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A B S T R A C T   

Accurately and precisely delineating road-markings from very high spatial resolution unmanned aerial vehicle 
(UAV) images face many challenges, such as complex scenarios, diverse road marking sizes and shapes, and 
absent and occluded road markings. To address these issues, we formulate an attentive capsule feature pyramid 
network (ACapsFPN) by integrating capsule representations with attention mechanisms into the feature pyramid 
network (FPN), aiming at improving road marking extraction accuracy. Different from the current convolutional 
neural network (CNN) models based on scalar neuron representations, capsule networks characterize entity 
features by leveraging vectorial capsule neurons, whose lengths and instantiation parameters contribute to the 
identification of features and their variants. By constructing a capsule FPN, the ACapsFPN is capable of extracting 
and integrating multi-level and multi-scale capsule features to provide high-quality and semantically-strong 
feature abstractions. By formulating a multi-scale context feature descriptor and the ternary feature attention 
modules, the ACapsFPN can emphasize informative features to generate a class-specific feature representation. 
Quantitative and qualitative evaluations show the ACapsFPN provides a valuable means for extracting road 
markings in UAV images under different kinds of complex conditions. In addition, comparative analyses with 
existing alternatives also demonstrate the superiority and robustness of the ACapsFPN in UAV road marking 
extraction.   

1. Introduction 

Every day, road markings are used as an efficient and indispensable 
means to provide millions of road users, i.e., pedestrian and car drivers, 
with guidance and protection. Automated detecting road markings has 
become an increasing necessity for transportation-related activities, 
including traffic monitoring, automatic vehicle driving, and autono
mous navigation (Tian et al., 2018; Zhang et al., 2018). The fundamental 
objective of road marking detection is to provide shape and location 
information of individual road markings at centimeter-level accuracy for 
lane-based models and high-definition (HD) maps (Azimi et al., 2019). 
At present, most HD maps are generated for autonomous driving by 
LiDAR, Radar, global positioning system (GPS), or image/vision sensors 
mounted on land-based mobile mapping platforms (McCall and Trivedi, 
2006; de Paula and Jung, 2015; Gupta and Choudhary, 2018; Wen et al., 

2019; Xu et al., 2021).These methods come with the following draw
backs: (1) road marking data missing occluded by traffic flow and 
limited by the sensor line of sight, and (2) decreased mapping accuracy 
caused by global positioning system (GPS) signal loss in urban canyons 
(Azimi et al., 2019). 

The compact and light-weighted unmanned aerial vehicle (UAV) is a 
trend for future earth observation data acquisition due to its cost saving, 
high efficiency, operational convenience for image retrieval (Lyu et al., 
2020). Compared to satellite and aerial images, UAV images have very- 
high spatial resolutions, e.g., a 50-cm ground sampling distance (GSD), 
which provides more promising opportunities for cadastral mapping, 
and agriculture-related applications (e.g., smart farming, precision 
agriculture, and weed monitoring). Recently, the UAV technology has 
been used in a variety of applications in the transportation-related fields, 
ranging from traffic network monitoring, population density 

* Corresponding author. 
E-mail address: guanhy.nj@nuist.edu.cn (H. Guan).  

Contents lists available at ScienceDirect 

International Journal of Applied Earth  
Observations and Geoinformation 

journal homepage: www.elsevier.com/locate/jag 

https://doi.org/10.1016/j.jag.2022.102677 
Received 28 October 2021; Received in revised form 23 December 2021; Accepted 6 January 2022   

mailto:guanhy.nj@nuist.edu.cn
www.sciencedirect.com/science/journal/03032434
https://www.elsevier.com/locate/jag
https://doi.org/10.1016/j.jag.2022.102677
https://doi.org/10.1016/j.jag.2022.102677
https://doi.org/10.1016/j.jag.2022.102677
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jag.2022.102677&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


International Journal of Applied Earth Observation and Geoinformation 107 (2022) 102677

2

monitoring, infrastructure monitoring, urban greenery monitoring to 
road safety improvement. Therefore, UAV images, for the purpose of HD 
map creation, are promising for extracting and classifying road 
markings. 

At present, road marking detection or extraction from images is still a 
challenging problem (Fig. 1). The difficulties are summarized as follows.  

(1) Road markings appear discontinuities and variations in shape, 
intensity, and size. Specifically, because road markings, as one of 
the essential road elements in transportation management sys
tems, are critical for guiding pedestrians and drivers, they can be 
grouped into several categories, e.g., forbidden, instructional, 
and indicative, each of which contains different classes, e.g., 
single and double boundary, dotted and solid line, zigzag, 
pedestrian crossing, circular reflector, and speed limit. In terms of 
road marking size, road markings strongly rely on the images 
with different spatial resolutions. Moreover, many road markings 
are damaged after years of use, which leads to being partially and 
completely disappeared on the images due to decreased road 
marking reflectivity.  

(2) Complex and highly-variable road scenarios. Due to the presence 
of objects e.g., bridges, trees, and a variety of vehicles, some road 
markings are partially or fully occluded. Lightning condition has 
important functions in the quality and consistency of road 
markings on the images. Moreover, shadows coming from high- 
rise buildings and trees cause different illumination over road 
markings, and further change their spectral changes on the 
images. 

(3) Sensor (i.e., camera) parameters are varying with different im
aging systems (Ye et al., 2020). Some certain perspective distor
tions of the sensed images might be caused by different imaging 
sensor types, different mounting positions of the sensors, and 
different flying heights. Moreover, imaging sensor parameters are 

more or less varying during data acquisition, which further cau
ses spectral inconsistencies among the sensed images. 

To address this challenging task, an increasing number of road 
marking extraction methods have been proposed. Most traditional 
methods (e.g., Random Sample Consensus (RANSAC), Hough Transform 
(HT), and clustering) segment road markings from the images according 
to hand-crafted low-level features, e.g., spectral, textural, and geomet
rical features (Son et al., 2015; Jung et al., 2016; Niu et al., 2016; Li 
et al., 2018). Although many achievements have been obtained with 
improved accuracies and less computational complexity in specific sit
uations, accurately and robustly extracting road markings in many 
complex road scenes is still challengeable, which cannot meet the re
quirements of HD map creation for autonomous driving (Xiao et al., 
2020). 

A variety of deep learning networks (e.g. convolutional neural 
network (CNN)) have drawn the increasing attention of researchers to 
effectively and highly-accurately detect, extract, and classify road net
works and objects above or on road surfaces in complex road scenes, due 
to their powerful high-order feature representation, characterization, 
and robustness abilities (Xiao et al., 2020). However, most CNNs usually 
fail to extract heterogeneous object regions, and thus generating rough 
segmentation boundaries. Moreover, CNNs suffer from the issues of 
representation power and computational efficiency. 

