fig. 2 shows 
the extent of the oil sand deposition in Alberta, Canada. In the oil sands 
mining, the in-situ mining developments in forested land and farmland 
in Northern Alberta leave massive footprints on the land, including those 
of well sites and resources roads connecting to the well sites. In this 
work, we define those land disturbances related to mining development 
as oil well sites, and roads connected to oil well sites as resource roads. 

3.2. Datasets 

Remote sensing satellites acquire images with different spatial res-
olutions ranging from sub-meter level to kilometers level per pixel. The 
spatial resolution will limit the size of objects that can be extracted from 
those images. According to the Nyquist-Shannon theorem (Shannon, 
1949), in order to identify the target object in images, the pixel size 
should be 1/2 the size of the smallest target object. As most oil well sites 
in Alberta, Canada has an area of about 100 m2 (10 x10 m) in size, it is 
reasonable that meter-level images are feasible to be used in oil well site 
extraction. Lower resolution cannot capture effectively oil well sites. 
However, too much useless detailed information consumes much 
compute resources resulting in low computation speed when the spatial 
resolution is too high. 

In this work, we collected 18 RapidEye 2/3 multi-spectral (MS) im-
ages (Image © 2021 Planet Labs PBC) and 15 WorldView-3 images with 
MS bands and PAN bands (Satellite imagery © 2021 Maxar Technolo-
gies). The coverage of the data is shown in Fig. 1. Each RapidEye image 
has an area of 25 × 25 km2 with an image size of 5000 × 5000 pixels, 
and with a spatial resolution of 5 m. Each WorldView-3 in use in this 
work has different sizes. The resolutions of PAN and MS images are 0.5 
m and 2 m, respectively. 

Given different spectral and spatial resolution in our collected im-
ages, we selected Blue, Green, Red, Red Edge, and NIR (NIR1 in 

WorldView-3 images) bands to make full use of collected data, as well as 
2 x2 m pixel size as the spatial resolution of our dataset used for oil well 
sites extraction for full use of the dataset. In addition, we used a pre- 
trained RCAN (Zhang et al., 2018b) model1, one of the state-of-the-art 
super-resolution methods, to improve the spatial resolution of Rap-
idEye to 2 m/pixel spatial resolution to match the resolution of World-
View 3 multispectral data. 

To generate the training dataset, oil well sites and line objects con-
nected to them were manually annotated on these images with the aid of 
Google Maps. Labeled images and processed images were further crop-
ped into 512 × 512-pixel patches. Consequently, we obtained 11,250 
and 845 image tiles for RapidEye 2/3 and WorldView 3, respectively, i. 
e., a total of 12,095 paired mask tiles for both roads and well site labels. 
Fig. 3 depicts several examples of paired images and mask tiles. Those 
patches were further split into train, validation, and test with a ratio of 
6:1:3. 

4. Method 

4.1. Oil well site extraction Mask R-CNN 

As the well sites are always connected to resource roads, we took the 
connection relationship between road network and oil well sites into 
account in the development of our method. As D-LinkNet is a state-of- 
the-art method in road network segmentation, we selected it as the 
feature extractor in our method. Furthermore, the U-shape and the 
dilation convolution of D-LinkNet made it good at preserving multi-level 
features and context information, which was important to improve the 
network performance. In addition, a semantic segmentation loss, 
calculated using the nonlinear transformation (sigmoid activation layer 
in this work) of features from D-LinkNet and ground truth masks, was 
added to the total loss, which made the CNN feature extractor focus on 
both oil well sites and connected road network and served as a new 
branch exclusively for semantic segmentation. Adding the new loss was 
expected to generate high-quality features with context information of 
oil well sites for later modules of the new method and improve the 
performance of the model (Li et al, 2021). The task of semantic seg-
mentation can act as an auxiliary task to help learn the features needed 
for well site extraction. The architecture of our process workflow is 
shown in Fig. 4, in which the dashed line represents the newly added 
branch. 

