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A B S T R A C T   

Automated extraction of roads from remotely sensed data come forth various usages ranging from digital twins 
for smart cities, intelligent transportation, urban planning, autonomous driving, to emergency management. 
Many studies have focused on promoting the progress of methods for automated road extraction from aerial and 
satellite optical images, synthetic aperture radar (SAR) images, and LiDAR point clouds. In the past 10 years, no a 
more comprehensive survey on this topic could be found in literature. This paper attempts to provide a 
comprehensive survey on road extraction methods that use 2D earth observing images and 3D LiDAR point 
clouds. In this review, we first present a tree-structure that separate the literature into 2D and 3D. Then, further 
methodologies level classification is demonstrated both in 2D and 3D. In 2D and 3D, we introduce and analyze 
the literature published in the last ten years. Except for the methodologies, we also review the aspects of data 
commonly used. Finally, this paper explores the existing challenges and future trends.   

1. Introduction 

Automated road information acquisition from remotely sensed data 
is always an interesting research area due to its promising values in 
various applications, e.g., autonomous driving (Wei et al., 2020; Yang 
et al., 2020), road network mapping making (Senthilnath et al., 2020), 
road network planning (Wang et al., 2021c; Zhang et al., 2020), traffic 
control and management (Zhou et al., 2020), map navigation and smart 
city construction (Chen et al., 2021b; Tan et al., 2020), etc. Here, we 
considered as remote sensing data the two most popular kinds of source 
data, i.e., 2D earth observing images and 3D LiDAR point clouds. 

Many researchers have focused their study on road extraction in 
remote sensing data and achieved plenty of satisfactory effects (Lian 
et al., 2020; Tao et al., 2019; Zhang et al., 2019c). When using Google 
Scholar and Web of Science as search engines, more than 450 journal 
papers were found out. After our review and a preliminary analysis of 
the titles, abstracts and methods of the found papers, about 240 study 
papers covering road extraction from remote sensing data since 2010 
were considered in this paper. Since many research results have been 

presented, a comprehensive review of the published works is necessary 
to give a research overview, analyze the challenges, and point out the 
future trends. 

We also search reviews about road extraction from remote sensing 
data, and six papers have been found since 2020. Although the six pa
pers have focused on the road extraction review, most of them only pay 
attention to 2D images. 2D earth observations-based and 3D point 
clouds-based road information acquisition has great meanings nowa
days. 2D remote sensing images are perceptual intuition in vision and 
lack of depth information, while in 3D point clouds data, depth infor
mation is available. Therefore, road information learning from 3D point 
clouds is also a popular hot research topic. However, very few reviews 
both cover the comprehensive works about road extraction in 2D earth 
observed images and 3D point clouds. Besides, a comprehensive road 
extraction review covering both 2D remote sensing images and 3D point 
clouds can give readers a better understanding of the challenges and 
future study trends. For the above purpose, we write this review. 

The major contributions of this review paper lie on: 
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• covering the road extraction reviews from a wider perspective in 
terms of both 2D remote sensing images and 3D point clouds;  

• providing a comprehensive review of the 2D and 3D remote sensing 
datasets commonly used for research about road information 
acquisition;  

• presenting a detail analysis of challenges and future trends of road 
extraction from remote sensing data. 

The rest of this paper is organized as follows. Section 2 gives a short 
overview of this review. In section 3, the detail review papers are 
illustrated from three aspects: road extraction from 2D, 3D and 3D&2D. 
We also give a brief introduction about commonly used and publicly 
available 2D and 3D data sets for road extraction in Section 4. Section 5 
reviews the performances of methods among data sets in Section 4. The 
observed trends and opportunities are analyzed in Section 6. Finally, we 
come to a conclusion in Section 7. 

2. Short overview 

Fig. 1 presents the tree structure of research fields in road extraction 
from both 2D earth observed images and 3D point clouds. This review 
first separates the road extraction from 2D earth observed images and 
3D point clouds, respectively. Further, the road extraction from 2D earth 
observed images is classified into three image types: SAR images based, 
optical images based, and fusion of SAR and optical images based. Be
sides, the road targets in 2D earth observed images are further classified 
into road areas and road lines (including centerlines and boundary 
lines). The road extraction from 3D point clouds in this review includes 
three types of methods: MLS-based, ALS-based, and TLS-based. In all 
three types, most methods fall in the category of road geometric shape- 
based and data characteristics-based. 

To investigate the paper publication trend of research about road 
information acquisition from 2D earth observed images and 3D point 
clouds, we also figure out the publication numbers of each year in the 
last ten years. Figs. 2 and 3 show the number of papers on road 
extraction in the last ten years for 2D and 3D data, respectively. From 
those two figures, we can see that the research about road information 
acquisition from remote sensing data is becoming hotter. The reason 
may be the rapid development of urbanization, resulting to paying 

attention to the city road network planning, proper traffic management, 
emergency rescue, etc. We also analyze the word cloud of paper titles 
reviewed by this paper, as shown in Fig. 4. From Fig. 4, we see that some 
words appear with high frequency, such as “high-resolution”, “neural 
network”, “VHR”, “Deep Learning”, etc. These high-frequency words 
show the research hot points in the current road extraction from 
remotely sensed data, helping the researchers to better position and 
focus on the current suitable research areas. 

3. Method 

3.1. Road extraction by 2D remotely sensed data 

Road extraction from 2D remotely sensed data usually use two kinds 
of image sources: (1) optical ones, and (2) SAR images. They possess 
rather different characteristics. To make the outline of our review 
clearer for readers, we separated the road extraction by 2D remotely 
sensed data into two parts, namely optical remote sensing image-based 
and SAR image-based. 

3.1.1. Road extraction from optical remote sensing images 
Using optical earth observed images, three road elements are the 

major extraction targets, namely road areas, road centerlines, and road 
boundaries. Further, in the extraction methodologies for all three road 
elements, three kinds of methods can be observed, (i) morphological 
feature-based, (ii) handcrafted feature-based, and (iii) automatic feature 
extraction-based, i.e. deep learning-based. Thus, we will introduce the 
related work about road extraction from 2D remotely sensed data ac
cording to the extraction elements. Then, in the introduction to each 
road extraction element, we will illustrate the related works according 
to the three methodological classifications. It should be noted that we 
only introduce the most related works published in the last ten years. 

(1) Road Area Extraction. 
We first present a chronological overview of the most relevant 

methods, shown in Fig. 5. Then, we review approximately according to 
Fig. 5. 

Road area extraction methods extract road pixels from the whole 
image and classify the pixels as “roads” or “non-roads” (Bastani et al., 
2018; Chen et al., 2020). Usually, road areas are covered by other 

Fig. 1. Tree structure of the study areas in road extraction from 2D and 3D remote sensing data.  
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ground object shelters, e.g. cars, trucks, buses, motorcycles, etc. Among 
our review, those road ground shelters are treated as road areas in the 
labels. Although road area object shelters may make the road areas 
complex, they also can provide important context information, 
benefiting for the road area recognition under complex situations. 

Since road areas usually present related constant shape and 
appearance features, morphological features have wide usages 
(Alshehhi and Marpu, 2017). Common morphological features include 
features of shapes, widths, etc. To obtain the morphological features, the 
operations of binarization, expansion, erosion, opening and closing are 
usually applied. 

When using morphological features, a preferred shape-biases may be 
introduced. To solve this issue, Valero et al. (2010) proposed an 
advanced directional morphological operators, which introduced the 
Path Openings and Path Closings. Chaudhuri et al. (2012) proposed 
customized operators to exploit the road directional and morphological 
attributes. A low- and high-level processing was proposed for road 

extraction in (Bae et al., 2015), which used widths, contrast properties, 
orientations, lengths, and a graph cut-based classifier. A geometric 
active deformable model based on width and color was proposed in 
(Leninisha and Vani, 2015). Unlike normal morphological filters directly 
computed on pixels, the morphological path filters are applied to regions 
in (Courtrai and Lefèvre, 2016). Grinias et al. (2016) proposed an un
supervised method using shape features that were combined with the 
Markov random field model and the Random Forest method to cluster 
road likelihoods. Zang et al. (2017) proposed a specially designed pixel 
value-based enhancement approach. 

Morphological feature-based methods can effectively obtain the road 
shape features, however, these methods usually suffer from a lack of 
robustness to occlusions, light and contrast variations. The handcrafted 
features are texture features that satisfy special constraints. The hand
crafted features usually rely on manually designed operators. After 
features are extracted, classifiers are followed for final classifications. 
The classical classifiers include decision tree, support vector machine 

Fig. 2. Publication paper numbers in the last ten years about road information learning from 2D earth observed images. Line diagram reveals increasing number of 
publications of road extraction (from 2D data) for almost every year in past 10 years. 

Fig. 3. Number of publications in past 10 years about road extraction from 3D point clouds.  
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(SVM), Hough Forest, Tensor Voting, etc. Handcrafted features have 
achieved much success in this survey section (Krylov and Nelson, 2014; 
Poullis and You, 2010; Wegner et al., 2015). 