We propose a new attentive capsule feature pyramid network 
(ACapsFPN) that accurately and precisely extracts road markings from 
UAV images. The proposed ACapsFPN characterizes high-order entity 
features by leveraging vectorial capsule neurons. The ACapsFPN archi
tecture includes: (1) a hierarchical encoder, which extracts multi-level 
information-rich capsule features at different scales, (2) a decoder 
integrating with lateral connections, which aggregates multi-scale 
capsule features to accurately extract road markings in UAV images, 
and (3) to strengthen the abstraction capability of the output features, a 
multi-scale context feature descriptor and ternary feature attention 

Fig. 1. Challenges in road marking segmentation. For example, shadows caused by buildings and trees; partial occlusion caused by other objects, such as vehicles; 
severely destroyed road markings; false road markings caused by illumination, imaging tilt angles, and other road marking materials; presence of several types of 
road markings with varied sizes and shapes (e.g., turn signs, pedestrian crossing, zigzag, bus and bike sign, solid and dot line lanes). 
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modules are formulated and embedded into the ACapsFPN. The 
ACapsFPN provides a promising and competitive extraction perfor
mance of road markings with different spatial distributions and geo
metric topologies, varying intensity appearances and sizes, and diverse 
shapes and environmental scenarios in UAV images. Our contributions 
are listed as follows.  

• We construct a capsule feature pyramid network (CapsFPN), which 
extracts and integrates multi-level and multi-scale capsule features to 
provide a high-quality task-aware feature semantics for improving 
road marking extraction performance.  

• We design a multi-scale context feature (MCF) descriptor and ternary 
attention modules, i.e., a feature channel attention (FCA) module, a 
class region attention (CRA) module, and a class channel attention 
(CCA) module. Specifically, the MCF module aims to obtain multi- 
scale contextual information with no loss of feature details and res
olutions. FCA aims to enhance the capability of feature representa
tion by increasing the sensitivity of the network to information-rich 
and salient features. The CRA and CCA modules consider the spatial 
features and the importance of the feature channels, respectively, 
tightly related to the road markings, suppressing effectively the in
fluences of the background and offering highly accurate road 
marking feature representations. 

2. Related work 

Recently, the detection and extraction of road markings has been 
attracted increasing attention in Intelligent Transportation Systems 
(ITS). We briefly review the existing image-based road marking 
extraction works. In this section, in terms of features to be used, current 
road marking studies have been roughly classified into two categories: 
traditional and deep learning-based methods. 

2.1. Traditional road marking detection 

Some systems were designed for detecting specific road markings, 
rather than all types of road markings (McCall and Trivedi, 2006). For 
example, to maintain vehicles to run along the host lanes, lane markings 
were considered for automatic vehicle driving and advanced driver as
sistant system (Huang et al., 2017). Because lane markings are charac
terized by linear features, many traditional image processing methods 
have been applied to lane marking detection, such as classical edge 
detection (e.g., Sobel and Canny detectors), template matching, Hough 
Transform, and threshold segmentation methods (e.g., local adaptive 
threshold segmentation method and Otsu’s method). These methods 
mainly used intensity, texture, edge, geometric shape, and other low- 
level features to detect lane markings from images (de Paula and 
Jung, 2015; Lee and Moon, 2018). To deal with the variations of lane 
markings, more hand-crafted features have been explored, including 
Haar-like (Han et al., 2009), local binary pattern (Grabner et al., 2008), 
and dense vanishing point estimation (Ozgunalp et al., 2017). Moreover, 
by means of other data sources, such as depth information and the 
OpenStreetMap (OSM), some interference objects, e.g., vehicles and 
buildings, have been removed from the road scene to be processed, 
which improves the extraction of lane markings by coupling with other 
imaging processing algorithms (Prakash et al., 2015). To achieve highly- 
accurate lane detection results, some researchers proposed hierarchical 
lane detection methods (de Paula and Jung, 2015). Machine learning- 
based methods, e.g. support vector machine (SVM) (Kim, 2008) and 
random forest (RF) (Gopalan et al., 2012), have been employed for 
improving the detection accuracy of lane markings. 

To best read the road for an autonomous vehicle, besides lane 
markings, more marking types, such as zebra crossings, intersections, 
arrows, painted traffic signs, should be read, classified, and interpreted 
(Mathibela et al. 2015). Mathibela et al. (2015) proposed a road marking 
classification framework by integrating geometric feature functions with 

probabilistic RUSBoost and Conditional Random Field (CRF), which 
jointly classified seven classes of road markings (i.e., single boundary, 
double boundary, zig-zag, separator, intersection, boxed junction, and 
special lane) with a precision of between 74% and 93% and a recall of 
between 69% and 94% across all classes. Some researchers hierar
chically detected and classified road markings based on the character
istics of road markings. For example, symbol-based road markings were 
recognized by embedding Histogram of Oriented Gradient (HOG) fea
tures into the SVM, while text-based markings were recognized using 
Optical Character Recognition (OCR) (Greenhalgh and Mirmehdi, 
2015). Gupta and Choudhary (2018) first clustered the image into lane 
marking clusters and non-lane marking clusters via a spatio-temporal 
incremental clustering (STIC) algorithm coupled with curve-fitting, 
and then classified non-lane marking clusters into road markings by a 
Grassmann manifold learning framework. However, these methods were 
much suitable for traffic scenes with good illumination conditions 
(Huang et al. 2017). 

2.2. Deep learning-based road marking detection 

Comparatively, deep learning-based road marking detection 
methods usually achieved better detection accuracies because these 
methods usually learn semantic, high-order features rather than using 
low-level, simple, and hand-crafted features (Huang et al. 2017; Azimi 
et al. 2019). 

Hoang et al. (2019) proposed a road marking detection and classi
fication framework by combining a simple, and hand-crafted feature- 
based method with a deep learning-based method. Specifically, the 
framework first created the region of interest (ROI) images via a van
ishing point strategy, and further detected arrows and bike markings by 
the CNN-based detector and classifier. Lee et al. (2017) detected some 
road marking types under adverse weather conditions via a vanishing 
point guided net (VPGNet). Li et al. (2017) detected road lane bound
aries by a jointed strategy, in which the multi-task CNN model provided 
the geometric information of road lanes, and the recurrent neural 
network automatically detected the boundaries of the road lanes. 
Moreover, a dual-view CNN was performed for detecting road lanes on 
the raw front-view image and its converted top-view image (He et al., 
2016). The Region Convolutional Neural Network (R-CNN) and its 
variant, the faster R-CNN, were developed to detect small objects (Gir
shick et al., 2014; Girshick, 2015). Based on the faster R-CNN, Tian et al. 
(2018) detected lane markings by combining with fast multilayer 
feature maps, context information, and an anchor generating method. 
However, the method failed to process over-exposed images and 
recognize road markings occluded by the other objects, e.g., pedestrians, 
vehicles, trees, and buildings, on the road. Although deep learning 
models have made great achievements, they still suffer from the issues of 
voluminous training data required for model construction. That is, the 
quantity and the quality of the training data directly determine the 
effectiveness and robustness of the constructed models. 