Mask R-CNN is proposed on top of Faster R-CNN by replacing RoI 
pooling with RoI Align and adding a mask segmentation branch. Both 
RoI pooling and RoI Align work for processing and resizing objects RoIs 
to the same size. The processed and resized RoIs are taken as input for 
followed FC layers. Here, RoI pooling first mapped RoIs to feature maps 
and then resized mapped RoIs. For example, if an object has a RoI with a 
size of 100 × 80 and our input images have a size of 512 × 512, to map 
the RoI to the feature map P3, which has a size of 64 × 64, we have to do 
processing on our RoIs. As shown in Fig. 5, we get the mapped RoI with a 
size of (12,10). To explain RoI pooling and RoI align clearly, we set the 
pooling size as 3 × 3 here. It means that we have to resize the RoI from 
(12, 10) to (3,3). Quantization and downsampling are used in both steps 
in RoI pooling, which results in information loss. For RoI Align, the 
original RoIs are divided into 3 × 3 bins first. For pooling purposes, four 
points are then evenly generated in each bin. Finally, the value of the 
whole bin is determined by four points’ values using bilinear interpo-
lation (as shown in Fig. 6). To construct our OWS Mask R-CNN, we 
selected D-LinkNet (as shown in Fig. 6) instead of the original ResNet 
101 (as shown in Fig. 7) as the CNN, which is developed based on 
LinkNet (Chaurasia and Culurciello, 2017). By utilizing ResNet blocks in 
encoder and decoder blocks of U-Net (Ronneberger et al., 2015), 

Fig. 2. Map of the extent of oils sands in Alberta, Canada and the coverage of 
collected images (Administrative area map comes from Hijmans et al., 2012). 

1 Pretrained model and codes can be found at https://github.com/hehongjie 
/Oil-well-pads-extraction. 
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LinkNet was proposed as an efficient semantic segmentation. To extract 
line objects, such as road networks, dilated convolution layers were 
applied between the encoder and decoder parts of LinkNet, which 
enlarge the receptive field and output high spatial resolution features for 
semantic segmentation. The encoder, central and decoder parts make up 
the D-LinkNet (Zhou et al., 2018). Considering the imbalance distribu-
tion of positive objects and negative objects (pixels of oil well sites and 
background in this work) in ground truth masks, we apply soft Jaccard 
loss (Yuan et al., 2017) to supervise the training of the newly added 
semantic segmentation branch. Other loss functions include classifica-
tion loss and bounding box detection loss from region proposal network, 
classification loss, bounding box detection loss, and mask segmentation 
loss from the output of the method following the original setting in Mask 
R-CNN. Categorical cross-entropy and binary cross-entropy loss 

functions are selected as classification and mask segmentation loss. For 
bounding box regression loss, the L1 loss function is adopted. Other 
modules of Mask R-CNN, such as FPN, RPN, and head parts are detailed 
in Figs. 8 and 9. 

4.2. Evaluation metrics 

To evaluate the performance of the DL models oil well site extraction, 
two types of quantitative evaluation metrics were utilized: (1) pixel- 
level metrics, and (2) object-level metrics. The former includes six 
commonly used metrics: pixel accuracy, Intersection of Union (IoU), 
precision, recall, and F1 score. To start with, pixel accuracy simply re-
ports the percentage of pixels in the image which were correctly 
segmented. IoU refers to the intersection of predicted masks and ground 

Fig. 3. Example of generated roads and oil well sites dataset. (a) Satellite image tiles, (b) mask image tiles for well site labels, and (c) mask image tiles for road labels.  

Fig. 4. Architecture of proposed oil well sites extraction Mask R-CNN model (ResNet 101 is replaced by D-LinkNet as new CNN for feature extraction).  
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truth to the union of them. Precision represents the ratio of correctly 
extracted masks to all predicted ones; recall refers to the ratio of accu-
rately detected masks to ground truth. Finally, F1 score is the harmonic 
mean of precision and recall. Equations for calculating these metrics are 
listed below: 

Pixel Accuracy =
TP + TN

TP + FP + TN + FN
(1)  

IoU =
TP

TP + FP + FN
(2)  

Precision =
TP

TP + FP
(3)  

Recall =
TP

TP + FN
(4)  

F1 = 2 ×
Precision × Recall
Precision + Recall

=
2TP

2TP + FP + FN
(5)  

where True Positive (TP), False Positive (FP), True Negative (TN), and 
False Negative (FN) represent cases when the model predicts the positive 

class as positive(i.e., TP) or as negative (i.e., FN) and predicts the 
negative class as positive (i.e., FP) or as negative (i.e., TN), respectively. 

