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A B S T R A C T   

Accurate pavement crack extraction is significant for pavement routine maintenance and potential traffic disaster 
minimization. Due to unordered data formats, intensity distinctions, and crack shape variations from point 
clouds captured by mobile laser scanning (MLS) systems, many preceding rule-based approaches and learning- 
based approaches cannot achieve high extraction accuracy and efficiency. To tackle these problems, we 
develop a saliency-based dilated graph convolution network, named SD-GCN, for pavement crack extraction 
from MLS point clouds. This network mainly consists of four modules. First, Module I is designed to remove off- 
ground point clouds. Next, two feature saliency maps are constructed to leverage both height and intensity in
formation in Module II. Then, in Module III, the inherent point features and high-level edge features in multiple 
local neighborhoods are further extracted using a cylinder-based dilated convolution strategy. Finally, an MLP- 
based net architecture is designed for crack extraction refinement in Module IV. Experimental results exhibit that 
the SD-GCN model delivers an average of precision, recall, and F1-score of 79.5%, 77.1%, and 78.3%, respec
tively, which outperforms state-of-the-art methods in terms of extraction accuracy and computational efficiency.   

1. Introduction 

Accurate and automated road health condition extraction is signifi
cant to obtain fundamental road information for extensive intelligent 
transportation system (ITS)-related applications, including road con
struction (Shi et al., 2016), pavement maintenance and rehabilitation 
(Dung and Anh, 2019), and road object recognition (Pu et al., 2011). 
However, due to heavy-duty or overloaded trucks, weather and envi
ronment conditions, and late pavement repair, road surfaces in urban 
road environments usually suffer from a diversity of cracks with 
different sizes, distinct structures, and various levels (see Fig. 1). Such 
pavement cracks or road distresses have considerably negative in
fluences on supporting smooth traffic flows, ensuring reasonable driving 
behaviors, and even reducing severe traffic threats (Cao et al., 2020). 
Therefore, accurate pavement crack extraction is essential for potential 
traffic disaster minimization and pavement security improvement, 
which greatly promotes the advancement of high-definition (HD) maps 

and digital twins, especially in complicated urban road environments (Li 
et al., 2020). 

Initially, pavement crack extraction is mainly conducted based on 
regular in-situ field measurements. Such manual visual inspection 
method highly depends on the expertise of inspectors, which are very 
unsafe, labor-intensive, and time-consuming. Benefitting from the rapid 
advancement of high-quality optical sensors and computer vision tech
niques, many studies have been performed for pavement distress in
spection based on the digital images collected by satellites, unmanned 
aerial vehicles (UAVs), and airborne or mobile mapping systems (MMS). 
Compared to manual inspection, the image processing methods are safer 
and more effective, particularly for express highways and complex road 
scenarios. However, due to the varying illumination conditions, diverse 
crack structures, inevitable shadows, and low contrast with surround
ings, it is still a difficult task to precisely and robustly extract pavement 
cracks from optical images (Hsieh and Tsai, 2020). More recently, mo
bile laser scanning (MLS) systems consisting of LiDAR sensors are widely 
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employed to provide highly precise and dense 3D point clouds with 
reliable geospatial information. The point clouds acquired by high-end 
laser scanners can reach over 10,000 pts/m2 with a driving speed up 
to 100 km/h, while it handles the dilemmas for both terrestrial and 
airborne LiDAR systems to achieve such high survey flexibility and 
measurement accuracy (Ma et al., 2021). 

Meanwhile, deep learning-based models have exhibited their supe
rior performance for crack extraction depending on the enhanced 
feature encoding capabilities from 3D point clouds (Yu et al., 2021). 
Nevertheless, most preceding methods pose three major shortcomings. 
(1) Unlike 2D images with regular grid structures, 3D point clouds 
collected by LiDAR systems are in unstructured and unordered data 
formats. Thus, most studies typically focus on transforming 3D point 
clouds to 2D images before feeding them into deep learning frameworks. 
This data dimension reduction scheme, yet, results in unnecessary to
pological and spatial information loss. Notably, such data trans
formation methods neglect the height information of 3D point clouds, 
which plays a vital role in pavement crack extraction. (2) Because of the 
type uncertainties and distribution diversities of pavement cracks, it 
faces a considerable challenge to directly process point clouds and 
accurately extract pavement cracks, particularly for complex and large- 
scale road scenarios. Besides, the geospatial correlations and adjacency 
relationships among neighboring points are not thoroughly explored. (3) 
The 3D point-based deep learning methods normally bring in a large 
number of parameters, and the computational costs greatly increase in 
the more complex and deeper net architecture. 