A ridge- or ribbon-like linear feature highlights the potential road 
areas in a remote sensing image. Shao et al. (2011) extracted ridge- or 
ribbon-like linear features, then classified a pixel as road or not, based 
on its grey value and the position relationships with linear features. 
Movaghati et al. (2010) treated the road network extraction as a 
tracking task using handcrafted features. Das et al. (2011) proposed a 
multistage framework, which used four Probabilities SVM combined 
with Dominant Singular Measure to detect potential roads. Different 
from pixel-based processing, Wegner et al. (2013) extracted road areas 
based on superpixels. The color and texture features combined with a 
17-dimensional Gaussian filter band were used for feature representa
tion of each superpixel. Different feature extraction methods were 
combined for a more robust feature representation of road in (Poullis, 
2014). The tensor coding and Gabor Jets were used to extract various 
types of features, including surfaces, curves, and joints. The object-based 
strategy with five steps was proposed in (Miao et al., 2015). In (Hormese 
and Saravanan, 2016), the road extraction framework included image 
smoothing, feature extraction, continuity judgment, and vector repre
sentation of roads. Li et al. (2016b) proposed a method based on a Binary 
Partition Tree, combining two geometric features, two orientation 
histogram-based structural features, and morphological profiles using a 
series of path openings. Maboudi et al. (2016) used a context-aware 
feature integration strategy to extract road features and tensor voting 
to classify the pixels into the road and not road areas. The contextual 
feature integration strategy extracted structure features, spectral fea
tures, and textual features. Sghaier and Lepage (2016) proposed a 

framework through texture analysis and Beamlet Transform. The di
rection information was embedded into ant colony optimization in (Yin 
et al., 2016). Two kinds of features were extracted, namely FNEA (fractal 
net evolution approach) for geometric feature extraction and EDISON 
for edge feature extraction. Zhang et al. (2016) proposed a framework 
by combining morphological operations, manual edge feature extrac
tion, geometric feature extraction, and tensor voting. Bakhtiari et al. 
proposed a method based on edge attributes and SVM in (Bakhtiari et al., 
2017). To improve performance and reduce the false alarms of road 
extraction from images under disaster situations, a method based on the 
Lowe’s scale-invariant features (SIFT) and spectral angle algorithm were 
proposed in (Coulibaly et al., 2017). The sparse representation was used 
in (Lv et al., 2017), which joint multiple sparse features, including 
sparse representation features, color features, local entropy features, 
and HSC features. Histogram of oriented gradient (HOG) feature was 
combined with SVM for road extraction from remote sensing images in 
(Zhang et al., 2017). Zhou et al. used the stroke width transformation 
(SWT) feature in (Zhou et al., 2017). After the extraction of SWT fea
tures, they were used in a clustering algorithm and connected compo
nent analysis. Ziems et al. used multiple road extraction models for road 
extraction in (Ziems et al., 2017). The input images were separated into 
individual channels and gray value channel, based on which multiple 
road extraction modules were computed. The multiple modules included 
line detection, color classification, low vegetation detection, adjacency 
analysis, edge detection and building detection. Alshehhi et al. proposed 
a hierarchical graph-based approach in (Alshehhi and Marpu, 2017). 
The Gabor and morphological filters were combined for feature 
extraction. A two-stage approach was proposed to increase the ability to 
find weak road edges and avoid noise in (Chen et al., 2018b). Maboudi 

Fig. 4. Word cloud of paper titles reviewed by this paper.  

Z. Chen et al.                                                                                                                                                                                                                                    



International Journal of Applied Earth Observation and Geoinformation 112 (2022) 102833

5

et al. proposed a road extraction method that incorporates spatial, 
spectral and textural object features, feeding to the fuzzy logic system 
for handling the uncertainties (Maboudi et al., 2018). To enhance the 
feature representation, a multi-scale line segmentation orientation his
togram (MLSOH) feature, sector feature and multiple angle Beamlet 
feature were used for feature representation in (Dai et al., 2019). The 
entropy and spectral features and information from the digital surface 
model (DSM) were combined as feature representation in (Pan et al., 
2019). 

Handcrafted feature-based methods can usually perform more 
robustly than methods based on morphological features. However, 
handcrafted feature-based methods still suffer from the challenges of 
occlusions, weak extendibility for the different data sources, and the 
difficulty in best parameter selections. Recently, many computer vision- 
related jobs has achieved great breakthroughs with the development of 
deep learning, which has also obtained much success in the survey topic 
of this review (Kestur et al., 2018; Zhang et al., 2018c). 

The earliest neural network-based road extraction method in the last 
ten years in our review is the work proposed by Yuan et al. (2011), 
which designed a network named LEGION to stimulate local and sup
press global. The deep learning-based methods have gap years between 
2011 and 2017, during which few deep learning-based road extraction 
work was presented. Then, they have had an outbreak period since 
2017. 

Most of the deep learning-based methods can be separated into 
convolutional neural network (CNN) based (Chen et al., 2020; Liu et al., 
2018), fully convolutional neural network (FCN) (Wang et al., 2018; 
Zhang et al., 2019c), U-Net based (Ren et al., 2020; Wang et al., 2021c) 
and generative adversarial network (GAN) based (Shamsolmoali et al., 
2021;Zhang et al., 2019b). 

For CNN-based methods, commonly, the pixel-by-pixel processing 
strategy is used. The segmentation results usually present high accuracy, 
while the processing speed of CNN methods is usually slower compared 
to FCN and U-Net based methods. Alshehhi et al. (2017) proposed a CNN 
based model to simultaneously extract road areas and building 

footprints. In (Alshehhi et al., 2017), low-level features of roads and 
buildings were combined with CNN features to further improve the 
performance. Bastani et al. (2018) proposed a RoadTracer which con
tains two CNN models: one was utilized to detect which pixel belonged 
to a road, and another was used to make the decision on the construction 
of the road network map. A multi-task CNN called RoadNet was pro
posed in (Liu et al., 2018), which learns to simultaneously output road 
surfaces, centerlines and edges. Chen et al. combined unsupervised 
model named LDMM and CNN models in (Chen et al., 2020). Cira et al. 
classified secondary roads in (Cira et al., 2020), which integrates three 
CNN architectures (VGG, ResNet and Inception-ResNet). Gui et al. used 
CNN as feature extractor first, then a superpixel based graph CNN was 
applied for road extraction (Cui et al., 2021). Sun et al used multi- 
resolution transformer CNN to enlarge the reception field of the 
network, showing good results in the experiments (Sun et al., 2022). To 
learn about the multi-scale and global context information, Chen et al 
embedded a global context attention module into DenseNet-121 for road 
classification in (Chen et al., 2022). 

FCN-based road extraction models use convolution layers instead of 
the final fully connected layers in the CNN models. Besides, FCN models 
usually use addition operation for feature fusion among different layers. 
To ensure the integrity and continuity of the extracted roads, Zhang 
et al. (2019c) proposed a FCN model which can extract multiple spectral 
and terrain features. To solve the imbalance problem of road and 
background areas, Zhang et al. (2020) proposed a FCN model that 
weights the loss function to give more importance to the road areas, 
which is the minority class. To reduce the cost of data labeling work, Pan 
et al. (2021) trained a FCN model utilizing OpenStreetMap. To both 
extract road pixels and connect the road breakages, Chen et al. proposed 
a network named RVMNet to capture the vectorization mapping in 
(Chen et al., 2021a). Xu et al. designed an Encoding-Decoding like FCN 
architecture for mountainous areas in (Xu et al., 2021). 

Unlike FCN that uses addition operation for feature fusion among 
layers, U-Net (particular type of FCN) models usually use concatenation 
operation for feature fusion. U-Net usually contains two parts: encoding 

Fig. 5. Chronological overview of our reviewed papers about road area extraction from optical remote sensing images.  
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and decoding, organized as a “U” shape. To use the great feature 
extraction power of a densely connected convolutional network (Den
seNet), the DenseNet was embedded into a U-Net architecture for road 
extraction in (Xu et al., 2018). To alleviate the training loss degradation 
problem and enhance the context information learning ability, Gao et al. 
(2019) proposed a refined deep residual CNN model. Lu et al. (2019) 
treated road area extraction and road center line extraction as a multi- 
task problem, and designed a U-Net embedding multi-scale informa
tion. Ding and Bruzzone (2020) designed a DiResNet which the model 
embedded context-aware, direction-aware, and structure-aware mod
ules into the U-Net architecture. The direction-aware strategy can help 
the model learn better linear road features. Ren et al. (2020) designed a 
DA-CapsUNet to learn the relationships among object parts. To learn the 
structure and junction information, Tan et al. (2020) proposed a Vec
Road model. Wei et al. designed a ScRoadExtractor model in (Wei and Ji, 
2020), which used an algorithm to propagate labels from the road center 
scribble to nearby unlabeled pixels to reduce the labeling effort. To in
crease the learning ability about boundary and topological structure, 
Zhou et al. designed a BT-RoadNet in (Zhou et al., 2020), which is 
composed of two U-Net-like networks. Li et al. designed a model which 
used a direction-aware attention block to obtain the road topology in
formation in (Li et al., 2020). Kearney et al. used a SegNet architecture 
to extract rural road network in (Kearney et al., 2020). Wang et al. 
(2021b) designed a U-Net that can propagate information slice-by-slice 
within feature maps, increasing the learning ability about topology and 
linear information. Wang et al. proposed a NL-LinkNet to understand the 
relationships between features in global in (Wang et al., 2021c). To 
match the encoding and decoding challenge, a reconstruction-bias idea 
was proposed in (Chen et al., 2021b). To release the labeling work, 
Zhang et al. used GPS trajectories of floating cars to label road areas, 
generating training data to train a D-LinkNet for urban road extraction 
in (Zhang et al., 2021). Li et al. (2021d) used crowd sourced data to train 
U-Net like models to release the hard labelling burden. To effectively use 
the power of different convolutional layers, Tan et al. (2021) proposed a 
scale-sensitive U-Net. Lu et al. (2021a) designed a GAMS-Net that con
tains multi-scale residual learning to capture global information. 
Ouyang and Li proposed a graph CNN in (Ouyang and Li, 2021), which 
combined the deep semantic segmentation network and graph CNN. 
Zhang et al. designed a U-Net like network which used a dual resolution 
transformer module and a feature fusion part to obtain the global 
context information (Zhang et al., 2022). 

To fuse the advantages of models with different architectures, Li 
et al. (2019b) designed a hybrid network containing FCN, U-Net and 
VGG. Li et al. (2019a) proposed a Y-Net which combined a U-Net and a 
FCN. Except for the use of manual labels for training, Sun et al. (2019b) 
proposed a method which used crowd sourced GPS data as road area 
label. To reinforce the ability of dealing with occlusions by trees, 
shadows, etc., Zhou et al. proposed an Encoder-Decoder framework 

which capture features through a depth-wise graph CNN (Zhou et al., 
2022). They tested on the Massachusetts Road data set and their own 
mountain road data set obtained by ZY-3 satellite, showing good results. 

Generative Adversarial Network (GAN) contains two parts: one for 
generating fake samples while the other for classifying the samples as 
fake or true. Zhang et al. (2019b) raised a GAN-based network, which 
can identify challenging road areas caused by occlusions and shadows. 
Shamsolmoali et al. (2021) designed a GAN model that contains a 
feature pyramid network (FPN) module. Jayaseeli et al. (2018) incor
porated the U-Net and GAN. A similar idea was used in (Senthilnath 
et al., 2020), which combined FCN and GAN. In (Senthilnath et al., 
2020), they used a FCN, a pix2pix, and a CycleGAN to conduct the 
extraction, respectively. Then, the extracted results were merged 
through a voting classifier. Hu et al. proposed a weakly supervised 
process GAN (WSGAN) to extract road network in (Hu et al., 2021). 

(2) Road Centerline Extraction. 
Fig. 6 shows the chronological overview of the most relevant 

methods of road centerline extraction with optical remote sensing im
ages. We will introduce the review works mainly according to this 
chronological overview. 