On the other hand, the object-level metrics used in this study are 
Average Precision (AP), AP75, and AP50. All three metrics were calcu-
lated based on the precision-recall curve under certain IoU thresholds. 
For example, given an IoU threshold required to deem the object 
detection as a positive detection, a pair of recall and precision can be 
calculated, which constructs the precision-recall curve. In most cases, 
the calculated AP indicates averaged AP value when IoU equals 0.50, 
0.55, 0.60, 0.65, 0.70. 0.75, 0.80, 0.85, 0.90 and 0.95. AP75 and AP50 
represent the AP value with IoU equaling 0.75 and 0.50. Both pixel-level 
and object-level metrics are used to evaluate the well sites extraction 
results including bounding boxes and masks. The higher AP value rep-
resents the higher accuracy of extraction or detection results. 

Fig. 5. RoI pooling (left) and RoI align (right) (only 16 × 16 instead of 64 × 64 grids are shown here for clear representation).  

Fig. 6. The architecture of D-LinkNet.  
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4.3. Implementation details 

In this work, we used an image tile size of 512 × 512, a batch size of 
22, an anchor ratio of 0.5, 1, and 2, a minimum confidence score of 0.9, a 
learning rate of 1e-3, and equal weight for all losses. We used ResNet 
101 as the initial backbone, which we then replaced. The rest of the 

parameters are the same as the widely used implementation3. All models 
were trained for 200 epochs and tested under TensorFlow 2.4.1 on a 
single Nvidia TITAN XP with CUDA 11.4. 

5. Experiments results and discussion 

In this section, first, both qualitative and quantitative evaluations of 
these methods are presented; and in the following section, the results 

Fig. 7. The architecture of ResNet 101 (the first Conv 1 × 1 layer in each branch of each Conv block, except the first block, has a stride of 2).  

Fig. 8. The architecture of FPN (left) and RPN (bottom right).  

2 Batch size is suggested to be set with larger value with more computational 
resources or smaller size of input. 

3 https:// github.com/matterport/Mask_RCNN. 
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presented from studies on the impacts of replacing backbone, as well as 
different tasks in semantic segmentation branch, involving NDVI images 
and adding a new branch, on the performance of OWS Mask R-CNN on 
oil well sites extraction. 

5.1. Qualitative evaluation 

Before diving into the qualitative evaluation, we visualize the 
training process with learning curves in Fig. 10. Examples of the mask 
extraction results based on Mask R-CNN and our proposed OWS Mask R- 
CNN model are provided in Figs. 11 and 12. In these two figures, the first 
and second rows are images and ground truth examples. From the third 
to the last row, extraction results of Mask R-CNN, Road_Mask R-CNN 
(OWS Mask R-CNN considering only road network in semantic seg-
mentation branch), Well_Mask R-CNN (OWS Mask R-CNN considering 
only well in semantic segmentation branch), OWS Mask R-CNN are 
tabulated. As shown in Fig. 11, from Mask R-CNN to OWS Mask R-CNN, 
misclassified pixels decrease, which is obvious in the first four examples. 
The improvement from Mask R-CNN to Road_Mask R-CNN is significant 
among all methods. The instance-level extraction results are provided in 
Fig. 12. As shown in Fig. 12, Mask R-CNN recognizes all anomaly small 

patches as oil well sites, while Road_Mask R-CNN, Well_Mask R-CNN, 
and OWS Mask R-CNN can accurately recognize oil well sites. We 
attribute it to the positive impact of the new backbone (D-LinkNet +
FPN) and the new semantic segmentation branch. It is interesting to 
notice that although the mislabelled oil well sites exist near the center of 
example 2, all methods can well detect and extract the real object. We 
believe only limited mislabelled oil well sites exist in our dataset as we 
checked several rounds after annotating. The mislabelled objects may 
also serve as noise in model training and help deal with generalization 
errors in test or deployment phases (Zhou et al., 2019). The qualitative 
evaluation results, to some extent, confirm the success of our proposal. 

5.2. Quantitative evaluation 

Table 1 summarizes the quantitative evaluation metrics’ values of 
mask extraction using Mask R-CNN, Road_Mask R-CNN, Well_Mask R- 
CNN, and our OWS Mask R-CNN model. 

As shown in Table 1, the OWS Mask R-CNN model achieves better 
performance compared to other models in terms of all metrics except 
Recall. Specifically, AP is gradually increased from 20.98% of Mask R- 
CNN to 25.35% of OWS Mask R-CNN. It is more than 20% improvement. 