To solve these drawbacks, we explore the practicality of pavement 
crack extraction from MLS point clouds by designing a saliency-focused 
graph convolutional network with the assistance of dilated convolu
tions. Typically, the unstructured point clouds can be well represented 
by a graph structure, while the nodes denote the unevenly distributed 
point clouds and the edges indicate the spatial relationships between 
two adjacent points. Thus, graph convolutional networks (GCN) are 
effective to characterize the local features of different points, contrib
uting to increasing receptive fields and enhancing feature representation 
capabilities. The significant contributions of this paper are emphasized 
as threefold aspects. (1) We designed two salient feature mapping 
spaces, i.e., height and intensity feature maps, which could efficiently 
and completely represent the point characteristics to amplify the in
tensity differences and height distinction between crack points and 
pavement points. (2) We proposed a novel cylinder-based dilated 
convolution architecture. To the best of our knowledge, it is the first 
study that integrates graph convolutions with dilated convolution 
strategy. This net architecture could not only construct strong adjacent 
relationships among neighboring points but increase the receptive field 
of graph convolutions with a reduced computation complexity. (3) We 
performed a comparative analysis to prove that our proposed methods 
could outperform state-of-the-art (SOTA) algorithms regarding accuracy 
and efficiency. 

We design the rest parts as follows. Section 2 introduces the previous 
studies about pavement crack extraction. Section 3 presents the devel
oped pavement crack extraction method. Section 4 indicates the datasets 

and evaluation metrics used in this work. We analyze the experimental 
results in Section 5 and summarize this study followed by future 
research trends in Section 6. 

2. Related work 

2.1. 2D Image-based methods 

Different photogrammetric sensors and surveying platforms, such as 
satellite-mounted, airborne-mounted, drone-mounted, and vehicle- 
mounted imaging systems, provide various remotely sensed images 
with spatial, spectral, and texture information for pavement crack 
extraction. Pavement cracks on optical images commonly show irregular 
geometric topologies and low contrast compared with surroundings 
(Ragnoli et al., 2018). Accordingly, many image-based methods, 
including threshold-based segmentation (Kamaliardakani et al., 2016), 
edge detection (Li et al., 2018), and region search (Tan and Li, 2019), 
have been proposed to conduct crack extraction tasks. 

Recently, benefiting from the inherent features derived from optical 
imagery, many deep learning-based methods have achieved impressive 
performance with improved efficiency and accuracy for pavement 
health inspection. Pan et al. (2018) implemented several classical ma
chine learning methods, including support vector machine (SVM), arti
ficial neural network, and random forest, to recognize pavement cracks 
from multispectral pavement images obtained from UAVs. A pixel-level 
convolutional neural network (CNN) architecture was proposed, called 
CrackNet (Zhang et al., 2017), for accurate concrete crack extraction 
without the assistance of pooling layers. CrackNet can directly learn the 
inherent features from input images and generate various feature maps 
without down-sampling operations. As the improved version, CrackNet- 
V (Fei et al., 2020) was accordingly proposed for automated pixel-wise 
crack extraction with fewer training parameters and deeper network 
architecture, contributing to enhanced extraction accuracy and reduced 
computational cost. A CNN-based deep learning framework was devel
oped to detect pavement cracks without the conjugation of image pro
cessing techniques for feature extraction (Cha et al., 2017). 