Generally speaking, traditional CNNs, constructed based on scalar 
neuron representations, represent the probabilities of the presence of 
specific features. To effectively capture the variances of an entity, a 
traditional CNN requires more extra neurons to respectively encode the 
different variants of the entity with the same type, which results in the 
expansion of the network size and parameters. Recently, capsule net
works have shown superior performances on the capabilities of feature 
abstraction and representation. Unlike traditional CNNs, capsule net
works characterize entity features by leveraging vectorial capsule neu
rons. Specifically, for a capsule neuron, its length encodes the 
probability of the existence of an entity, and its instantiation parameters 
describe the inherent properties of the entity (Sabour et al., 2017). Such 
a capsule formulation allows a capsule to not only detect a feature, but 
also to learn and identify its variants, resulting in a powerful but light
weight feature abstraction model. Capsule networks have shown 
promising performance in a set of prediction, detection, segmentation, 
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and classification tasks (Paoletti et al., 2019; Yu et al., 2021; Ma et al., 
2021a,b). However, capsule networks have not been applied to road 
marking detection. 

Feature pyramid, a top-down multi-scale feature fusion structure 
(Lin et al., 2017), offers unique features for object objection and seg
mentation. It combines high-level coarse semantic features and low- 
level location information to generate stronger feature representation 
(Shamsolmoali et al., 2021a,b,c). Subsequently, several Feature pyramid 
architectures have been proposed to improve object-detection perfor
mances, such as a cascaded pyramid network formulation (Chen et al., 
2018), a multipatch feature pyramid network for weakly supervised 
object detection (MPFP-Net) (Shamsolmoali et al., 2021a), and a rota
tion equivariant feature image pyramid network (REFIPN) for efficiently 
detecting objects with size variations (Shamsolmoali et al., 2021b). 
Thus, feature pyramid has been increasingly used and modified for 
extracting variedly- sized and shaped specific objects, such as roads 
(Shamsolmoali et al., 2021a,b,c), buildings (Zhu et al., 2021), water- 
bodies (Yu et al., 2021), and road markings (Chen et al., 2021). To 
solve the specific problems raised by road markings of various sizes, we 
adopt a strategy similar to the FPN, where we use vectorial capsule 
convolution networks rather than traditional scalar convolution net
works. Moreover, Attention mechanism has been attracted much 
attention because it enlarges the receptive field size. Channel attention 
emphasize important feature maps by calculating the weight for each 
channel (Hu et al., 2018). Xiao et al. (2020) detected lane markings by 
introducing self-attention and channel attention to capture global 
contextual information and strengthen important features. Moreover, 
the attention mechanism effectively improved the network performance 
without heavy computational costs (Hu et al., 2018). Thus, we propose 
the ACapsFPN, which fuses the attention modules into the capsule FPN 
for improving the extraction robustness of road markings. 

3. ACapsFPN framework 

3.1. Capsule network 

Denote ui as the vector output of a capsule i in the lower capsule 
convolutional layer, vj as the vector output of capsule j in the capsule 
layer above. The implementation of the capsule network is detailed as 
follows.  

(1) A prediction vector Uj|i is produced by: 

Uj|i = Wij⋅ui (1)  

where Wij is a transformation matrix on the edge connecting capsules i 
and j. Uj|i is the prediction from capsule i to capsule j.  

(2) A weighted sum, sj, the total input to capsule j, over all prediction 
vectors Uj|i is calculated from the capsules in the lower layer by: 

sj =
∑

i
aij⋅Uji (2)  

where, aij is the coupling coefficient, which indicates the degree of 
contribution of the prediction from capsule i to capsule j in the layer 
below. Note that the coupling coefficients aij sum to 1. Specifically, in 
each capsule layer, aij is designed as learnable parameters during 
network training, rather than determined by the dynamic routing pro
cess (Kim, 2008), because they are unstable and difficult to converge for 
the deep networks. 

(3) A nonlinear “squashing” function (Kim, 2008) acts as the acti
vation function to regulate the output of capsule sj. The squashing 
function is defined by: 

vj =

⃦
⃦sj

⃦
⃦2

1 +
⃦
⃦sj

⃦
⃦2⋅

sj⃦
⃦sj

⃦
⃦

(3) 

Through modulation, short capsules are suppressed to almost a 
length of almost zero to cast low predictions, whereas long capsules are 
compressed to a length of nearly one to cast high predictions. 

3.2. Attentive capsule feature pyramid network 

3.2.1. Overview 
With the advantages of capsule networks and attention mechanisms, 

we formulate an attentive capsule feature pyramid network (named 
ACapsFPN) to obtain better road marking extraction performance. As 
illustrated in Fig. 2, the ACapsFPN, which is designed as a fully con
volutional capsule feature pyramid network architecture, inputs a UAV 
image and outputs a road marking map with the identical image size in 
an end-to-end manner. The ACapsFPN is composed of a hierarchical 
encoder, a decoder, and several lateral connections. Specifically, the 
encoder aims to extract information-significant capsule features at 
multiple levels and scales. The decoder and the lateral connections take 
charge of aggregating the capsule features to generate a high-quality 
task-aware feature encoding, and finally obtain a highly accurate road 
marking map. Additionally, to further enhance the feature abstraction 
capability and class-aware feature encodings, we construct a multi-scale 
context feature descriptor and three types of feature attention modules, 
and embed them into the capsule feature pyramid network in place.  

(1) Hierarchical encoder 

In the hierarchical encoder (see Fig. 2), two scalar traditional con
volutional layers with 256 convolution kernels are first used to extract 
low-level road marking features from the input image (Denote H and W 
as the height and width of an input image). Note that the rectified linear 
unit (ReLU) is adopted for the two traditional convolutional layers. Af
terwards, the primary capsule layer is constructed to encode the low- 
order scalar feature outputs as high-order vectorial capsule neurons. 
All traditional and capsule convolutional layers are used with the 
convolution kernel size of 3 × 3, stride of 1, and padding of 1. Denote Dp 
and Sp as the number of feature channels and the dimension of a capsule, 
respectively. In the primary capsule layer, a total of Dp × Sp kernels are 
designed to slide on the second traditional convolutional layer, gener
ating Dp × Sp capsule feature channels. In other words, the generated 
capsule feature channels are equally partitioned into Dp groups, each of 
which includes Sp feature channels. In such way, for each group, the Sp 
elements at the same position across the feature channels are concate
nated to constitute an Sp-dimensional capsule representation. In this 
study, we set Dp = 64 and Sp = 16, respectively. 