Fig. 9. Fully Connected layers for classification and bounding box detection (top), and fully convolutional layers for mask extraction (bottom).  

Fig. 10. Learning curves.  
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Pixel-level metrics also increased from Mask R-CNN to OWS Mask R- 
CNN except for Recall. Because our data has significant data imbalance, 
we omit the pixel accuracy metric in Tables 1, 2, and 3 to avoid 
misleading the readers. Given the results, we can conclude that our 
proposed OWS Mask R-CNN with a new backbone and a new semantic 
segmentation branch is more successful than Mask R-CNN in oil well site 
detection and extraction. 

5.3. Comparative study 

In this section, we conduct a comparative study to examine the 
performance of our OWS Mask R-CNN compared to other instance seg-
mentation methods in oil well site detection and extraction. As Mask 
Scoring R-CNN (Huang et al., 2019) and Cascade Mask R-CNN are 
commonly selected in the comparative study (Zeng et al., 2021; Zhang 
et al., 2021; Chen et al., 2019), we also selected them in our experiment. 

As shown in Table 2, our OWS Mask R-CNN has the best performance 
compared to the other three methods in all metrics except Recall. 
Compared to Mask R-CNN, Cascade Mask R-CNN give high scores in 

pixel-level metrics except for Recall but low scores in object-level met-
rics. The Mask Scoring R-CNN is supposed to give higher performance 
compared to Mask R-CNN, but it does not. Mask Scoring R-CNN adds a 
Mask IoU head and scoring loss to Mask R-CNN, which considers the IoU 
of predicted masks and ground truth masks in model training. Cascade 
Mask R-CNN can be seen as a multi-stage extension of Mask R-CNN. For 
cascade Mask R-CNN, current stage detection and mask extraction take 
as input the detection results of the last stage. The Mask Scoring R-CNN 
and Cascade Mask R-CNN are proposed after Mask R-CNN and are 
supposed to give higher performance compared to Mask R-CNN, but 
they do not in our experiment. We explained the results as that given 
limited data the advantage of two more complicated methods cannot be 
fully exploited. 

Because the oil well site mask is the focus of our work, we also 
compare our OWS Mask R-CNN with the state-of-the-art semantic seg-
mentation methods. As shown in Table 3, among 4 methods, our OWS 
Mask R-CNN shows the best performance with high scores in all metrics. 
Compared to our previous work (He et al., 2022), both DeepLab v3+, 
HRNet v2, and Mask R-CNN show worse performance in oil well site 

Fig. 11. Examples of masks detection results (visualization in semantic segmentation manner).  
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detection and extraction than that in building footprint extraction. To 
some extent, the results show the challenge and the failure of existing 
methods in oil well site detection and extraction. 

5.4. Ablation study  

(1) The impact of the backbone replacement and the new semantic 
segmentation. 

To develop OWS Mask R-CNN, an improvement was made by 

Fig. 12. Examples of masks detection results (visualization in instance segmentation manner).  

Table 1 
Evaluation metrics (%) for the mask extraction.  

Models AP AP75 AP50 IoU Precision Recall F1 

Mask R-CNN  20.98  13.70  53.38  15.56  16.42  74.74  26.93 
Road_Mask R-CNN  23.00  15.17  56.60  19.06  20.40  74.49  32.02 
Well_Mask R-CNN  24.84  15.27  62.42  42.53  52.03  69.96  59.68 
OWS Mask R-CNN  25.35  15.92  63.02  47.15  59.63  69.26  64.09  
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replacing the original ResNet + FPN backbone with D-LinkNet + FPN 
and adding a semantic segmentation branch by considering the rela-
tionship between oil well sites and connected road networks. In Table 4, 
the impacts of two modifications on the accuracy of extraction results 
are presented. Here, we denote Mask R-CNN which takes D-LinkNet and 
FPN as the backbone as D-Mask R-CNN. 