Moreover, according to the orthoframes collected by a mobile 
mapping system, a deep learning framework was developed towards the 
implementation of the detector for pavement distress detection (Riid 
et al., 2019). Zou et al. (2018) introduced the DeepCrack model for 
automatically extracting pavement cracks in an end-to-end way 
depending on the multi-scale convolutional features. Furthermore, a 
deep learning-based architecture was introduced, called feature pyra
mid and hierarchical boosting network (FPHBN), to effectively extract 
pavement cracks (Yang et al., 2019). This method combined context 
information with low-level features derived from input images in a 
pyramid pattern, while balancing the contributions of different input 
training samples in a hierarchical pattern. Additionally, Yu et al. (2020) 
developed a capsule-based neural network for crack extraction from 
pavement images by designing a feature pyramid architecture and 
fusing different levels of capsule features. Such image-based deep 
learning architectures have provided promising solutions in crack 

Fig. 1. Pavement cracks with different health conditions.  
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extraction. Due to the poor continuity of cracks, inhomogeneous in
tensity, and high sensitivity to ambient brightness, however, it remains a 
quite difficult task to precisely extract pavement cracks from optical 
images, especially in complex urban road conditions. 

2.2. 3D Point-based methods 

With the tremendous development of laser scanning techniques and 
decreasing costs of commercial mobile LiDAR systems, many research 
efforts have been focusing on pavement crack extraction from 3D point 
clouds (Ma et al., 2018). Unlike 2D optical images, 3D point clouds 
present more precise spatial coordinates and intensity information that 
is independent of ambient brightness, conducing to more accurate 
pavement crack extraction results. 

The pavement surfaces were firstly extracted based on the vehicle 
trajectory data collected by mobile LiDAR systems. Then, the anomalous 
seed points were identified using geometric analysis of individual scan 
lines, and local neighborhood analysis was conducted to determine 
whether such seed points belong to pavement cracks (Ravi et al., 2021). 
Additionally, to take advantage of advanced image processing tech
niques, Zhong et al. (2020) introduced a pavement crack extraction 
approach by converting MLS point clouds into regular grid structures. 
This study introduced a 2D index for each 3D point with respect to its 
acquisition time or incident angle. Then, crack points were detected by 
considering both intensity and height differences. Crack curves were 
finally generated depending on morphological filtering and thinning 
algorithms, followed by the Freeman code method. Xu and Yang (2019) 
proposed a unique strategy for efficient pavement crack extraction from 
terrestrial laser scanning (TLS) point clouds by optimizing signal-to- 
noise ratio gradient for Gaussian filtering. Li et al., (2019a) performed 
a random forest classification (RFC) method using LiDAR point clouds 
captured by UAVs. In this method, by analyzing both spatial and spectral 
features of pavement cracks, a total of 48 multi-scale and multi- 
dimensional features were extracted depending on intensity and 
height information of point clouds, and such features were subsequently 
used as inputs of the RFC method for crack extraction. 

Furthermore, an iterative tensor voting (ITV)-based framework was 
proposed for automated crack extraction (Guan et al., 2014). Firstly, the 

pavement points collected by an MLS system were separated from non- 
road points depending on vehicle trajectory data. Then, such pavement 
points were transformed into georeferenced feature images by an 
improved inverse distance weighted (IDW) method. Finally, the crack 
candidates were detected based on the ITV-based crack extraction 
framework, followed by a morphological thinning algorithm. Mean
while, the Otsu thresholding approach was first used to extract intensity 
differences from MLS point clouds for crack skeleton recognition, fol
lowed by a spatial density filter for noise removal. Then, a Euclidean 
distance clustering algorithm was performed to group crack points into 
different crack lines. Finally, crack skeletons were generated using an 
L1-median line-shaped extraction method (Yu et al., 2014). These rule- 
based or thresholding-based approaches usually require a wealth of 
prior knowledge, leading to poor practical applicability in complex 
urban road conditions. Hence, it is considerably challenging for these 
methods to accurately and robustly extract pavement cracks with low 
connectivity and irregular geometric topologies. 

3. Method 

In this section, we present the technical and practical implementa
tions of the proposed deep learning framework, named saliency-based 
dilated graph convolution network (SD-GCN), for accurate and effi
cient point-wise pavement crack extraction using MLS point clouds. This 
network consists of four modules: data preprocessing, feature mapping 
and saliency construction, cylinder dilated graph convolution, and 
multi-layer perceptron (MLP)-based prediction. 