That is, each of 64 groups in the primary capsule layer finally forms a 
capsule feature channel with 16 dimensions. 

The hierarchical encoder is subsequently designed with four network 
stages, each of which contains seven capsule convolutional layers for 
generating feature maps and a capsule max-pooling layer (except the last 
stage) for gradually scaling down with a scale of 2. Similarly, for all 
capsule layers in the four stages, we set Dp = 64 and Sp = 16, respec
tively. Specifically, in the first stage, the output of the primary capsule 
layer is put through seven 3 × 3 capsule convolution layers, followed by 
a 2 × 2 capsule max-pooling layer with a stride of 2. The output feature 
maps from the seven capsule convolution layers have the same spatial 
size with the input (i.e. H × W). The output from the max-pooling layer 
is scaled down to the half size (i.e. H/2 × W/2), while highlighting the 
most representative features. Stage by stage, the spatial resolution of the 
feature maps decrease gradually, whereas their feature abstraction level 
is higher. 

Accordingly, the output from the deepest capsule layer in each stage 
has the highest-order feature representation, and is selected to build a 
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feature map reference set. To effectively fuse features and reduce the 
number of network parameters, a 1 × 1 capsule convolution layer is 
applied to each feature map in the reference set to modulate their 
channel numbers to the same corresponding configuration while main
taining their original spatial resolutions. In other words, after the 1 × 1 
capsule convolution operation, the number of feature channels, Dp = 64, 
is reduced to half previous size, Dp = 32. After feature map selection and 
modulation, the feature maps (i.e., F1, F2, F3, and F4) with the corre
sponding scales of 1, 1/2, 1/4, and 1/8, respectively, regarding the input 
image, are finally selected as the feature map reference set for the sub
sequent feature fusion and enhancement. 

However, max-pooling operations partially damage the details in the 
feature maps with the lower spatial resolution. Moreover, because 
convolutional operation is equally applied to all the channels of a 
capsule feature map at each layer, leading to insufficient use of the sa
liencies among the channels to obtain information-rich features and 
suppressing the channels less useful for road marking prediction. To 
address this issue, we integrate a multi-scale context feature (MCF) 
descriptor for feature augmentation and a feature channel attention 
(FCA) module for feature recalibration, respectively, over the deepest 
capsule layer in each stage (see Fig. 2). By embedding the MCF 
descriptor (see Section 3.2.2) into each stage, the output can effectively 
include contextual information at different scales without reducing road 
marking feature resolutions and details. With the FCA module (see 
Section 3.2.3) embedded into each stage, the informative road marking 
features are effectively highlighted, whereas the less salient features are 
suppressed, thereby further strengthening the road marking feature 
representation capability of the capsule feature maps.  

(2) Decoder & lateral connections 

To improve road marking extraction accuracy, the decoder is coop
eratively worked with the lateral connections to integrate the multi-level 
and multi-scale features in {F1, F2, F3, F4} to generate a high-quality 

task-oriented feature semantics. As shown in Fig. 2, first, to facilitate 
feature concatenation and feature fusion, the feature map along the 
decoder (i.e., along with the red arrow) is spatially scaled up with a scale 
of 2, which is achieved by capsule deconvolutional operations with a 
kernel size of 3 × 3, a stride of 1, and a padding of 1. For example, in the 
feature map reference set, feature map F4 (with the scale of 1/8) is up- 
sampled with a scale of 2, and concatenated with feature map F3 (with 
the scale of 1/4) through the lateral connection. 

Then, the concatenated feature map is leveraged to perform feature 
fusion by 3 × 3 capsule convolutional operation, which results in a high- 
resolution and semantically-strong feature representation, feature map 
P3. The above feature fusion process repeats downward to gradually 
fuse all the reference feature maps in {F1, F2, F3, F4}, generating three 
feature maps {P1, P2, P3}. Note that, for the first two feature fusion 
processes, feature maps, P1 and P2, maintain their channel numbers to 
the same corresponding configuration of the feature map reference set, 
that is Dp = 32. In the last feature fusion process, feature map P1, which 
combines all the scales of features, is finally processed to predict the 
road marking map with Dp = 64. In fact, feature map P1 includes a 
global feature encoding for the whole input image. The spatial features 
of the road markings are not explicitly highlighted and the background 
features are not rationally reduced. Additionally, the feature channels of 
P1 that are tightly related to road markings are not positively empha
sized, either. Therefore, it is not powerful enough to directly apply 
feature map P1 to obtain a high-quality road marking prediction map. 
Thus, to improve road marking extraction accuracy, we design two types 
of class-specific attention modules over the feature map P1, i.e., a class 
region attention (CRA) module and a class channel attention (CCA) 
module (see Section 3.2.3), respectively, to pay close attention to the 
spatial features of road markings and highlight the channels of the road 
marking features. As shown in Fig. 2, the outputs by the CRA module and 
the CCA module, respectively, are concatenated to form a powerful 
feature representation for generating a road marking prediction map. 
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Fig. 2. Architecture of the proposed ACapsFPN.  
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3.2.2. Multi-scale contextual feature (MCF) descriptor 
The MCF descriptor encodes the high-level semantic feature maps by 

leveraging atrous convolution operations [45]. An atrous rate indicates 
the stride of the convolution kernels in atrous convolutions. By adjusting 
the atrous rate, atrous convolutions can access different-size receptive 
fields with no increase of the number of kernel parameters. Assuming 
that the input capsule feature map,IMCF ∈ RH×W×64×16, contains 64 16- 
dimensional capsule features with the size of H × W pixels. As shown 
in Fig. 3, the MCF descriptor is designed as a four-parallel-branch 
structure, by which an augmented feature map (i.e., H × W × 64 ×
16) is generated to explore multi-scale contextual information with the 
designed atrous rates. Concretely, the atrous rates of 1, 2, and 3 are 
given for the first braches, respectively, and the atrous rates of 3 and 5 
for the last branch. With the given atrous rates, the four braches en
capsulates small, middle, and large ranges of contextual information, 
respectively, by 3 × 3 atrous convolution operations. Afterwards, a 1 × 1 
atrous convolution with an atrous rate of 1 is performed on each branch 
for modulating the convoluted feature channels. Along with the original 
input feature, the four-parallel-branch outputs are concatenated and 
fused through a 1 × 1 atrous convolution to finally output the feature 
map, OMCF ∈ RH×W×64×16, which encapsulates multi-scale contextual 
information without reducing feature details and resolutions. 