Road centerline extraction usually uses thinning algorithms to obtain 
the final centerlines after potential road areas extraction. The road 
centerline extraction methods also can be separated into traditional 
machine learning-based methods and deep learning-based methods. 

3.2. Traditional Machine learning based methods 

Miao et al. (2014b) proposed a geodesic method, which generated 
probability map through propagation from a seed point. After extracting 
potential road areas, the road centerlines was extracted by KDE and 
Mean Shift. Miao et al. (2014a) used tensor voting under a classified 
image to obtain centerlines. In Miao’s another work (Miao et al., 2013), 
shape, Laplace, and spectral features were used as inputs of an adaptive 
regression function. Shi et al. (2014a) raised an integrated method, in 
which the general adaptive neighborhood approach was introduced 
first. Then, the local Geary’s C and shape features were used for 
improving the road segmentation results. Finally, the centerlines were 
extracted through a local linear kernel based regression. The local 
Geary’s C was also used in (Shi et al., 2014b), which using spectral- 
spatial classification first. Then, performance was further improved by 
using shape features. 

To reduce the impact of limited labeled samples, Cheng et al. (2016a) 
proposed a semi-supervised method, which exploits the intrinsic struc
tures between the labeled and unlabeled samples. Cheng et al. (2016b) 
extract multi-scale representations first, then they were as the input of 
graph cuts. Liu et al. proposed an approach in (Liu et al., 2016) con
taining three steps. First, they used shear transform with directional 
segmentation to obtain the initial road areas. Then, the Mahalanobis 

Fig. 6. Chronological overview of our reviewed papers about road centerline extraction from optical remote sensing images.  
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distance, thresholding, shape feature filtering, and hole filling were 
applied. Finally, an automatic sub-voxel skeletonization method was 
proposed. Zang et al. (2016) proposed an aperiodic directional structure 
measurement, through which a mask can construct to denote potential 
road areas. Jing et al. (2018) designed an approach applied under island 
situation using joined features in a multi-scale perspective. In their 
method, the joined features contain the spectral, geometric and texture 
information. Zhou et al. (2019) proposed a fast marching method 
(FMM), which obtains the distance fields first. After that, a branching- 
tracking technique and a tensor field were. Dai et al. (2020b) used 
OpenStreeMap (OSM) data to create road-poistive samples, with which 
to learn the attributes of roads’ orientation, texture feature statistics and 
homogeneity. Guo and Wang (2020) designed a self-supervised learning 
strategy, which combined spectral and shape features as inputs to a one- 
class classifier and a random forest classifier to obtain posterior proba
bilities. After that, the tensor voting was used. Dai et al. (2021) proposed 
a template matching method, in which the straight lines and the geo
metric characteristics of narrow and long roads are used as features for 
road center point recognition. 

3.3. Deep learning based methods 

Cheng et al. (2017) designed a cascade CNN model that can simul
taneously extract the road areas and road centerlines. In their model, 
two networks with a cascaded relationship were used to extract road 
areas and road centerlines, respectively. Liu et al. (2019) designed a 
processing flow which used a CNN model to extract the initial road 
areas, edge-preserving filters to improve the road area extraction, Gabor 
filters with multi-scale and multiple non-maximum suppression to ac
quire centerlines. Yang et al. (2019b) proposed a one-stage method 
based on the recurrent CNN with a U-Net architecture. Through the 
recurrent CNN module, the network increases the ability of getting rich 
spatial context information. Wei et al. (2020) proposed a FCN model, 
which used a tracing strategy starting from multiple seed points to 
obtain the topology of the road network. Lian and Huang (2020) pro
posed a DeepWindow model for road centerline extraction from the 
remote sensing images. The DeepWindow method also used a tracing 
strategy based on CNN without prior road segmentation. Shao et al. 
(2021) designed an MRENet with multi-task strategy which simulta
neously forecast the surfaces and centerlines. 

Except the road areas and centerlines, several road extraction 
methods from remote sensing images only detect the road boundaries. Li 

et al. (2010) generate road boundaries using a ridgelet transform. 
Recently, Liang et al. designed a model with the recurrent FCN in (Liang 
et al., 2019) to extract road boundaries, which combined LiDAR data 
and camera images as an input data source. 

3.3.1. Road extraction from SAR images 
Fig. 7 shows the chronological overview of the most relevant 

methods of road extraction from SAR images. We will survey works 
about road extraction from SAR images mainly according to the chro
nological outline. 

Under this review, we separated the road extraction from SAR im
ages into 3 groups: road area extraction based on traditional methods 
(Lu et al., 2014;Perciano et al., 2016;Xiao and Tong, 2019), road area 
extraction based on deep learning (Khesali et al., 2016) and road 
centerline extraction (Cheng et al., 2011;Cheng and Gao, 2016). 

(1) Road area extraction 
The road area extractions from SAR images based on traditional 

methods often use morphological features or handcrafted features to 
extract road features, which are combined with the classifiers to obtain 
the final road areas. Deng et al. (2010) raised a GVF snake model in early 
2010. To obtain multi-scale information, He et al. (2012) proposed a 
multi-scale geometric analysis approach about detector responses. The 
snake model and Particle filtering were used to extract road from SAR 
images in (Liu et al., 2013). The multi-scale linear features were also 
used in (He et al., 2014) for extracting roads from SAR images. In their 
work, quadratic kernel for non-linear candidates was utilized to select 
the segmentation directions. Superpixel segmentation was used as basic 
extraction elements in (Koch et al., 2015), whose feature extraction was 
conducted based on superpixels. Mu et al. proposed a method using 
Zernike moments in (Mu et al., 2016). In their work, the potential areas 
of the road were extracted through morphological operations and Otsu 
thresholding. Finally, Zernike moments were used for road area classi
fication within the previous potential areas. Jiang et al. (2017) proposed 
a robust framework from InSAR images. In their framework, a multi- 
temporal covariance matrix was proposed to estimate potential road 
areas, which used intensity and coherence as observations. Xu et al. 
(2017a) proposed a framework that main idea was using a Bayesian 
strategy. To effectively detect the line characteristics, a multi-scale 
approach was proposed. Zeng et al. (2019) proposed an algorithm that 
contains two steps. In the first step, a linear detector was used, in which 
a false edge removal algorithm was embedded using directional infor
mation. Finally, the road areas were extracted through region growing. 

Fig. 7. Chronological overview of our reviewed papers about road extraction from SAR images.  
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An effective road extraction framework was proposed in (Xiao et al., 
2019), which used the Uuda operation to augment the road area features 
and a SVM classifier to generate a non-road area mask. The potential 
road area segmentation, the preliminary generation and the refinement 
were contained in the framework of road extraction from SAR images in 
(He et al., 2021). In the potential road area segmentation part, the di
rection information with multi-scales was combined with intensity in
formation for threshold-based road segmentation. In the second part, the 
multi-scale curve fitting strategy was used to generate the road network. 

For road area extraction from SAR images based on deep learning, 
the road area representations were learned automatically through deep 
neural networks. Henry et al. (2018) designed a FCN based model, 
which also used non-local filtering for preprocessing and fully connected 
CRFs for post processing. Similarly, FCN was used in (Zhang et al., 
2019a), which combines a binary classifier for improving the final road 
extraction performance. Wang et al. (2020) proposed a DNN based 
model through pixel-wise classification. Benefiting from the small scales 
of parameters, the model obtained a satisfactory processing efficiency. 

(2) Road centerline extraction 
Centerline extraction from SAR images also attracts the attention of 

many researchers. Cheng et al. (2011) proposed a semi-automatic 
approach with circular template matching. Cheng et al. (2012) raised 
an approach that using iteratively detection and tracing strategy. In 
(Saati et al., 2015), different radiance information was used as the fea
tures for potential road area extraction through fuzzy inference. After 
that, the morphology skeletonization was applied to generate seed 
points which formed the final road centerlines after connection. In 
(Cheng and Gao, 2016), road junctions were extracted using a valley- 
finding algorithm. Then, the centerlines were generated by particle fil
ters with multiple seed points. Deep learning was also used in (Wei et al., 
2021) for road centerline extraction from SAR images. They designed a 
network with a multi-task learning strategy, simultaneously extracting 
the road areas and centerlines. 

Except for the road extraction only relying on SAR images, there are 
also several researches focusing on the fusion of optical and SAR images 
for road extraction. Poulain et al. (2010) proposed a road database 
updating approach through fusion the road extraction results based on 
optical and SAR images. In (He et al., 2013), the roads were extracted by 
fusing the structure information obtained in SAR images and the ste
reoscopic information obtained in optical images. Finally, a multi-scale 
geometric analysis was applied for road network grouping. Lin et al. 
used United U-Net (UUNet) to fuse Sentinel-1 and Sentinel-2 images to 
extract roads in (Lin et al., 2021). In their experiments, the UUNet ob
tained better results than CNN models trained with optical or SAR data 
alone. 

3.4. Road extraction by 3D remotely sensed data 

The 3D point clouds are the main 3D data source for road extraction. 
According to the difference of platform, 3D point clouds can be collected 
by mobile laser scanning (MLS), airborne laser scanning (ALS), and 
terrestrial laser scanning (TLS). The extraction approaches on 3D point 
clouds acquired from different platforms are considerably different. We 
further divide the approaches into three branches: road extraction by 
MLS, ALS, and TLS. 

3.4.1. Road extraction by MLS 
Fig. 8 shows the chronological overview of the most relevant 

methods of road extraction from MLS data. We will introduce the review 
work about road extraction from MLS data mainly according to the 
chronological outline. 

Mobile LiDAR technology is currently the focus in remote sensing 
and laser scanning. Mobile LiDAR enables a rapid collection of enor
mous volumes of highly dense and accurate geo-referenced 3D point 
clouds along roads. Naturally, MLS technology has gained popularity in 
road recognition. From the aspect of the main features used for road 

Fig. 8. Chronological overview of our reviewed papers about road extraction from MLS data.  
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extraction, we categorize the related approaches into two groups, (1) 
road geometric shape, and (2) data characteristics. 