Fig. 2 details the workflow of the proposed SD-GCN framework. 
More specifically, Module I is designed to remove the off-road point 
clouds from raw MLS point clouds for computational efficiency 
enhancement using an improved curb-related pavement extraction 
approach. In Module II, two feature maps are first created to boost the 
height and intensity saliency of pavement crack points by a cotangent 
function. Next, a fixed-radius nearest neighbor progressive competition 
(FR-NNPC) approach (Zhou et al., 2019) is applied to search candidate 
points and then generate height saliency and intensity saliency matrices. 
In Module III, the inherent point features and edge features in multiple 
local regions are further derived by developing a cylinder-based dilated 

Fig. 2. Workflow of the SD-GCN model.  
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convolution strategy. Finally, in Module IV, an MLP-based net archi
tecture is designed for binary classification result refinement, and 
pavement crack points are thus extracted. 

3.1. Data pre-processing 

Because we mainly focus on pavement cracks in this work, the off- 
road objects (e.g., poles, buildings, and cars) in raw point clouds are 
first removed using a revised curb-related pavement extraction method 
for memory cost reduction and computational efficiency improvement. 
The experimental details and parameter settings of this pavement 
extraction method were presented in Ma et al. (2019). Then, to achieve 
the lightweight end-to-end neural networks and boost the computa
tional speed, we employ the farthest point sampling (FPS) down
sampling method (Qi et al., 2017a) to decrease the number of pavement 
point clouds. More specifically, only 1% of the total number of points in 
each point cloud segment is remained and then used as the inputs for 
feature mapping and saliency construction tasks. 

3.2. Feature mapping and saliency construction 

3.2.1. Feature mapping space construction 
Compared to the surrounding pavement points, the crack points 

usually show lower height and intensity values. Moreover, these crack 
points have uneven data distributions and irregular geometrical shapes. 
In contrast, pavement points on flat terrains are normally located in a 
horizontal planar with similar heights. Because of delayed road main
tenance and dusty road surfaces, both height and intensity differences 
between pavement points and crack points are quite small, which makes 
accurate road crack extraction challenging. Thus, two feature maps (i.e., 
height feature map and intensity feature map) are constructed to 
enhance the height and intensity saliency of crack points. 

The point clouds obtained from MLS systems contain spatial infor
mation (i.e., X, Y, Z) and intensity (R) information. For each point pi =

(xi, yi, zi, ri), i = 1, 2, ⋯, n, where n is the total number of input point 
clouds, the new height feature (HF) and intensity feature (IF) can be 
calculated as follows: 

HFi = cot(
1

1 + e− λ×zi
) (1)  

IFi = cot(
1

1 + e− λ×ri
) (2) 

where HFi and IFi denote the new salient height features and in
tensity features of each point pi, cot(•) indicates the cotangent function. 
λ is a predefined coefficient, which indicates the transformation degree 
between the original height and intensity features to the new ones. 
Specifically, λ = 1 is set in this paper. 

In this paper, both HF and IF are designed to amplify intra-class 
compactness and alleviate inter-class imbalance. Consequently, we 
generate two new feature maps, i.e., the height feature map (HFM) and 
intensity feature map (IFM), respectively. For each point pi, we apply 
both Eqs. (1) and (2) to convert original inputs pi into two mapping 
outputs mi = (xi, yi, zi,HFi) and ni = (xi,yi,zi,IFi), respectively. Then, we 
can obtain two output datasets, i.e., M = {m1,m2,⋯,mn} and N = {n1,

n2,⋯, nn}. Such datasets can be further employed as inputs for feature 
encoding and saliency construction in the process of pavement crack 
extraction. 