3.2.3. Ternary attention modules  

(1) Feature channel attention (FCA) module 

The FCA module is designed to model the interdependencies among 
the channels for strengthening feature saliency and weakening the fea
tures unconducive to prediction with a global perspective. As shown in 
Fig. 4, a road marking feature map input, IFCA ∈ RH×W×64×16, also con
tains 64 16-dimensional capsule features with the size of H × W pixels. 
Concretely,  

(1) A 1 × 1 capsule convolution operation is applied to the road 
marking feature input, IFCA, to generate a one-dimensional 
capsule feature map, A ∈ RH×W×64, containing 64 channels with 
the identical spatial size of the road marking feature map input, 
IFCA. By the 1 × 1 convolution operation, the probability prop
erties of IFCA are encoded to further model the interdependencies 
of the channels.  

(2) A global average-pooling operation is performed on feature map 
A to generate a channel descriptor, each channel of which can be 
defined by: 

ai =
1

H × W

∑

j

⃦
⃦
⃦Ui

j

⃦
⃦
⃦ (4) 

where aidenotes the squeezed value associated with the i-th channel 
of A; Ui

j is the j-th capsule in the i-th channel of IFCA. Through the global 
average-pooling operation, a scalar value is computed by spatially 
squeezing the lengths of the capsules. The obtained channel descriptor 

contains 64 channels, identical to the number of channels of feature map 
A, each of which correspondingly characterizes a global perspective of 
the feature statistics of that channel.  

(3) Afterwards, two fully-connected (FC) convolution operation are 
applied to the channel descriptor to exploit the interdependencies 
within channels in a non-mutually exclusive manner, followed by 
the two activation functions of the ReLU and the sigmoid, 
respectively. Thus, the output obtained from the second fully- 
connected operation encodes the importance probabilities of 
the channels to form a channel-wise attention descriptor, denoted 
as C ∈ R1×1×64  

(4) The channel-wise attention descriptor,C which acts as a weight 
function to enhance the contributions of the significant and 
salient channels, is multiplied to the road marking feature map 
input, IFCA in a channel-wise manner to finally output the road 
marking feature map, denoted as OFCA ∈ RH×W×64×16 by 

Ui
j = ci⋅Ui

j (5)  

where ci denotes the i-th element of C; Ui
j is the recalibrated j-th capsule 

in the i-th channel of OFCA.  

(2) Class region attention (CRA) module 

The CRA module aims to highlight the spatial features by considering 
the impacts from all the other positions on road markings. Fig. 5 shows 
the architecture of the CRA module. As shown in Fig. 5, ICRA ∈

RH×W×64×16 denotes a road marking feature input which is also 
composed of 64 16-dimensional capsule features with the size of H × W 
pixels. Concretely,  

(1) Two 1 × 1 capsule convolution operations are applied to ICRA to 
generate two one-dimensional capsule feature maps, B ∈

RH×W×64 and D ∈ RH×W×64, respectively, containing 64 channels 
with the identical size of the input road marking feature map.  

(2) Feature maps B and D are reshaped to obtain feature matrices, 
B1 ∈ RN×64 and D1 ∈ RN×64, respectively, where N = H × W. 
Then, the two resultant feature maps, B1 and D1, are computed by 
a matrix multiplication operation to generate a class region 
attention matrix, S ∈ RN×N. This can be obtained by 

S(k, l) =
exp

(∑64
m=1B1(k,m)D1(m, l)

)

∑N
n=1exp

(∑64
m=1B1(n,m)D1(m, l)

) (6)  

where S(k, l) is the element at the k-th row and l-th column of S. B1(k,m)

and D1(m, l) are the element at the k-th row and m-th column of B1, and 
the element at the m-th row and l-th column of D1, respectively. 

Kernel = 3×3
Rate = 1

Channel = 64

Kernel = 3×3
Rate = 2

Channel = 64

Kernel = 1×1
Rate = 1

Channel = 32

Kernel = 3×3
Rate = 3

Channel = 64

Kernel = 1×1
Rate = 1

Channel = 32

Kernel = 3×3
Rate = 3

Channel = 64

Kernel = 3×3
Rate = 5

Channel = 64

Kernel = 1×1
Rate = 1

Channel = 32

C Kernel = 1×1
Rate = 1

Channel = 64

Input

Kernel = 1×1
Rate = 1

Channel = 32

H×W×64×16 H×W×64×16

Output(IMCF O() MCF)
Fig. 3. Architecture of the MCF descriptor.  
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(3) Afterwards, the road marking feature input, ICRA, is reshaped to 
obtain a capsule feature matrix, T ∈ RN×64×16, and a matrix 
multiplication operation is performed by multiplying it with the 

class region attention matrix, S, to produce a recalibrated capsule 
feature matrix, which is finally reshaped to output a class region 
highlighted feature map, denoted as OCRA ∈ RH×W×64×16. 

×
1×1×64 1×1×641×1×128

H×W×64×16 H×W×64 H×W×64×16

1×1

A
C

Input Output(IFCA) (OFCA)

Ave. 
pooling

FC
+

ReLU

FC
+

Sigmoid

× Feature Multiplication

Fig. 4. Architecture of the FCA module.  

Input

H×W×64×16 ×

Reshape

Reshape
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64×N
H×W×64×16

×

Output

1×1

1×1

D

N×N

Reshape

B

N×64×16

Reshape

B1

D1

S

N = H×W

T

(ICRA O() CRA)

H×W×64

Fig. 5. Architecture of the CRA module.  

Input

×
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×
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1×1

1×1
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64×64

Reshape

G

N×64×16

Reshape

G1
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X

T
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H×W×64×16 H×W×64

Fig. 6. Architecture of the CCA module.  
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(3) Class channel attention (CCA) module 

The CCA module is designed to effectively emphasize the channel- 
wise features tightly related to the specific class features by taking 
into consideration the impacts from all the other channels on road 
markings. Fig. 6 shows the architecture of the CCA module. Similarly, a 
road marking feature input, ICCA ∈ RH×W×64×16, consists of 64 16-dimen
sional capsule features with the size of H × W pixels.  

(1) Two 1 × 1capsule convolution operations are performed on ICCA 

to obtain two one-dimensional capsule feature maps, G ∈

RH×W×64 and E ∈ RH×W×64, respectively, containing 64 channels 
with the identical size of ICCA.  