(1) Road geometric shape-based extraction. 
One of the most common characteristics of road geometric shape is 

flatness. After ground points filtering, many methods directly extract the 
planar road surfaces from point clouds. Yang et al. (2017a) proposed a 
road facilities recognition method by combining multiple aggregation 
levels of features and contextual features. They first segmented the 
ground points, and further segmented them into several planes using 
RANSAC algorithm. Then, the road surface points were then recognized 
by two rules, which were drawn up by the trajectory data and normal 
vectors of road surface segments. To adapt to the complex road envi
ronment, such as rural roadways, which lack raised curbs and hard to 
identify the road boundary, Yadav et al. (2017) and Yadav and Singh 
(2017) proposed the more generalized road surface extraction methods. 
They first extracted the planar ground surfaces, and further extracted the 
road surface points by properties like topology, smoothness, point 
density and intensity. Zhang et al. (2018a) proposed a plane-based 
filtering method to recognize the road surface area. The filter consti
tutes a linear equation plane, and the parameters of the plane are esti
mated by the random sample-consensus method. Hu et al. (2020) 
extracted the road surface plane by using the RANSAC algorithm from 
ground points firstly. Then, according to the difference of density of road 
point set, they set the point density threshold to further extract road 
surface points. Pu et al. (2011) presented a framework for road in
ventory structure recognition. Firstly, the whole scenes of the roadside 
were classified into three categories with an initial rough classification. 
Then, a collection of geometric characteristics was used to further 
segment the rough classified point clouds into detailed classes, including 
road. Smadja et al. (2010) proposed a two-step road extraction method. 
The road side points were roughly estimated by using the RANSAC al
gorithm in the first place, then the road boundary and center points were 
extracted based on the road width and curvature. 

Except for the flatness, smoothness or roughness are also the inherent 
attributes of roads that have the potential of using as features to extract 
road surface. Zhang (2010) used a Gaussian differential filter to select 
the candidate road regions, and evaluated the smoothness by the vari
ance of the ground elevation. Then, a fixed threshold was used to detect 
the exacted road surface points. 

Road boundary indicates the region of the road directly. Thus, by the 
extraction or detection of road boundary points, the precise road area 
could be extracted. Yang et al. (2012) proposed a street-scene objects 
extraction method. They generated the geo-referenced feature images 
from mobile LiDAR data and extracted boundaries of street-scene objects 
based on these images. Then, the corresponding 3D boundary points 
were extracted by the 2D extracted boundaries. Kumar et al. (2013) 
generated the 2D raster surfaces, and extracted the road boundaries by 
the snake model. Qiu et al. (2016) extracted a rough plane by using the 
RANSAC algorithm, and further extracted and refined the road edge 
points based on road width and continuity. Kumar et al. (2017) com
bined the gradient vector flow (GVF) and balloon parametric active 
contour or snake models to extract road edges. Zai et al. (2018) gener
ated supervoxels by selecting smooth points as seeds and assigning 
points into facets centered on these seeds using several attributes, and 
further extracted the road boundaries using the α-shape algorithm and 
the graph cuts-based energy minimization algorithm. Gu et al. (2018a) 
preprocessed point clouds by multi-frames Iterative Closest Point (ICP) 
registration and VoxelGrid down-sampling, and extracted the road sur
face points by Linefit method and RANSAC algorithm. Sun et al. (2019a) 
presented a polar grid-based method to separate the ground points and 
non-ground points, and detected the road boundaries by the trajectory 
data and feature filters. Leela and Panda (2020) presented road 
boundary detection method by transforming the point clouds into 2D 
images and using conditional generative adversarial networks (CGAN). 
Similar to (Zai et al., 2018), Mi et al. (2021) generated supervoxels, and 
extracted road boundaries by clustering, fitting, tracking, and 

completion operation. Wang et al. (2021a) proposed a speed and accu
racy tradeoff road boundary detection method. The method consists of 
three main stages, feature points extraction (by a multi-feature based 
method), feature points classification (by a road-segmentation-line- 
based method), and filtering out false points and extracting boundary 
points (by an iterative Gaussian Process Regression). 

For urban roads, curbs are usually regarded as the boundary of roads. 
Therefore, the roads could be represented by curbs in the urban envi
ronment, and there are many studies focusing on this field, which could 
be classified as “curb-based road extraction methods”. El-Halawany 
et al. (2011) segmented the ground and non-ground points by calcu
lating eigenvalues and surface normal and detected the curb from the 
street floor and sidewalks using 3D and 2D techniques. Kang et al. 
(2012) proposed a decision-making method for road boundary detection 
by using multiple Kalman filters. Yang et al. (2013) partitioned the point 
clouds by using the GPS time and found the candidate road area by a 
moving window operator. Then, the curbs were detected by three rules, 
elevation jump, point density, and slope change. Hervieu and Soheilian 
proposed two roadside detection approaches by using the angle devia
tion to ground normal in (Hervieu and Soheilian, 2013b;Hervieu and 
Soheilian, 2013a). Hinton et al. (2015) introduced the least trimmed 
squares (LTS) instead of temporal filters and spline fitting to deal with 
occluding scenes, which achieved robust road curb detection results in 
different traffic situations. Guan et al., (2014) and Guan et al. (2015) 
separated the point clouds into a set of blocks by trajectory data, and 
extracted the road curb points by generating the pseudo scan line from 
each block profile. Based on (Guan et al., 2014; Guan et al., 2015), Ma 
et al. (2019) revised the fixed size of data blocks into the dynamically 
determined to achieve better extraction results. RodrguezCuenca (2015) 
used the point clouds and trajectory data as the input and detected the 
curb by the rasterization and segmentation processing. Yang et al. 
(2017b) proposed a road information extraction method by a 3D local 
feature descriptor, called the binary kernel descriptor (BKD). Huang 
et al. (2017) segmented the ground points, and detected the road curb by 
applying the global road trend and extraction-update mechanism. Xu 
et al. (2017b) extracted the candidate points of curbs based on the en
ergy function, and refined the candidate points by using the least cost 
path model. Rato and Santos (2021) adopted the similar method as Xu 
et al. (2017b) used, but achieved the better performance and processing 
speed by using a 4-layer LiDAR to increase the ground point density. 
Jung et al. (2020) extracted the curb candidates based on PCA and 
DBSCAN, and selected the optimal candidate using an optimization 
framework. Huang et al. (2021) classified the road points and curb 
points based on the segment point density. Kukolj et al. (2021) com
bined deep learning and spatial statistics method to detect road edges, 
which recognized the point cloud segments by the pre-trained RandLA- 
Net and generated the edge segments by voxelization and spatial sta
tistical analysis. Zhao et al. (2021) combined both spatial information 
and geometric information for complex scenes’ curb extraction. 

(2) Data characteristics-based extraction. 
Elevation data has been widely used for ground and non-ground 

points separation. For road extraction, elevation and the differential of 
elevation are the crucial features. Guo et al. (2015) proposed a road 
surface reconstruction method. They extracted the road surface by using 
two filtering procedures, and the filters were created by the elevation, 
road width, and slope of main roads. Boyko and Funkhouser (2011) 
produced a 3D representation of the map by projecting a 2D map onto 
3D point clouds. Then, they divided the road network into patches by 
using the map spline. The location of the curbs in each patch was 
detected by fitting a 2D active contour to an attractor function. Finally, 
they labeled the points lying within the active contour as road points. 

Since the point cloud data are collected by the vehicle carrying the 
MLS system driving along the road, the trajectory data and scan line 
could be obtained by the data acquisition process. Many studies 
extracted roads with the help of trajectory and scan lines. Kumar et al. 
(2010) created a set of road cross sections by the point clouds and 
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navigation data, the cross-sections were processed into 2D lines, and the 
road edges were extracted from these lines based on the slope, returned 
intensity, returned pulse width, and proximity to the vehicle. Wang et al. 
(2012) used the trajectory points as the seed of the searching algorithm 
to extract the road surface points and detected the boundary of the road 
by a statistical hypothesis testing method. In their following work, Wang 
et al. (2015) partitioned the points by trajectory data, and directly 
constructed a saliency map. Then, the road curbs and boundaries were 
detected based on the selected characteristics. Cabo et al. (2016) pro
posed a road asphalt edge delineation algorithm by using the line clouds 
concept. 

The intensity of wavelength is one of the unique characteristics of 
LiDAR data. Different objects show different reflection intensities. 
Therefore, the intensity information is popularly used. Teo and Yu 
(2015) rough recognized the road points by calculating the surface 
normal vector for each scan line and refined the road surface points by 
empirical radiometric normalization. Caltagirone et al. (2017) proposed 
a road detection method by applying FCN. They projected the MLS point 
clouds from top-view, and generated several feature images, like 
elevation and density feature images. Then, the FCN was designed for 
road detection. Lyu et al. (2018) proposed a real-time road segmentation 
method based on CNNs. They projected the point clouds from Cartesian 
coordinate into a spherical coordinate and converted the characteristics 
(like coordinates and intensity) into feature maps as the input of the 
neural network. Then, a neural network model composed of 11 con
volutional layers was used to segment the road surface. 

For road geometric shape-based methods, they also can be regarded 
as the road area extraction and road line extraction methods like we 
categorized the road extraction methods in section 3.1.1. The methods, 
which extract road mainly based on the flatness and smoothness, can 
directly identify the 3D road surface points. Compared with these 
methods, the other boundary and curb based methods indirectly 
recognize the road area by detecting or extracting the road edge or 
boundary, which not only reduce the computational consumption but 
also obtain the more precise road boundary. 

Since the performance of road geometric shape-based methods is 
heavily limited by the road quality, for example the potholes, cracks, 
and shelters on the road will noticeable effect the extraction results, data 
characteristics-based methods can alleviate the problem to some extent. 
Actually, there are many studies combine these two aspect features to 
extract the road surface points, especially for the complex scenes. 