As shown in Table 4, object-level metrics’ values are significantly 
improved from Mask R-CNN to D-Mask R-CNN. AP and AP75 of D-Mask 
R-CNN are even higher than OWS Mask R-CNN. However, the 
improvement of the pixel-level metrics’ values (except recall) from Mask 
R-CNN to OWS Mask R-CNN comes from the involvement of a new se-
mantic segmentation branch. We explain it as 1) D-LinkNet brings high 
spatial resolution features to OWS Mask R-CNN and results in masks 
refinement; 2) the new semantic segmentation branch filters out most FP 
pixels and results in the improvement of pixel-level metrics.  

(2) The impact of road network connection information. 

Oil well sites are always connected to roads for transportation. Fig. 1, 
Fig. 11, and Fig. 12 show some examples. In our OWS Mask R-CNN, we 
replaced ResNet 101 with D-LinkNet which is proposed for road network 

segmentation. In addition, we considered both road network segmen-
tation and oil well sites mask extraction in the new semantic segmen-
tation branch to force the network to focus on their relationship and 
improve the accuracy of oil well site extraction. To test the impact of the 
relationship on oil well site extraction, we summarized related experi-
ments in this section. 

As shown in Table 5, from D-Mask R-CNN to OWS Mask R-CNN, all 
scores are increased significantly except Recall. The reason for the in-
crease is the new semantic segmentation branch, which considers both 
road networks and oil well sites. In addition, by considering road 
network information, OWS Mask R-CNN surpasses Well_Mask R-CNN in 
all metrics values except Recall. The results confirm the positive impact 
of involving road network information and considering the connection 
relationship between oil well sites and road networks in model training.  

(3) The impact of NDVI on the performance of different models. 

Normalized Difference Vegetation Index (NDVI) is commonly used in 
land disturbance detection (Goetz et al., 2006; Yang et al., 2018). In this 
work, we also tested the impact of involving NDVI in input on the final 
extraction results. Table 6 summarizes evaluation metrics’ values of 
extraction results from models with or without NDVI. Models that take 
the original 5-band as input are denoted as Mask R-CNN and D-Mask R- 
CNN, while models that take the original 5-band and NDVI as input are 
denoted with + NDVI below the correspondent model for simplification. 

As shown in Table 6, by adding NDVI features in input, almost all 
metrics’ values decreased from their baselines. The NDVI features 
enhanced the contrast features of oil well sites from their neighbor 
pixels. Therefore, adding NDVI features was supposed to increase the 
performance of the instance segmentation models, but opposite results 

Table 2 
The results of instance segmentation methods comparison.  

Models AP AP75 AP50 IoU Precision Recall F1 Trainable parameters 

Mask R-CNN  20.98  13.70  53.38  15.56  16.42  74.74  26.93 64,151,966 
Cascade Mask R-CNN  18.20  10.8  46.38  22.62  25.52  66.59  36.90 97,222,582 
Mask Scoring R-CNN  16.14  6.47  47.90  11.64  11.95  81.85  20.86 79,830,176 
OWS Mask R-CNN  25.35  15.92  63.02  47.15  59.63  69.26  64.09 54,851,198  

Table 3 
The results of semantic segmentation methods comparison.  

Models IoU Precision Recall F1 

DeepLab v3+ 10.21  72.39  10.62  18.52 
HRNet v2  21.27  83.51  22.20  35.08 
Mask R-CNN  15.56  16.42  74.74  26.93 
OWS Mask R-CNN  47.15  59.63  69.26  64.09  

Table 4 
Evaluation metrics (%) for the models with different modifications.  

Models AP AP75 AP50 Pixel Accuracy IoU Precision Recall F1 

Mask R-CNN  20.98  13.70  53.38  97.34  15.56  16.42  74.74  26.93 
D-Mask R-CNN  25.19  15.82  60.63  97.83  19.02  20.12  77.78  31.96 
OWS Mask R-CNN  25.35  15.92  63.02  99.49  47.15  59.63  69.26  64.09  

Table 5 
Evaluation metrics (%) for the impact of road network connection information.  

Models AP AP75 AP50 Pixel Accuracy IoU Precision Recall F1 

Mask R-CNN  20.98  13.70  53.38  97.34  15.56  16.42  74.74  26.93 
D-Mask R-CNN  25.19  15.82  60.63  97.83  19.02  20.12  77.78  31.96 
Road_Mask R-CNN  23.00  15.17  56.60  97.93  19.06  20.40  74.49  32.02 
Well_Mask R-CNN  24.84  15.27  62.42  99.38  42.53  52.03  69.96  59.68 
OWS Mask R-CNN  25.35  15.92  63.02  99.49  47.15  59.63  69.26  64.09  

Table 6 
Evaluation metrics (%) for the models with/without NDVI.  