(2) Feature maps G and E are reshaped to feature matrices, G1 ∈

RN×64 and E1 ∈ RN×64, respectively. A matrix multiplication 
operation is then performed between feature matrices G1 and E1, 
followed by a softmax function to construct a class channel 
attention matrix,X ∈ R64×64. This is achieved by the following 
equation: 

X(k, l) =
exp

(∑64
m=1G1(k,m)E1(m, l)

)

∑64
n=1exp

( ∑N
m=1G1(n,m)E1(m, l)

) (7)  

where X(k, l) is the element at the k-th row and l-th column of the X, 
which measures the impact of channel k on the channel l in the input 
feature map. G1(k,m) and E1(m, l) are the element at the k-th row and m- 
th column of G1, and the element at the m-th row and l-th column of E1, 
respectively.  

(3) Afterwards, the road marking feature input, ICCA, is reshaped to 
produce a capsule feature matrix, T ∈ RN×64×16, and then a ma
trix multiplication operation is performed by multiplying T with 
X to recalibrate the capsule feature matrix, which is finally 
reshaped to output a class channel emphasized feature map, 
denoted as OCCA ∈ RH×W×64×16. 

4. Results and discussion 

4.1. Dataset and experimental setup 

4.1.1. Dataset 
In year 2020, we constructed a large UAV image dataset for road 

marking extraction tasks. We named this dataset as the RMS2020. This 
original UAV images were captured by a DJI Phantom 4 Pro system, and 
covered five different zones, a total of 10 square kilometers, in urban, 
suburban, and rural areas, Nanjing, Jiangsu province, China. The 
collected UAV images had a GSD of about 0.2 m, and then were pro
cessed to generate the RMS2020 dataset, containing about 20,000 im
ages with the image size of 800 × 800 pixels. The RMS2020 dataset 
contains remarkably challenging road marking images. The images in 
the RMS2020 dataset are characterized by different spatial distributions 
and geometric topologies, varying intensities and sizes, diverse shapes 
and environmental conditions, and even different image qualities. In the 
RMS2020 dataset, 12,000 images were used as the training subset 
(60%), 1000 images as the validation subset (5%), and 7000 images as 
the test subset (35%), respectively, for our road marking extraction tests. 

4.1.2. Model training & testing 
The ACapsFPN was trained and performed on a cloud computing 

platform equipped with ten 16-GB GPUs, a 16-core CPU, and a 128-GB 
memory. Before training, a normal Gaussian distribution with the 0.01 
standard deviation was used for drawing parameters to randomly 
initialize all layers of the ACapsFPN. The training images were orga
nized into batches and fed into the ten GPUs to construct the ACapsFPN. 
The ACapsFPN was trained for 1500 epochs, each of which contained 

two images per GPU. We trained the model with 0.001 learning rate for 
the first 1200 epochs and 0.0001 learning rate for the rest 300 epochs. 

Considering the varied orientation characteristics of road markings 
in the elevated-view UAV images, the training set was not directly 
applied to train the proposed ACapsFPN. At the training stage, to 
effectively construct a high-performance road marking extraction 
model, data augmentation was carried out to enlarge the training set. 
Specifically, we generated a horizontal mirror image for each training 
image in the horizontal direction. Both the horizontal mirror image and 
its corresponding original image were then clockwise rotated in four 
directions at a 90 degrees’ angle interval. In such a way, each training 
image in the training set was converted into eight images. Correspond
ingly, the road marking label map was also transformed to generate the 
ground truths. Therefore, after data augmentation, the final training set 
contained 96,000 images, which was eight times in size of the initial 
training set, to train the ACapsFPN. To quantitatively evaluate the 
robustness and superiority of the proposed ACapsFPN, four metrics, i.e., 
precision, recall, intersection-over-union (IoU), and F1-score, were used by 
comparing the extracted road marking results with the labelled maps. 

4.2. Road-marking extraction 

To evaluate the road marking extraction performance of our 
ACapsFPN, we applied it to the RMS2020 dataset. As shown in Table 1, 
the proposed ACapsFPN obtained a precision of 0.7366, a recall of 
0.7513, an IoU of 0.5922, and an F1-score of 0.7439, respectively, for 
road markings. The extraction results were quite promising when 
handling the complicated and challenging RMS2020 dataset. Fig. 7 il
lustrates a small group of representative road marking extraction results 
generated by the ACapsFPN. The extracted road markings were colored 
in red. Although the great variations of the road markings in spatial 
sizes, intensity appearances, geometric topologies, and complicated 
scenarios (see Fig. 7), the ACapsFPN differentiated well the road 
markings from the surrounding environments with a fairly small pro
portion of false alarms and missing detections. Concretely, due to oc
clusions caused by vehicles, pedestrians, and other objects, as well as 
varying illumination conditions, the road markings exhibited with 
different patterns and intensity incompleteness in the UAV images. In 
different areas, the geometric topologies of the road markings varied 
greatly in shapes and sizes, and the road marking distribution patterns 
and types were quite different from one area to another area. For 
instance, the road markings on the main road areas were usually simply 
distributed with generally lane markings (see Fig. 7 (a), (d), and (k)). In 
contrast, the road markings at the crosswalk areas were densely 
distributed with different types of road markings (see Fig. 7 (c), (f), (g), 
and (j)). In addition, some road markings were partially occluded by the 
on-road or overhead objects, which changed the completeness and the 
geometric topologies of the road markings (see Fig. 7 (g) and (l)). The 

Table 1 
Extracted Road Marking Results Obtained by different Methods.  

Networks Quantitative Evaluation 

precision recall IoU F1- 
score 

CapsFPN-1  0.7165  0.7346  0.5692  0.7254 
CapsFPN-2  0.7138  0.7315  0.5656  0.7225 
CapsFPN-3  0.6874  0.7011  0.5316  0.6942 
Aerial LaneNet (Azimi et al., 2019)  0.6621  0.6795  0.5045  0.6707 
Modified U-Net (Wen et al., 2019)  0.6388  0.6597  0.4805  0.6491 
Deeplabv3 (Chen et al., 2017)  0.7032  0.7215  0.5531  0.7122 
PSPNet (Zhao et al., 2017)  0.7026  0.7207  0.5522  0.7115 
U-Shaped Capsule Network (Ma et al., 