3.4.2. Road extraction by ALS 
Fig. 9 shows the chronological overview of the most relevant 

methods of road extraction from ALS data. We will review the works on 
road extraction from ALS data based on their respected publications 

time. 
By virtue of the extraordinary capacity of a wide range of data 

collection, the airborne LiDAR technique has gained more popularity for 
road extraction in recent years. Zhao et al. (2011) converted the point 
clouds into intensity and depth images, and the EM algorithm was used 
to generate the road candidate image. Then, the road centerline was 
extracted from the segmented image, and the road intersections were 
detected by a Radius-Rotating method. Zhao and You (2012) searched 
the road candidates from the separated ground points by the template 
fitting, and determined the road widths and orientations by field voting. 
Li and Lim (2014) partitioned and reordered the road points firstly, and 
used a moving window classification technique to detect the road points. 
Hu et al. (2014) used an adaptive mean shift algorithm to detect the road 
center points based on the filtered ground points and the weighted 
Hough Transform to extract the arc primitives and grouped them into 
the road centerline extraction results. Matkan et al. (2014) applied the 
SVM to extract road, the intensity and range data were used to separate 
roads from other urban features. Narwade and Musande (2014) utilized 
Segmentation Based Filtering (SBF) and constrained Delaunay Trian
gular Irregular Network (CD-TIN) to extract road points. Li et al. (2015) 
constructed the point cloud topology using a grid index structure and 
filtered the ground points using a Modified White Top-Hat (MWTH) 
algorithm. Then, the road candidates were distinguished by local in
tensity distribution histogram, and the road points were detected by the 
global inference based on roughness and area. To address the drawbacks 
of the decision of road intensity threshold based on experience, Hui et al. 
(2016) extracted the road centerline by hierarchical fusion and opti
mization. Li et al. (2016c) utilized the elevation and surface roughness 
to separate roads, and extracted the primitive road centerlines by PCA. 
Upadhayay et al. (2018) converted the point clouds into intensity and 
depth image, and generated the classified binary image and DTM mask 
by the modified maximum likelihood classification algorithm and hi
erarchical morphology respectively. Then, the classified binary image 
and DTM mask were integrated to obtain the road candidate image. 
Truong-Hong et al. (2019) extracted road edges by filtering ground 
points, extracting and grouping points of road edges, and eliminating 
incorrect road edge segments. Tejenaki et al. (2019) generated the in
tensity, DSM, and DTM (digital terrain model) by using LiDAR data, and 
detected the road surface by Mean Shift segmentation. Previtali et al. 
(2020) extracted the road network by labelling road points, multi-level 
voting scheme, and regularization of extracted road segments. To 
address the issue of manual input of intensity threshold, Sánchez et al. 
(2020) modified the skewness balancing algorithm to choose the 
optimal intensity threshold and achieved promising road extraction re
sults on ten study sites. Yadav (2021) combined radiometric, geometric 
and statistical constraints for road points separation, and extracted road 

Fig. 9. Chronological overview of our reviewed papers about road extraction from ALS data.  
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by three steps, intensity-based filtering, quadrant-based region growing, 
and road candidate regions extraction. 

For the road of a specific region, like forest road, many researchers 
adopt airborne LiDAR data to handle road extraction issues for large- 
scale scenes. Azizi and Najafi (2014) employed the Inverse Distance 
Weighted (IDW) method to convert LiDAR data into DSM, DTM, and 
Digital Non-Terrain Model (DNTM). Then, the LiDAR intensity data and 
DNTM were classified by SVM, and the road edges were defined in the 
extracted layers. Ferraz et al. (2016) generated the DTM from LiDAR 
data, and the maps of slope, roughness and slope gradient were 
computed from the DTM. Then, a Random Forest classifier was utilized 
to generate the road mask (road and non-road pixels). An extensive 
graph was built to propose the largest number of conceivable road 
candidates based on this mask. Finally, the width and slope of the roads 
were computed, and the road clusters were extracted by Object-Based 
Image Analysis (OBIA). Li et al. (2016a) extracted four class features 
(distance, intensity, Full Width at Half Maximum (FWHM), and back 
scattering cross-section) by waveform denoising, waveform decompo
sition, and features extraction. Then, the region growing algorithm was 
applied to segment the extracted four feature images, and the road 
detected by merging four segmented images. Prendes et al. (2019) 
classified the converted slope map and intensity images by pixel-based 
(Maximum likelihood) and object-oriented (Mean Shift segmentation) 
classification, respectively. Then, the road centerlines were obtained by 
a majority filter and other data post-processing. Buján et al. (2021) 
proposed a hierarchical-hybrid classification tool (HyClass) for forest 
road detection. 

3.4.3. Road extraction from TLS 
Compared with the flourishing MLS and ALS-based methods, only a 

few road extraction methods are based on terrestrial LiDAR data. Husain 
and Vaishya (2018) proposed a pipeline for the detection of road sur
face, center line, and boundary lines. In the first phase of the pipeline, 
they generated the intensity images from LiDAR data, detected the 
candidate road surface pixels, reconstructed the LiDAR data points by 
the detected pixels, and performed connected component analysis using 
Cloud Compare software. In the next phase, the designed vertical grids 
detected the road surface points. Zheng et al. (2019) projected the 
LiDAR data onto the XOY plane and rasterized the points into grids, and 
constructed the decision tree based on five features, including Variance 
of Point Density (VPD), Variance of Average of Point Distance (VAPD), 
Variance of Average of Point Height (VAPH), Average of Point Fre
quency (APF), and Variance of Average of Point Intensity (VAPI). Then, 
the decision tree was trained to classify the grids, and a minimum 
bounding rectangle algorithm was applied to obtain the road bound
aries. Sha et al. (2022) utilized the k nearest-neighbor search method to 
obtain the neighborhood information of seed points. Then, the point 
cloud segments were generated by the iterative weighted least square 

algorithm and spatial structure judgment. Finally, the supervoxels were 
updated by the normal vectors. 

3.5. Road extraction from 3D&2D remotely sensed data 

To compensate for the limitations and insufficiencies of taking the 
single data source input for road extraction, many researchers try to fuse 
the different source data to achieve better road extraction performance. 
In terms of data collection sensors, these 3D&2D data fusion-based road 
extraction methods could mainly be divided into two branches: the 
fusion of MLS and camera image and the fusion of ALS and aerial image. 

Fig. 10 shows the chronological overview of the most relevant 
methods of road extraction from MLS&CEMARE and ALS&IMAGE. We 
will introduce the review work about road extraction from 3D&2D 
remotely sensed data, mainly according to the chronological overview 
(Figs. 11–16). 

3.5.1. Road extraction from the fusion of MLS and camera image 
Xiao et al. (2015) detected road based on CRF. Firstly, they aligned 

the LiDAR data and the image with cross-calibration, which fuses the 
data collected from different sensors. Then, a boosted decision tree- 
based classifier was trained for image and point cloud, respectively, 
and the classifier’s output was treated as the unary potential of the 
corresponding pixel nodes of the random field. Finally, the fused con
ditional random field was solved by graph cut. Xiao et al. (2017) 
extended their previous work (Xiao et al., 2015), they proposed a hybrid 
CRF model to fuse the data collected from camera and LiDAR. Han et al. 
(2017) also used CRF to detect road. They also aligned the LiDAR data 
and the image by cross-calibration as Xiao et al. (2015) did, but replaced 
the decision tree-based classifier with an Adaboost classifier. Gu et al. 
(2017) utilized histograms of normalized inverse depths and line scan
ning to detect road. Gu et al. (2018b) proposed a fully convolutional 
neural network (FCNN) to detect the road region on the image and a CRF 
to fuse two road detection results based on their previous work (Gu 
et al., 2017). The image-based road detection was implemented by 
FCNN, and the LiDAR-based road detection was implemented by the 
method proposed in (Gu et al., 2017). Finally, a CRF was used to inte
grate these two road detection results. To compare the effect of the same 
road detection method with different data sources, Wulff et al. (2018) 
proposed the road detection approaches using the fusion of LiDAR and 
camera data as the input. Firstly, the 15-dimensional occupancy grid 
maps were calculated by the input LiDAR scan points. Then, the camera 
images were projected into the Bird-Eye View (BEV) representation and 
overlaid onto the LiDAR occupancy grid. Thus, the LiDAR and camera 
data was converted into an 18 channel occupancy grid in BEV. Finally, a 
modified U-Net FCN was applied to detect the road areas. Li et al. 
(2021a) also used the BEV of LiDAR data to segment road, but instead of 
a deep learning-based method. Zhang et al. (2018b) transformed the 

Fig. 10. Chronological overview of our reviewed papers about road extraction from MLS&CEMARE.  
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point cloud from the spherical coordinate system to the Cartesian co
ordinate system to obtain a LiDAR imagery, and the flat region was 
extracted from the LiDAR imagery as the candidate road region. The 
similar scanning strategy with (Gu et al., 2017) was applied to extract 
the road region. Finally, they adopted two strategies to fuse the LiDAR- 
imagering scanning points with an image-guided diffusion. Lachachi 
et al. (2018) used the stereo camera to guide the road surface extraction 
from point clouds. Then, the road and sidewalk were separated based on 
the elevation and illumination invariant colors. Rochan and Sujatha 
(2018) dynamically extracted the point cloud of free region based on the 
height difference filter. Then, the filtered point cloud were mapped to 
the camera image, and the road region was extracted by using Gaussian 
Mixture Model. Yang et al. (2019a) designed a deep segmentation 
network to detect road region. The proposed deep segmentation CNN 
could process both image and point cloud and extract the color features 
and spatial features. Liang et al. (2019) utilized a FCNN to obtain deep 
features. Then, a convolutional recurrent network was applied to output 
the polyline representation of the road boundaries. To overcome the 

issue of the features extracted from LiDAR and image data do not share 
the same space, Chen et al. (2019) proposed a progressive LiDAR 
adaptation road detection method. The data and feature space adaption 
were implemented via altitude difference-based transformation and 
cascaded fusion structure respectively. Yu et al. (2019) proposed a FCN- 
based framework to extract inherent features and merge the feature 
maps learned from the LiDAR-camera data for road detection. Huang 
et al. (2020) proposed a road segmentation method based high- 
resolution network. 

3.5.2. Road extraction from the fusion of ALS and aerial image 
Wang et al. (2011) preprocessed the LiDAR data and aerial images 

firstly, including the height smooth and data fusion. Then, the fused 
LiDAR data was classified by using the improved mean-shift algorithm 
into groups, and the 3D road models were constructed by the classified 
points and aerial images. Liu and Lim (2016) presented a framework of 
road extraction. The framework consisted of five main procedures: data 
fusion, pseudo-scanline creation, initial road extraction, refined road 

Fig. 11. The exhibition of Massachusetts Road dataset.  

Fig. 12. The exhibition of Deepglobe Road extraction dataset.  
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extraction, and final road surface and centerlines extraction. Liu and Lim 
(2017) did some subtle modifications based on their previous work (Liu 
and Lim, 2016). Compared with (Liu and Lim, 2016), they did more data 
pre-processing, like the removal of elevated objects, shadows, and 
vegetation, and they did not use the pseudo-scanline for road segmen
tation. Zhang et al., (2018d) extracted the road centerline by road 
connectivity. Firstly, they did the pre-segmentation of aerial images, and 
the image segmentations were further classified by the random forest 
algorithm. Then, to obtain the road network, they proposed a minimum 
area bounding rectangle (MABR) based filling approach, and adopted 
the shape filter to construct the road network. Finally, the road center
lines were extracted from the complex road networks. Gao et al. (2021b) 
proposed a road surface extraction method by multi-scale segmentation 
and multi-scale feature extraction from aerial images and point cloud 
rasterized images. 