Tasks AP AP75 AP50 Pixel Accuracy IoU Precision Recall F1 

Mask R-CNN  20.98  13.70  53.38  97.34  15.56  16.42  74.74  26.93 
+NDVI  19.65  11.82  51.28  94.83  9.15  9.37  79.41  16.77 
D-Mask R-CNN  25.19  15.82  60.63  97.83  19.02  20.12  77.78  31.96 
+NDVI  22.56  14.62  55.36  97.62  17.63  18.57  77.69  29.98  
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were generated. We would like to study this phenomenon further. 

6. Conclusion 

Automated extraction of well sites from satellite imagery is impor-
tant for providing efficiently the information about footprints of mining 
development, which is essential for research on the cumulative impacts 
due to mining activities. In this paper, we presented a new method, 
named OWS Mask R-CNN, for automated extraction of oil well sites from 
multi-modality satellite images. In the new algorithm, we replaced the 
backbone from ResNet101 + FPN to D-LinkNet + FPN to preserve high 
spatial resolution features. In addition, a new semantic segmentation 
branch was added to Mask R-CNN to help the network focus on the 
relationship between road networks and oil well sites. The proposed 
OWS Mask R-CNN was shown to be successful in this work given its high 
performance in oil well site extraction from RapidEye 2/3 and 
WorldView-3 images. The involvement of super-resolution provided a 

solution to the problem brought by different spatial resolutions among 
different sensors, which also relieved the lack of training samples in oil 
well site extraction by ensuring the use of all available satellite images. 
Size-filtering was also confirmed as a useful step to improve the accuracy 
of extraction results in certain circumstances. According to the pixel 
accuracy of extraction results from the OWP model, there was probably 
no room for accuracy improvement in terms of pixel-level metrics, 
although our proposal can be transplanted to Cascade R-CNN, HTC, and 
even the latest method, QueryInst (Fang et al., 2021). Future works 
could consider mask refinement by using sophisticated designed archi-
tectures, advanced optimization methods, and more context informa-
tion, such as road networks. We would focus on these directions in our 
future studies. 
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Appendix A 

AP indicates averaged AP value when IoU equals 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90 and 0.95. AP75 and AP50 represent the AP value 
with IoU equaling 0.75 and 0.50. We provide a fictitious example below to calculate AP75. In practice, the number of predicted masks is too large to 
present here as an example. 

With the IoU threshold of 0.75, we detected 10 masks for 6 objects. We can first sort the masks along with the predicted scores from the highest 
score to the lowest score. With different classification score thresholds, we can recalculate the precision and recall from object level, as shown in 
Table 7. In calculation, the predicted masks overlapping the ground truth over 75% (IoU larger than 0.75), as well as possessing classification scores 
larger than the threshold, are recognized as “Oil Well Sites (OWS)” otherwise “Other”. According to Table 7, we can plot the precision-recall curve, as 
shown in Fig. 13. 

AP75 is calculated as the area under to the precision-recall curve. In our experiment, we adopted the equations used by Pascal Visual Object Classes 
(VOC) 2010 (Everingham et al., 2012), which can be calculated as follow: 

AP =
∑

1≤i≤n
(ri − ri− 1)*pi  

where ri and pi are all recall and precision value under a certain classification score. r1, rn is the smallest and the largest recall value. If two precision 

Table 7 
Precision and recall along with different prediction scores.  

Scores rank Ground truth Precision Recall 

1 OWS  1.00  0.17 
2 Other  0.50  0.17 
3 OWS  0.67  0.33 
4 OWS  0.75  0.50 
5 Other  0.60  0.50 
6 Other  0.50  0.50 
7 OWS  0.57  0.67 
8 OWS  0.63  0.83 
9 OWS  0.67  1.00 
10 Other  0.60  1.00  

Fig. 13. The precision-recall curve of the example.  
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values match one recall value, the larger precision will be preserved for the curve. In the example, AP75 = (1–0.83) *0.67+(0.83–0.67) *0.63+
(0.67–0.50) *0.57+(0.5–0.333) *0.75+(0.33–0.17) *0.67 = 0.55. AP with other IoU thresholds can be calculated in the same way. 
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