2021a,b)  
0.6681  0.6837  0.5104  0.6758 

SA-CapsFPN (Yu et al., 2021)  0.7143  0.7322  0.5663  0.7231 
HRNet (Wang et al., 2021)  0.7106  0.7287  0.5619  0.7195 
DFPN (Chen et al., 2021)  0.7053  0.7231  0.5553  0.7141 
ACapsFPN  0.7366  0.7513  0.5922  0.7439  
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shadows cast on the road markings from the nearby objects also influ
enced the correct identification of the complete road marking regions 
(see Fig. 7 (b), (e), and (k)). Moreover, in some images, the contrasts 
between the road markings and their road environments were extremely 
low or quite fuzzy (see Fig. 7 (i) and (l)), which brought great challenges 
to accurately segment these road markings from the UAV images. 
Fortunately, for the challenging RMS2020 dataset, by adopting a feature 
pyramid architecture by fusing the capsule features at different levels 
and different scales, the ACapsFPN enhances the feature representation 
capability and the localization accuracy. Next, embedded with the MCF 
descriptor and the FCA module, the ACapsFPN is capable of using 
different scales of contextual properties and highlighting the salient and 
informative features, thereby further improving the capability of road 
marking feature representation. Additionally, designed with the CRA 
and CCA modules, the ACapsFPN concentrates on the spatial features 
related to the road markings and the feature channels tightly linking 
with the road markings. Therefore, the proposed ACapsFPN performed 
promisingly in processing the UAV images containing road markings of 
different challenging scenarios and provided an acceptable road 

marking extraction result. However, as shown in Fig. 7, some objects (e. 
g., traffic poles or some doodling lines) were falsely detected as road 
markings due to their similar textural and geometric properties to the 
road markings. Moreover, caused by heavy shadows, severe occlusions, 
and abrasions, some road markings were partially hidden into the 
background or disjointed into several parts. Thus, the completeness of 
these road markings were failed to be maintained. 

Aiming at further assessing the applicability and transferability of 
the ACapsPFN, we also collected a new set of UAV images. To facilitate 
testing, all the images were cropped into patches of 800 × 800 pixels 
with an overlap size of 200 pixels. The road marking extraction results of 
each patch were fused to generate the final extraction results of the 
corresponding UAV image. As shown in Fig. 8, we overlaid the extracted 
road markings onto the raw UAV images. We found that the proposed 
ACapsPFN was capable of accurately extracting most road markings 
shadowed by trees and buildings, or varying illumination conditions. 
This is because multi-scale feature abstraction and fusion contributes to 
the inference of road markings. Of course, our ACapsPFN still faced the 
challenges of the severely-eroded and largely-occluded road markings. 

Fig. 7. A close view of the road marking extraction results obtained by the ACapsFPN.  
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The road markings occluded by objects, such as vehicles and trees, were 
not continuously delineated due to no road making data appeared on the 
images. There were some misclassified road markings because of the 
high spectral similarity of road markings and linear objects, such as the 
arms of light poles. Note that lane markings were almost completely 
extracted (see Fig. 8). Precisely and accurately identifying and localizing 
lane road markings is crucial for road asset management and budget 
allocation for road maintenance. Overall, the road marking extraction 
performance showed that the ACapsFPN had a promising generalization 
capability and behaved accurately and competitively in handling varied- 
shape road markings of different self-conditions in varying scenarios. 
Moreover, to evaluate the computational performance of the proposed 
ACapsPFN, the processing time was also recorded on the test datasets at 
the road marking extraction stage. On average, the ACapsPFN achieved 
a processing speed of about 16 image patches per second on a GPU. 

4.3. Ablation analysis 

As ablation experiments, we further demonstrated the competitive 
performance achieved by the MCF descriptor and the ternary feature 
attention modules. Specifically, the MCF descriptor functioned to collect 
and aggregate multi-scale contextual road marking information with 
different-size receptive fields. The FCA module aimed to emphasize the 
salient and information-rich features and suppress the useless ones to 
strengthen the capability of its road marking feature representation. The 
CRA module focused on the spatial features related to road markings, 
and the CCA module highlighted the feature channels tightly associated 
with road markings, which provided a high-quality road marking 
feature representation. All of these modules improved the accuracy of 
pixel-wise road marking extraction. To conduct the ablation experi
ments, we constructed three networks on the basis of the proposed 
ACapsFPN. Concretely, first, we removed the CRA and the CCA modules 
(integrating only the MCA and the FCA modules) from the ACapsFPN. 
We named the resultant network as the CapsFPN-1. Then, we removed 
all the MCA and the FCA modules (integrating only the CRA and the CCA 
modules) at each stage of the ACapsFPN. We named the resultant 
network as the CapsFPN-2. Finally, we removed the MCF descriptor and 
the ternary feature attention modules from the ACapsFPN, resulting in a 
pure capsule feature pyramid network without any feature augmenta
tion and feature attention mechanisms. We named the resultant network 
as the CapsFPN-3. We trained the three networks with the same training 
and validation sets, as well as the same data augmentation strategy. 

Afterwards, these three constructed networks were applied to the test 
set to evaluate their performances on road marking extraction. Table 1 
lists the quantitative results obtained by the three networks. Obviously, 
without the feature augmentation and the ternary feature attention 
modules, the road marking extraction accuracy of the CapsFPN-3 was 
significantly degraded. The accuracy degradation was mainly due to the 

following factors: the very small-size road markings, the road markings 
occluded severely by the nearby objects, the worn-out road markings, 
the road markings covered with heavy shadows, or the road markings 
showing quite low contrasts with their road surroundings. Thus, the 
CapsFPN-3 behaved less effectively in processing such challenging road 
marking scenarios. However, the overall performance was still accept
able. This results from the use of the capsule neurons to characterize 
high-order entity features and the design of the feature pyramid network 
architecture to fuse multiscale features. In contrast, with the embedding 
of the feature augmentation modules and the ternary feature attention 
modules for, respectively, aggregating multi-scale contextual properties 
without losing feature resolutions and details and highlighting the 
contributions of the informative and class-specific features, the road 
marking extraction performances were dramatically improved by the 
CapsFPN-1 and CapsFPN-2. Fig. 9 shows the comparative results. Fig. 9 
(a) and (b) shows an original image and its corresponding ground truth. 
Fig. 9 (c) – (f) demonstrates the results obtained by ACapsFPN, CapsFPN- 
1, CapsFPN-2, and CapsFPN-3, respectively. We found that our 
ACapsFPN and CapsFPN-1 partially extracted some road markings 
occluded by trees, whereas CapsFPN-2 and CapsFPN-3 failed to extract 
them, as shown in the green boxes. This indicated that the MCF 
descriptor contributes to include more contextual information by using 
different atrous rates. Especially, CapsFPN-3 failed to extract the road 
markings of a bus stop region largely occluded by tree shadows. Through 
ablation experiments, we concluded that the MCF descriptor and the 
ternary feature attention modules (i.e., the FCA, CRA, and CCA modules) 
contributed positively and powerfully to the upgradation of the road 
marking extraction accuracy. Therefore, due to the cooperation of these 
modules, the proposed ACapsFPN showed advantageous performance in 
handling the UAV images containing road marking instances of different 
geometric topologies and distributions, varying intensities and sizes, 
and diverse shapes and environmental conditions. 