4. Data sets 

This section will briefly introduce the commonly used and publicly 
available data sets for road extraction from 2D, and 3D remotely sensed 
data. 

4.1. 2D remotely sensed datasets 

Under our review, there are five commonly used and publicly 
available 2D data sets for road extraction from remote sensing images, i. 
e., Massachusetts road dataset(Mnih, 2015), Deepglobe road extraction 
dataset (Demir et al., 2018), Cheng’s road extraction dataset (Cheng 
et al., 2017), LRSNY dataset (Chen et al., 2021b), and the SpaceNet road 

dataset (Etten et al., 2018). Table 1 summarizes the features of 5 data
sets, after which the details will be introduced. 

(1) Massachusetts road dataset. 
This dataset is combined with optical remote sensing images, con

taining 1108 images, 14 images, and 49 images for training, validation 
and test, respectively. Images in this dataset have a size of 1500 × 1500. 
The image format is with RGB channels. The resolution of the Massa
chusetts road dataset is unknown; however, according to our estimation, 
compared with other known resolution images, we obtain that the res
olution of the Massachusetts road dataset is about 1.5 m. The ground 
truth of each image is a binary image, which uses white color 
(255,255,255) to denote the road areas and uses color with (0,0,0) to 
denote the background areas. The applicable road extraction type is 
cement and asphalt roads. The dataset’s URL is: https://www.cs. 
toronto.edu/~vmnih/data/. 

(2) Deepglobe road extraction dataset. 
This dataset is a competition dataset used in 2018 Deepglobe road 

extraction challenge. However, the competition now is closed, and the 
dataset is unable to download. This dataset contains 6226 training im
ages, 1243 validation images and 1101 test images. Each image has a 
1024 × 1024 × 3 size and with a 0.5 m resolution. The images cover 
areas of Thailand, Indian, and Indonesia. The image format is with RGB 
channels. The applicable road extraction types contain cement, asphalt 
and mountain roads. The dataset website can be found in: https://deepgl 
obe.org/challenge.html. 

(3) Cheng’s road extraction dataset. 
The images in this dataset have a spatial resolution of 1.2 m. The size 

of each image in this dataset is larger than 600 × 600. The labels of this 
data contain the road areas and the road centerlines. The images are 

Fig. 13. The exhibition of LRSNY dataset in (Chen et al., 2021b).  
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with RGB format. The applicable road extraction type is cement and 
asphalt roads. The author informed that the dataset would be publicly 
available in the future; however, the dataset is still not publicly 
available. 

(4) LRSNY dataset. 

This dataset captures the images of the center part of New York City 
with a resolution of 0.5 m. To make users easily and standardly use the 
dataset, the original large image is divided into pieces that have a size of 
1000 × 1000. The images are with RGB format. The applicable road 
extraction type is cement and asphalt roads. After the training, valida
tion, and testing separation, it finally generates 716, 220, and 432 im
ages for training, validation, and testing, respectively. Besides the 
images with a size of 1000 × 1000, this dataset also provides a version of 
images with a size of 256 × 256. This dataset is publicly available now 
with the following two websites: https://39.98.109.195:1234/share 
/Y0fT9h2M and https://pan.baidu.com/s/1jkKPjLYeadRipLGzTNxLgA. 
During downloading, the users need to fill in the extraction code of 
“0000” when using the second website. The detailed download infor
mation is also located at: https://github.com/zaswczy/LRSNY-dataset 
/blob/main/Download. 

(5) SpaceNet road centerline dataset. 
SpaceNet road dataset (Etten et al., 2018) contains VHR images of 

Las Vegas, Paris, Shanghai and Khartoum with a resolution of 0.3 m, 
which are captured by WorldView-3. Each image in SpaceNet road 
dataset has an image size of 3000 × 3000. The image numbers for 
training, validation and test are 1659, 290 and 568, respectively. The 
images are with RGB format. The applicable road extraction type is 
cement and asphalt roads. The major shortcoming of this dataset is that 
only centerline labels are available. The related website is here: https:// 
registry.opendata.aws/spacenet/. 

We know from the above introduction that there are only two pub
licly available road area extraction datasets, i.e., the Massachusetts road 
extraction dataset and the LRSNY dataset. Only one publicly available 
dataset for road centerline extraction from remote sensing images, i.e., 
SpaceNet road dataset. Right now, there is no publicly available datasets 
for road extraction from SAR images under our review. There are also 

Fig. 14. Examples from the KITTI dataset.  

Fig. 15. The ALS data of the Vaihingen dataset.  
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existing several datasets which are not standard, or not specially 
designed or not publicly open for road extraction from remote sensing 
images, such as GF2 used in (Dai et al., 2020a), NWPUVHR-10 used in 
(Gao et al., 2021a), etc. 

4.2. 3D remotely sensed datasets 

Recently, with the development of LiDAR sensor technology, more 
and more 3D point cloud datasets emerge. But the commonly used and 
publicly available 3D data sets for road extraction are KITTI and Vai
hingen and Toronto datasets (ISPRS). Table 2 summarizes the features of 
2 datasets, after which the details will be introduced (see Tables 3–9). 

(1) Kitti. 
The KITTI dataset (Andreas et al., 2013) is captured from a moving 

platform while driving in and around Karlsruhe, Germany. The dataset 
includes camera images, laser scans, high-precision GPS measurements 
and IMU accelerations from a combined GPS/IMU system. For 3D object 
detection task, the dataset provides 7481 training images and 7518 test 
images as well as the corresponding point clouds, comprising a total of 
80.256 labeled objects. There are three different road scene categories 
contained in this dataset, includingurban marked roads (UM), urban 

multiple marked lanes (UMM), and urban unmarked roads (UU). The 
dataset can be downloaded by the following website: https://www. 
cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d. 

(2) Vaihingen and Toronto datasets (ISPRS). 
The Vaihingen and Toronto datasets (Cramer, 2010) are provided by 

the ISPRS Test Project on Urban Classification, 3D Building 

Fig. 16. The ALS data of the Toronto dataset and its coverage.  

Table 1 
Benchmark datasets for road extraction from 2D remote sensing images.  

Dataset/Reference Sensor Format Resolution Sizes (Each) Classes Example Classes 

Massachusetts road dataset(Mnih, 2015) Unknown RGB ≈1.5 m 1500 × 1500 2 Road and Background 
Deepglobe road extraction dataset(Demir et al., 2018) Unknown RGB 0.5 m 1024 × 1024 2 Road and Background 
Cheng’s road extraction dataset(Cheng et al., 2017) Unknown RGB 1.2 m 600 × 600 2 Road and Background 
LRSNY dataset(Chen et al., 2021b) Unknown RGB 0.5 m 1000 × 1000 2 Road and Background 
SpaceNet road dataset (Etten et al., 2018) WorldView-3 RGB 0.3 m 3000 × 3000 2 Road and Background  

Table 2 
Benchmark datasets for road extraction from 3D point clouds.  

Dataset Sensor Format Primary 
Fields 

Sizes Classes Example Classes 

KITTI Velodyne HDL- 
64E 

bin X, Y, Z 
Intensity 
Class 

29 GB 9 car, van, truck, pedestrian… 

Vaihingen 
(ISPRS) 

Leica ALS50 las X, Y, Z 
Intensity 
Class 

552 
MB 

9 powerline, low vegetation, impervious surface, fence/hedge, car, roof, facade, 
shrub, tree 

Toronto (ISPRS) ALTM-ORION M las X, Y, Z 
Intensity 
Class 

370 
MB 

9 powerline, low vegetation, impervious surface, fence/hedge, car, roof, facade, 
shrub, tree  

Table 3 
Quantitative performance results tested on the LRSNY dataset.  

Method Recall 
(%) 

Precision 
(%) 

IoU 
(%) 

F1-Score 
(%) 

SegNet(Badrinarayanan 
et al., 2017)  

91.2  93.2  85.6  92.2 

PSPNet-50(Zhao et al., 
2017)  

91.2  94.4  86.5  92.8 

Residual U-Net(Zhang et al., 
2018c)  

90.2  90.9  82.7  90.6 

DeepLabV3(Chen et al., 
2018a)  

90.6  93.2  85.0  91.9 

DANet(Fu et al., 2019)  90.5  94.5  86.0  92.5 
AEML U-Nets(Chen et al., 

2021c)  
94.1  93.4  88.2  93.7  
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Reconstruction and Semantic Labeling. These two datasets can be 
downloaded by the following website:https://www.isprs.org/educat 
ion/benchmarks/UrbanSemLab/Default.aspx. 

The Vaihingen dataset provides the airborne laser scanning data 
from the city of Vaihingen, Germany. The dataset collects the point 
clouds by a Leica ALS50 ALS system, and the point density is 4 points/ 

m2. There are nine classes objects included in this dataset. The dataset 
contains three different scenes, the biggest one has 753,876 points as the 
training scene, and the other two smaller scenes has total 411,722 points 
as the test scenes. 

The Toronto dataset provides the airborne laser scanning data from 
the city of Toronto, Canada. The dataset acquired by Optech’s ALTM- 
ORION M, and the point density is approximately 6 points/m2. The 
labeled classes of objects is the same as Vaihingen dataset. The dataset 
contains one whole scene, Downtown Toronto, and its two sub-scene. 

5. Performance review 

In this section, we first introduce the commonly used evaluation 

Table 4 
The quantitative performance results tested on the Massachusetts road dataset.  