3.2.2. Saliency matrix 
In both HFM and IFM feature mapping spaces, the feature saliency is 

further estimated by calculating the distances from the normal of each 
point to the principal normal of the input point clouds. For an input 
point cloud, the centroid of this point cloud is regarded as the principal 
normal vector. Given ∀mi, mj ∈ M, we compute the height feature dis
tance (HFD) D m using the following equation: 

D m(mi,mj) = ‖mi − mj‖2 (3) 

Where ‖ • ‖2 represents the Euclidean distance. Likewise, the in
tensity feature distance (IFD) D n could be also calculated using the same 
operation. 

In addition, the FR-NNPC method is employed to obtain the sur
rounding points of each point in the datasets M and N, respectively. In 
comparison with K-nearest neighbors (KNN), the FR-NNPC algorithm 
uses the fixed radius search and neighbor progressive competition rules 
to search candidate points and compute their scores, ensuring the sum of 
these scores of crack points is higher than pavement points. Because 
there is a problem of the imbalance of classes in the dataset created in 
this paper, resulting in the number of pavement points is greatly higher 
than the number of crack points. Accordingly, the FP-NNPC algorithm 
could capture the feature differences magnified for all points during the 
HFM and IFM space construction stages, addressing the inter-class 
imbalance dilemma with few manual parameter settings. The 
following equation is performed to determine the scores: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Scrack = IR ×
Pall − Lp

Pall − 1 −
̅̅̅̅̅
IR

√

Spavement = − (IR(
Lp

Pall
)
)

(4) 

where Pall denotes the total number of input point clouds, IR repre
sents the imbalance ratio. In a binary classification problem, the 
imbalance ratio is typically defined to measure the degree of imbalance 
of a specific dataset. The higher the imbalance ratio is, the higher scores 
will be assigned to few training samples, namely crack points in this 
study. In this paper, IR = Pmaj/Pmin is applied to determine the imbalance 
ratio, where Pmaj and Pmin represent the number of point samples of the 
majority (i.e., pavement points) and minority (i.e., crack points) cate
gories, respectively. Lp denotes the grade value of samples. If a point pi 

belongs to cracks, it will be assigned by lower grade values but higher 
scores than pavement points, and vice versa. 

Furthermore, the height saliency matrix M n×n = (M 1,M 2,⋯,M n) of 
the dataset M and the intensity saliency matrix F n×n = (F 1,F 2,⋯,

F n) of the dataset N are generated, respectively. The height saliency 
vector of mi is constructed as M i = (mi1, mi2, ⋯, min), mij(j ∈ [1, n]) is 
computed by the following equation: 

mij =

{
1, ifD m

(
mi,mj

)
≤ R

0, else (5) 

where R indicates a fixed radius (or cutoff distance), it is obtained 
from the mean square Euclidean distance between neighboring points. 
Similarly, the intensity saliency vector of ni is constructed as F i = (fi1,

fi2, ⋯, fin), nij(j ∈ [1, n]) can be also calculated by repeating the above 
operations. 

3.3. Cylinder dilated graph convolutions 

Although CNNs have been demonstrated to achieve dominant per
formance in various fields, it is still challenging to solve problems with 
non-Euclidean data, particularly for unordered 3D point clouds (Li and 
Baciu, 2021). Accordingly, graph convolutions are proposed to obtain 
local geometrical features, as well as edge features between a discrete 
point and its neighboring points. These discrete points are considered as 
nodes, while the feature connections between two adjacent points are 
considered as edges in a graph structure. Moreover, in the computer 
vision and image processing domains, dilated convolutions are devel
oped to decrease spatial information loss caused by pooling operations, 
which expands the convolution kernel and amplifies the receptive field 
with a relatively small number of parameters. (Li et al., 2019b). For 
instance, Zhou et al. (2018) employed dilated convolutions in both 
cascade and parallel modes to preserve detailed spatial and texture in
formation, and thus significantly enhanced the road segmentation 
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accuracy from satellite images. 
In this paper, we employ dilated aggregation operations in a graph- 

based convolutional net structure for receptive field adjustment without 
downsizing the resolutions of feature maps. To this end, we first propose 
a cylinder-based dilated convolution strategy to partition the input 
feature points obtained from the HFM feature space. Then, the Edge
Conv operation in the DGCNN network (Wang et al. 2019) is used to 
capture fine-grained geometric features and global shape properties of 
road cracks within each cylinder point cloud space. 