4.4. Comparative tests 

To further evaluate the robustness of our ACapsFPN in road marking 
extraction tasks, we compared it with recently-presented road marking 
extraction methods and semantic segmentation methods, i.e., Aerial 
LaneNet (Azimi et al., 2019), Modified U-Net (Wen et al., 2019), 
Deeplabv3 (Chen et al., 2017), PSPNet (Zhao et al., 2017), U-Shaped 
Capsule Network (Ma et al., 2021a,b), SA-CapsFPN (Yu et al., 2021), 
HRNet (Wang et al., 2021), and DFPN (Chen et al., 2021). Specifically, 
Aerial LaneNet used an FCN architecture. PSPNet is a multi-scale scene 
parsing network, which uses pyramid pooling (SPP) module for image 
segmentation. DeepLabv3 employs an atrous spatial pyramid pooling 
(ASPP) module to extract the contextual features at different scales. U- 
Shaped Capsule Network and SA-CapsFPN were based on capsule net
works by adopting a U-Net architecture and an FPN architecture, 

Fig. 8. Road marking extraction results obtained by the ACapsFPN.  
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respectively. Moreover, besides SA-CapsFPN and our method, DFPN also 
used an FPN architecture. Specifically, multilevel features were 
considered and properly fused in some methods for improving the pixel- 
wise road marking extraction accuracy, and attention mechanisms were 
also utilized in some methods to further enhance the feature represen
tation capability. For fair comparisons, the same training, validation, 
and test sets, as well as the same data augmentation strategy were used 
to train and evaluate the comparative models. Table 1 shows the 
quantitative road marking results obtained by these models. 

As shown in Table 1, SA-CapsFPN achieved the better overall road 
marking extraction accuracies. In contrast, Modified U-Net, Aerial 
LaneNet, and U-Shaped Capsule Network methods achieved less effec
tively than the other methods. The rest methods showed similar road 
marking extraction performances. For SA-CapsFPN, DFPN, and 
ACapsFPN, an FPN architecture was used for extracting and fusing 
multi-level and multi-scale features. For Modified U-Net, as a special 
encoder-decoder network, road marking features were extracted by a 
contraction path, the details were restored via a corresponding expan
sion path, and then the two paths were connected by skip connections to 
enhance feature information. However, for the road markings in the 
RMS2020 dataset, some road markings had extremely challenging self- 
conditions and complicated surrounding environments. The simple ar
chitectures, such as U-Net and FCN, performed less promisingly in 
correctly segmenting road markings. For the U-Shaped Capsule 
Network, capsule networks contributed to the improvement of road 
marking extraction due to its capsule based feature representations. For 
SA-CapsFPN, the MCF descriptor and the FCA module were integrated 
into the FPN architecture to exploit multi-scale contextual information 
and emphasize useful channel features, improving the capability of 
feature representation. 

Figure 9 shows the road marking results obtained by different 
methods. Visual inspection also demonstrated that ACapsFPN 

outperformed other comparative methods. For example, as shown in the 
black boxes, ACapsFPN and SA-CapsFPN were capable of extracting the 
most road markings of the bus stop region, while Aerial LaneNet, 
Modified U-Net, and U-Shaped Capsule failed to deal with these road 
markings occluded by tree shadows. For the lane markings in the green 
boxes, all the methods faced this challenge that the road markings were 
completely occluded by the trees. Because of this kind of occlusion 
caused by trees, buildings, or image perspectives, no lane marking data 
can be shown on the image, resulting in the failure of road marking 
extraction. Comparatively, our ACapsFPN was superior to the eight 
compared methods in road marking extraction because of the following 
reasons: (1) the capsule FPN architecture contributes to the extraction 
and fusion of multi-level high-order features, (2) the MCF descriptor 
helps effectively exploit multi-scale contextual information at a high- 
resolution perspective, and the FCA module emphasizes the important 
and salient channel features, (3) the CRA module and the CCA module 
highlight the spatial features connected with the road markings and the 
feature channels tightly related to the road markings. To sum up, 
comparative analysis demonstrated that the ACapsFPN provided an 
effective and promising road marking extraction method by using high- 
resolution UAV images. 

5. Conclusions 

This paper presented a novel attentive capsule feature pyramid 
network, named ACapsFPN, to accurately and precisely segment road 
markings. In the ACapsFPN, a deep capsule FPN architecture, which was 
capable of extracting and fusing multi-level capsule features at different 
scales, was employed to output high-quality and task-aware feature se
mantics for generating a highly accurate road marking map. By inte
grating the MCF descriptor and the FCA module into each stage of the 
hierarchical encoder, the ACapsFPN can rapidly exploit contextual 

Fig. 9. Road marking extraction results obtained by the comparative methods. (a) a raw image, (b) ground truth, (c) ACapsFPN, (d) CapsFPN-1, (e) CapsFPN-2, (f) 
CapsFPN-3, (g) Aerial LaneNet, (h) Modified U-Net, (i) Deeplabv3, (j) PSPNet, (k) U-Shaped Capsule, (l) SA-CapsFPN, (m) HRNet, and (n) DFPN. 
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properties at multiple scales with a high-resolution view, and enhance 
the channel-wise significant and salient features, which functioned 
positively to further improve the capability of feature abstraction. In 
addition, by designing the CRA module and the CCA module over the 
fused features, the ACapsFPN concentrated on the spatial features of 
road markings and highlighted the feature channels tightly related to the 
road markings, which effectively suppressed the influence of the back
ground and provided a high-quality road marking feature encoding. We 
evaluated the ACapsFPN on the RMS2020, a large-volume high-resolu
tion UAV image dataset, and gained an excellent performance in 
extracting road markings with different spatial distributions and geo
metric topologies, varying intensities and sizes, diverse shapes and 
environmental conditions, and even different image qualities. Quanti
tative assessments demonstrated that a precision of 0.7366, a recall of 
0.7513, an IoU of 0.5922, and an F1-score of 0.7439, respectively, were 
achieved in segmenting road markings from the high-resolution UAV 
images. Comparative experiments with eight state-of-the-art methods 
also convinced the competitive and advantageous performance of the 
ACapsFPN in road marking extraction tasks. 
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