Method Recall 
(%) 

Precision 
(%) 

IoU (%) F1- 
Score 
(%) 

SegNet (Badrinarayanan 
et al., 2017)  

72.1  82.5  62.5  76.9 

PSPNet-50 (Zhao et al., 
2017)  

76.3  77.9  62.7  77.1 

Residual U-Net (Zhang 
et al., 2018c)  

79.7  76.9  64.3  78.3 

DeepLabV3 (Chen et al., 
2018c)  

74.0  78.3  61.4  76.1 

DANet (Fu et al., 2019)  74.2  81.2  63.3  77.6 
AEML U-Nets(Chen et al., 

2021c)  
76.3  81.1  64.8  78.6 

RDRCNN (Gao et al., 2019)  75.3  84.6  66.3  79.7 
RDRCNN + postprocess ( 

Gao et al., 2019)  
75.8  85.4  67.1  80.3 

MsGAN (Zhang et al., 
2019b)  

87.1  85.3  –  86.2 

DiResNet (Ding and 
Bruzzone, 2020)  

80.3  80.1  60.7  80.1 

SSLF (Guo and Wang, 
2020)  

42.0  34.6  22.6  – 

DW-CNN (Lian and Huang, 
2020)  

82.7  82.3  –  82.5 

CNN-BS&T (Wei et al., 
2020)  

85.9  78.5  78.7(buffer)  – 

ICIE-DNet (Wang et al., 
2021b)  

82.2  87.1  –  84.6 

ELU-SegNet(Panboonyuen 
et al., 2017)  

73.3  85.2  –  78.8 

ELU-SegNet-LMs( 
Panboonyuen et al., 
2017)  

86.1  85.4  –  85.7 

ELU-SegNet-LMs-CRFs( 
Panboonyuen et al., 
2017)  

89.4  85.8  –  87.6 

ASPP-U-net(He et al., 
2019)  

81.9  84.9  –  83.2 

ASPP-U-net-SSIM (He 
et al., 2019)  

80.5  87.1  –  83.5 

PP&CNN (Manandhar 
et al., 2019)  

90.8  94.4  –  – 

DenseUNet (Xin et al., 
2019)  

70.4  78.3  74.5(mIoU)  74.1 

JointNet (Zhang and 
Wang, 2019)  

71.9  85.4  64.0  – 

D-EDTNet (Geng et al., 
2020)  

79.4  69.9  59.2  74.2 

DAD-LinkNet (Gao et al., 
2021a)  

78.9  84.3  67.7  78.1 

RDNNs (Li et al., 2021c)  91.0  85.0  –  87.9 
SRG(Cui et al., 2021)  93.6  67.6  62.2  – 
SGCN(Zhou et al., 2022)  73.9  84.8  65.3  79.0 
DCS-TransUperNet(Zhang 

et al., 2022)  
78.4  82.4  65.4  80.4 

UNet(Ronneberger et al., 
2015)  

70.4  82.3  61.1  75.9 

UNet++(Zhou et al., 
2018)  

72.4  80.9  61.8  76.4 

Attention UNet(Oktay 
et al., 2018)  

68.4  83.0  60.0  75.0 

FCNs(Long et al., 2017)  68.1  82.8  59.7  74.7 
CADUNet(Li et al., 2021b)  76.6  79.5  64.1  77.9 
GAE-LinkNet(Li et al., 

2021e)  
68.7  80.5  58.9  74.2 

Batra(Batra et al., 2019)  69.3  81.9  60.1  75.1  

Table 5 
Quantitative performance results tested on the Cheng’s road extraction dataset.  

Method Recall 
(%) 

Precision 
(%) 

IoU 
(%) 

F1-Score 
(%) 

RDNNs (Li et al., 2021c)  87.4  88.1  –  87.8 
MF&M− NMS (Cheng et al., 

2016a)  
94.3  89.5  84.9  – 

GL-Dense-U-Net (Xu et al., 
2018)  

95.2  96.3  –  95.7 

AMSMT-UNet (Lu et al., 
2019)  

95.9  95.5  91.8  – 

AMT-UNet (Lu et al., 2019)  94.9  94.8  90.2  – 
RCNN-UNet (Yang et al., 

2019b)  
97.7  96.9  93.6  97.3 

MsGAN (Zhang et al., 
2019b)  

96.0  97.4  –  96.7 

ScRoadExtractor (Wei and 
Ji, 2020)  

84.2  90.3  76.5  86.6  

Table 6 
Quantitative performance results tested on the GF-2 road dataset.  

Method Recall 
(%) 

Precision 
(%) 

IoU 
(%) 

F1-Score 
(%) 

RDRCNN (Gao et al., 2019)  80.9  80.9  64.2  78.2 
RDRCNN + Postprocess (Gao 

et al., 2019)  
80.1  82.4  64.7  78.6 

MLSOH (Dai et al., 2020a)  98.7  99.5  –  – 
MRENet (Shao et al., 2021)  67.7  75.5  55.5  71.4  

Table 7 
The quantitative performance results tested on the Deepglobe road extraction 
dataset.  

Method Recall 
(%) 

Precision 
(%) 

IoU 
(%) 

F1-Score 
(%) 

GOALF (Lu et al., 2021b)  70.8  73.2  56.2  72.0 
GCB-Net (Zhu et al., 2021)  –  –  70.8  81.5 
DiResNet (Ding and 

Bruzzone, 2020)  
81.5  78.8  66.8  79.1 

ScRoadExtractor (Wei and Ji, 
2020)  

71.4  79.5  57.8  71.3 

DCS-TransUperNet(Zhang 
et al., 2022)  

69.5  77.9  56.7  73.5  

Table 8 
Quantitative performance results tested on the SpaceNet road extraction dataset.  

Method Recall 
(%) 

Precision 
(%) 

IoU 
(%) 

F1-Score 
(%) 

GCB-Net (Zhu et al., 
2021)  

–  –  69.1  76.3 

GOALF (Lu et al., 
2021b)  

68.9  64.2  49.8  66.5  
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metrics in road extraction from remote sensing data, including 2D and 
3D data. Then, we show the quantitative performances of related works 
with evaluation metrics for the readers. 

5.1. Evaluation metrics 

(1) 2D remote sensing images 
In road extraction from 2D remote sensing images, the commonly 

used performance evaluation method contain four metrics: i.e., Recall, 
Precision, IoU, and F1-Score. 

The representations of the four metrics are as follows: 

Reccall =
TP

TP + FN
, (1)  

Precision =
TP

TP + FP
, (2)  

IoU =
TP

TP + FN + FP
, (3)  

F1 − Score =
2*Precision*Recall
Precision + Recall

, (4)  

where TP, FN and FP are the true positive, false negative and false 
positive, respectively. 

(2) 3D. 
Except the metrics for 2D, the Completeness, Correctness, and 

Quality metrics are widely used for road extraction from 3D remote 
sensing data. The metrics are defined as follows: 

Completeness =
TP
Lr

, (5)  

Correctness =
TP
Le

, (6)  

Quality =
TP

Le + FN
, (7)  

where Lr is the total length of the reference road, Le is the total length of 
extracted road. It should be note that the “Completeness”, “Correctness” 
and “Quality” are equal to “Recall”, “Precision” and “IoU”, respectively. 
To make table headers in 3D be consistent with that in 2D, we use the 
“Recall”, “Precision” and “IoU” as table headers in the following per
formance tables of 3D. 

5.2. Quantitative performance（2D, 3D） 

(1) In 2D remote sensing datasets. 
For LRSNY dataset, the best IoU score under our review is obtained 

by (Chen et al., 2021c), which is 88.2%. For Massachusetts dataset, there 
are 29 approaches’ test results in Table 4, among which (Wei et al., 
2020) achieved the best IoU score (78.7%). Note that, Wei et al. (2020) 
tested their model with a 4 pixels buffer, while most methods did not. 
Besides, Xin et al. (2019) obtained a IoU score higher than 70% due to 
using average IoU. For the Deepgloble dataset, the best performance is 
as high as 70.8% IoU score within our reviewed papers. 

(2) In 3D remote sensing datasets. 
Since the most of methods mentioned in section 3.2 extract the roads 

by the self-collected dataset, it is hard to compare these methods based 
on the results of accuracies. For Vaihingen and Toronto datasets (ISPRS), 
the recent study (Tejenaki, 2019) does the comprehensive comparison 
with the previous methods, and achieve better road extraction perfor
mance by focusing on the road connectivity and continuity. 

(3) In 3D&2D remote sensing datasets. 
By virtue of data comprehensiveness, the KITTI dataset provides both 

camera images and the corresponding point clouds, which is naturally 
suitable for the fusion of 3D and 2D data. Thus, most of the methods 
mentioned in section 3.3.1 extract roads on KITTI dataset. As show in 
Table 10, (Chen et al., 2019) and (Huang et al., 2020) achieves high 
precision and recall on KITTI dataset, which mainly due to the use of 
deep learning methods and the more comprehensive features (see Ta
bles 11 and 12). 

6. Discussion 

6.1. Observed trends 

(1)Observed Trends in Road Extraction from 2D Remote Sensing 
Images. 

First, the optical remote sensing images are more preferred 

Table 9 
Quantitative performance results of MLS.  

Method Recall 
(%) 

Precision 
(%) 

IoU 
(%) 

Dataset 

RG-BF&S-BR(Yadav et al., 
2017) 

95.6 97.9  93.7 Self- 
collected 

MWO (Yang et al., 2013) 95.1 98.1  93.4 Self- 
collected 

MO (RodrguezCuenca, 
2015) 

97.7 98.3  96.1 Self- 
collected 

PCA-P-BM(Wang et al., 
2015) 

95.4 99.4  94.8 Self- 
collected 

LCPM (Xu et al., 2017b) 78.6 83.3  – Self- 
collected 

SW(Cabo et al., 2016) 97 99  – Self- 
collected 

HD&TNRG(Miraliakbari 
et al., 2015) 

93.8 94.9  – Self- 
collected 

GVF&BPACM(Kumar et al., 
2013) 

98.5 100  – Self- 
collected 

FPGA-CNN(Lyu et al., 2018) – 84.8  – KITTI 
D-DA(Teo and Yu, 2015) 95.6 98.7  – Self- 

collected 
CED(El-Halawany et al., 

2011) 
94 97  – Self- 

collected 
CEC(Ma et al., 2019) 90.8 93.9  – Self- 

collected 
M− RRGM (Yang et al., 

2017a) 
91.2 90.6  – Self- 

collected 
BKD(Yang et al., 2017b) 98.4 95.4  – Self- 

collected 
LM& RANSAC (Gu et al., 

2018a) 
92.0 98.0  – Self- 

collected 
RANSAC(Qiu et al., 2016) 97.3 99.9  – Self- 

collected 
α-SA (Zai et al., 2018) 96.6 98.5  95.2 Self- 

collected 
PG-BM(Sun et al., 2019a) 95.9 95.0  – Self- 

collected 
IDW (Guan et al., 2014) 96 83  – Self- 

collected 
ITV (Guan et al., 2015) 96 93  – Self- 

collected 
RWF (Guo et al., 2015) 96.4 98.7  95.1 Self- 

collected 
T-SM (Yadav and Singh, 

2017) 
94.2 96.3  90.9 Self- 

collected 
SGM(Mi et al., 2021) 92.1 95.3  – Self- 

collected 
M− FL− TM(Wang et al., 

2021a) 
86.2 90.0  – KITTI 

DBSCAN (Jung et al., 2020) 93.1 90.1  – Self- 
collected 

ATSM (Huang et al., 2021) 87.4 94.5  – Self- 
collected 

RBNN-CA (Zhao et al., 2021) 99.8 99.7  – Self- 
collected 

S-BM(Zhang et al., 2018a) 82.9 84.9  – Self- 
collected  
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compared to the SAR images. Under this review, the related works about 
road extractions from 2D optical remote sensing images are about 3 
times more than the related road extraction works from 2D SAR images. 
Although SAR images now can provide images with resolution as high as 
optical remote sensing images, the optical remote sensing images still 
present much more color and texture information during road extrac
tion. On the other hand, the SAR images also have the advantages of 
working conditions, i.e., the SAR images can work on the whole day 
under all weather conditions. In contrast, the optical remote sensing 

images are failed to collect at night and under cloudy weather. 
Second, deep learning-based methods illustrate more and more 

power and effectiveness. In the latest 5 years, deep learning-based 
methods have dominated the road extraction from 2D remote sensing 
images. On the other hand, traditional methods that use handcrafted 
features and morphological features are almost neglected. Usually, the 
handcrafted features and morphological feature-based methods can be 
used as post-processing approach to promote the accuracy of deep 
learning-based results. 