Specifically, an input point cloud named PC is partitioned into many 
cylinder point cloud subsets with a size of R and H, where R is the radius 
of the base of the cylinder in the XY plane and H is the height of the 
cylinder (see Fig. 3). In particular, the value of H is ascertained by the 
maximum height value of all point clouds. D is the dilation rate, refer
ring to the number of cylinder intervals in this paper. Consequently, the 
cylinder dilated convolutions return interval cylinder point cloud sec
tions in the HFM feature space by skipping every D cylinders. As illus
trated in Fig. 3, the white cylinder point cloud spaces are discarded, 
while the green ones are kept for computational cost reduction. 

Inspired by the EdgeConv proposed in the DGCNN network, we 
advocate a multi-scale EdgeConv as the classifier to accurately extract 
pavement cracks within each cylinder point cloud section. DGCNN ap
plies the EdgeConv operation to capture geometrical features and edge 
structures in local areas. Unlike conventional graph convolutions 
introduced in DGCNN, the graphs constructed in this paper are in mul
tiple scales instead of a fixed scale. To this end, within each cylinder- 
based HFM feature space, the K-nearest neighbors of a point are first 
ascertained in multiple scales, i.e., k = 16,32 and 64, respectively. 
Then, all features captured in multiple scales are combined together as 
the new inputs to feed into the following multi-scale EdgeConv archi
tectures. Thus, by performing multi-scale EdgeConv operations, not only 
point-wise geometrical features but edge descriptive features among 
different points could contribute to encoding more inherent features in 
multiple local neighborhoods. 

Furthermore, this multi-scale EdgeConv descriptor is constructed 
depending on a channel-based symmetric aggregation processing on the 
edge features from all points, and a max operation is used to reduce the 
computational consumption. In each multi-scale EdgeConv module, a 
symmetric edge function is adopted to catch both the local neighbor 
structures and global characteristics in an effective way using the 
following equation: 

gψ(xi, yi) = gψ(xi, xj − xi)/2 (6) 

where gψ indicates a nonlinear parameterized function, xi and xj 

denote the X coordinate of two adjacent points, respectively. Likewise, 
in the IFM feature space, the same cylinder-based dilated partition 
strategy is conducted to divide the input points into many point cloud 

sections, followed by the multi-scale EdgeConv operation for learning 
more high-level features. 

3.4. MLP-based prediction Module 

Finally, the fused features learned from both HFM and IFM feature 
spaces through several multi-scale EdgeConv operations are fed into an 
MLP-based prediction module, as depicted in Fig. 2. This prediction 
module uses three MLP layers with 1 × 1 convolutions on the fused 
features of each point to output the point-wise binary classification re
sults, i.e., pavement points and crack points. 

3.5. Implementation details 

The developed SD-GCN model was developed and evaluated using 
Python 3.6.9, Tensorflow 2.3.0, Nvidia® RTX 3090 with 24 GB memory, 
Intel® I7-11700 8-core CPU @2.5 GHz, and 64 GB RAM on the Ubuntu 
18.04 operating system. Batch normalization and ReLU activation 
function were used after each convolutional operation. Moreover, the 
built-in Adam optimizer in Tensorflow was employed for model opti
mization. Several hyperparameters, including the initial learning rate 
and batch size, were also fine-tuned at the training stage to ascertain the 
optimal settings. According to multiple experiments and prior knowl
edge, the batch size and dropout rate were predefined as 32 and 0.5, 
respectively. The initial learning rate was 0.0001 with a decreasing rate 
of 20% after every 20 epochs, while a total of 200 iterations was set to 
train the developed model. 

4. Dataset and evaluation matrix 

4.1. Experimental data 

In this work, the MLS point clouds were collected by a RIEGL-VMX 
450 system in Qinghai-Tibet (QT) Freeway, China, which has a total 
length of 1,937 km and reaches its highest evaluation about 5,230 m at 
Tanggula Mountains Pass. Because both urban roads and plain highways 
are frequently maintained, pavement cracks on such road sections are 
repaired in time. Due to the serious weather conditions, thawing 
permafrost, and variable topography of the QT Freeway, however, it is 
considerably challenging to regularly maintain and recover pavement 
cracks. Fig. 4(a) shows the pavement cracks captured by the RIEGL-VMX 
450 MLS system. 