Third, the datasets play a more important role in road extraction 
from 2D remotely sensed images since the fast development of deep 
learning-based methods. Unlike handcrafted features based and 
morphological features based approaches, the deep learning-based al
gorithms need a large enough dataset with accurate labels to train a deep 
learning model, leading to hard burdens of manually labeling works. 

(2) Observed Trends in Road Extraction from 3D Point Clouds. 
First, in terms of data, the MLS data natively has higher point density 

and precision than ALS data and TLS data for road extraction. Thus, the 
number of articles based on MLS data for road extraction is the largest. 
For some special road, such as the forest road, the mobile platforms are 
difficult to operate there, the ALS data or TLS data are more suitable to 
this situation. Except the point density and precision, the recent studies 
are also enthusiastic about using more information contained and 
3D&2D integrated data. Fortunately, some datasets, like KITTI, provide 
information captured by various sensors including visual cameras, 
LiDAR sensor, and GPS, which is convenient for the related researches. 

Second, in terms of method, compared with the early methods, 
which choose some geometric shape characteristics of road and set the 
corresponding thresholds to filter the road points, the follow-up studies 
consider the more comprehensive features of road and powerful classi
fiers to achieve better extraction performance. Naturally, with the 
improvement of the techniques of feature extraction and feature repre
sentation, the automation of road extraction has increased accordingly. 
In recent years, the deep learning-based methods are gradually applied 
into object extraction from 3D point clouds, which provide the more 
powerful classification ability than the traditional machine learning 
classifiers. 

6.2. Challenges and future trends 

(1) Challenges and future trends in road extraction from 2D remote 
sensing images. 

First, the performance of road extraction from 2D remote sensing 
images can still be improved. Although the performance of road 
extraction from 2D remote sensing images has achieved great progress 
since the applications of deep learning methods, the extraction results 
still suffer from the errors caused by shadows, occlusions, interferences 
of similar background areas, etc. In our opinion, two strategies may be 
used to conquer the above problems in the future. The first strategy is to 
fuse the optical and SAR images. The SAR and optical images have quite 
different properties and advantages, which may complement each other. 
On the other hand, research regarding the fusion of optical and SAR 
images are limited. The second strategy is to fuse traditional features and 
deep learning features for road extraction from 2D remote sensing im
ages. At present, the combination of traditional and deep learning fea
tures stays at low-level, which simply combines two kinds of features as 
pipeline processing. In fact, embedding the traditional features into a 
deep learning framework with an end-to-end training format has a great 
value for research. The related research is still insufficient. 

Second, the context information quarrying and utilizing is still 
insufficient as the road extraction results still have many limitations. 
The multi-scale convolution kernels have been widely used to enhance 
the context information learning ability. However, the exploration of the 
context among objects has rarely been studied, which is important for 
human cognitive ability to implement. Thus, the research using the 
relationship among different objects may be a breakthrough for road 

Table 10 
Quantitative performance results of ALS.  

Method Recall 
(%) 

Precision 
(%) 

IoU 
(%) 

Dataset 

EMA (Zhao et al., 2011) 93 93  – Self-collected 
S-DMN(Zhao and You, 

2012) 
91.8 89.2  82.6 Self-collected 

MW-BCT (Li and Lim, 
2014) 

92.0 96.0  91.6 Self-collected 

IDW&SVM(Azizi and 
Najafi, 2014) 

75.1 63.0  52.1 Self-collected 

MTH(Hu et al., 2014) 53.4 73.8  44.9 Vaihingen 
dataset(ISPRS) 

SBF& CD-TIN (Narwade 
and Musande, 2014) 

83.4 83.0  83.2 Vaihingen 
dataset(ISPRS) 

SRH (Hui et al., 2016) 80.4 91.4  74.8 Vaihingen 
dataset(ISPRS) 

LMF&MSS(Tejenaki 
et al., 2019) 

95.9 83.7  80.8 Vaihingen 
dataset(ISPRS) 

LFA (Li et al., 2015) 93 76  – Self-collected 
SVMc&RM (Matkan 

et al., 2014) 
96.4 93.3  90.1 Self-collected  

Table 11 
Quantitative performance results of TLS.  

Method Recall 
(%) 

Precision 
(%) 

IoU 
(%) 

Dataset 

Husain et al. 2018 (Husain 
and Vaishya, 2018)  

93.9  96.9 – Self- 
collected  

Table 12 
Quantitative performance results of 3D&2D remote sensing data.  

Method Recall 
(%) 

Precision 
(%) 

IoU 
(%) 

Dataset 

R-BE-CA (Liu and Lim, 2016)  89.2  91.2  88.1 Self- 
collected 

OS&HMF&KNNC (Liu and 
Lim, 2017)  

82.9  84.1  83.2 Self- 
collected 

FCRF(Xiao et al., 2015)  93.4  83.6  – KITTI 
HCRF (Xiao et al., 2017)  91.3  90.7  – KITTI 
RANSAC &ICP(Gu et al., 

2018a)  
92.0  98.0  – Self- 

collected 
UG-F (Wulff et al., 2018)  93.9  93.7  – KITTI 
IDA-FCNN (Gu et al., 2018b)  96.1  96.7  – KITTI 
S + TGV (Zhang et al., 

2018b)  
95.7  96.5  – KITTI 

3D-FBA (Lachachi et al., 
2018)  

98.2  82.8  – KITTI 

CFSN (Yang et al., 2019a)  86.1  81.2  – KITTI 
CRN (Liang et al., 2019)  94.6  94.8  – Self- 

collected 
PLARD (Chen et al., 2019)  96.9  97.2  – KITTI 
H-RN (Huang et al., 2020)  92.0  91.6  – KITTI 
MixedCRF (Han et al., 2017)  93.2  90.0  – KITTI 
BiFNet (Li et al., 2021a)  95.4  95.5  – KITTI 
M− SRFN (Yu et al., 2019)  95.1  96.9  – KITTI 
c-DCGAN (Ma et al., 2021)  92.2  96.1  88.9 Self- 

collected 
MSRE (Gao et al., 2021b)  97.8  93.7  91.7 Self- 

collected  
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extraction from remote sensing images. 
Third, the accurately labeled data sets are still insufficient and in 

need urgently. Under our review, there are only two publicly available 
datasets specially designed for road extraction from remote sensing 
images. However, deep learning-based research needs a large amount of 
accurately labeled data sets for its supports. Thus, producing large, well- 
labeled datasets is meaningful and will have chances in the future. 

Fourth, how to enhance the extensibility of the road extraction 
models is still a challenging problem that needs to be further studied. 
The present models are usually specially designed or trained for special 
datasets under given resolution and images characteristics. When 
applied the trained model to another dataset, a large work about model 
retraining and re-adjusting is needed. How to reduce the cost of model 
transplantation is still needs to be studied in the future, which may be a 
good opportunity for researchers. 

(2) Challenges and future trends in road extraction from 3D point 
clouds. 

First, most of the existing studies only focus on the small regions of 
road sections; there are few methods designed for the large-scale scenes’ 
road extraction. For large-scale scenes, the total volumes of point cloud 
data will increase dramatically as the area increase. How to handle the 
massive point cloud data with limited computational and storage re
sources is still a challenge. Some deep learning methods have recently 
been proposed for large-scale point cloud processing, that are the hope 
for the next generation challenges. However, accurate labelling for large 
data is still a challenge and far way to go. 

Second, the automation of road extraction still needs to be improved. 
Although the latest methods are more automated than a decade ago, it is 
still difficult to achieve the full automation of road extraction. For un
supervised methods, hand craft feature extraction or data preprocessing 
is still necessary in many cases. For supervised methods, manually la
beling training data is an inevitable extra preparatory work. 

Third, the high accuracy and high-resolution road extraction result 
are still difficult to obtain. Unlike the road extraction from 2D images, 
due to the unstructured and irregular properties of point cloud data, 
with unavoidable presence of noise, occlusions and outliers, it is difficult 
to achieve the high accuracy road extraction results from 3D point 
clouds. As to the rasterization or voxelization processing, that will 
inevitably reduce the resolution of road extraction results. 

7. Conclusion 

This paper presents a detailed review of road extraction from remote 
sensing data in the last 10 years, introducing more than 240 papers in 
total. We first show the general overviews of road extractions from both 
2D remote sensing images and 3D point clouds. Then, we give detailed 
reviews from 2D and 3D perspectives, respectively. In 2D perspective, 
we illustrated in detail about works using two kinds of commonly used 
images, i.e., optical and SAR image. More than 120 papers were covered 
in that section, among which we has a bias focusing on the deep learning 
approaches. In 3D perspective, road extraction by MLS, ALS, and TLS 
were introduced, respectively. For 3D methods, more than 90 papers 
were reviewed. We also gave an investigation about the 3D&2D road 
extraction approaches. After reviewing methodologies, we also give a 
detailed introduction about the datasets in road extraction from both 2D 
remote sensing images and 3D point clouds, including 5 datasets and 2 
datasets for 2D and 3D, respectively. To make the readers be clear about 
the performances of the existing popular methods, the performances 
comparisons according to the reported results were met and shown. 
Finally, we presented the observed trends, challenges, and future op
portunities about road extraction from remotely sensed data. From our 
review, the data fusion, context information learning, and data sets 
construction etc., may be the trends and opportunities for future re
searches studying road extraction from remotely sensed data. 
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