The RIEGL-VMX 450 MLS system, consisting of two high-end RIEGL 
VQ-450 laser heads, can reach a 400 lines/sec scanning speed and an 
800 m effective measurement range in an “X-shape” configuration 
pattern. The maximum absolute positioning accuracy could achieve 8 
mm with an average driving speed of 80 km/h on QT Freeway. Table 1 
indicates the specifications of the RIEGL VQ-450 laser scanner. 
Accordingly, a total number of 115 pavement point cloud segments were 
generated from the collected QT Freeway point cloud dataset to train 
and test the developed neural networks. 

The 3D crack points were manually labeled in each pavement point 
cloud segment. The proposed methods in this work were trained and 
evaluated using the created pavement crack benchmark dataset. To this 
end, all 3D points were annotated point-by-point as either “crack” or 
“pavement” on such point cloud segments according to manual inspec
tion. Each road segment usually has an average of 220,000 points in a 10 
× 10 m2 area, while the ratio between crack points and pavement points 
is about 20%:80%. The annotated ground truth data is shown in Fig. 4 
(b). Moreover, the whole labeled points were split into 70%, 10%, and 
20% subsets for training, validating, and testing purposes. 

4.2. Evaluation metrics 

To estimate the performance of the developed SD-GCN model, a 
quantitative accuracy assessment is performed from pavement point 

Fig. 3. Illustration of the proposed cylinder-based dilated convolution in 3D 
space. Left: The 3D cylinder-based space partition scheme in the top view. 
Right: The 3D cylinder-based space partition with a kernel size of 7 × 7 and 
dilation rate of 2 in a zoom-in view. 
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cloud segments. Three evaluation metrics, including Precision (Pr), 
Recall (Re), and F1-score (F1) are accordingly employed, which are 
formulated as follows: 

Pr =
Ptp

Ptp + Pfp
(7)  

Re =
Ptp

Ptp + Pfn
(8)  

F1 =
2*Pr*Re
Pr + Re

(9) 

where Ptp, Pfp, and Pfn denote the number of true-positive points, 
false-positive points, and false-negative points, respectively. It is note
worthy that the precision shows the valid percentage of the extracted 
pavement cracks, while the recall addresses the completeness of the 
extracted cracks. In addition, F1-score indicates an overall evaluation 
index by assessing both precision and recall. 

5. Result and discussion 

This section introduces the optimal hyperparameter settings, fol
lowed by experimental results. Then, an assessment evaluation is 
implemented to quantitatively and qualitatively analyze the model 
performance. Finally, we perform a comparative study to compare the 
developed SD-GCN model with SOTA methods. 

5.1. Hyperparameter optimization 

The developed SD-GCN model has two essential hyperparameters, i. 
e., R, the radius of the cylinder base in the XY plane; and D, the dilation 
rate during the process of cylinder-based dilated convolutions. Multiple 
experiments were performed to ascertain the optimal hyperparameter 
combinations. Based on the variable-controlling strategy, we evaluated 
the model performance of SD-GCN using 15 different combinations (i.e., 
5 alternatives of R and 3 alternatives of D). 

Size of R: The size of radius R plays a crucial role in implementing 
the SD-GCN model. A suitable value of R not only enables the model to 
capture more inherent local features but greatly reduces the computa
tional costs. Typically, the larger R is, the more features the model could 
learn, yet the more computational burden involves. Since each road 
segment has a 10 × 10 m2 area, we tested the value of R changing in the 
range of [0, 0.5 m]. More specifically, different values, i.e., 0.1 m, 0.2 m, 
0.3 m, 0.4 m, and 0.5 m, respectively, were determined to calculate their 
F1-score and seek an optimal tradeoff between computational burden 
(measured as the forward propagation time) and model performance, 
while remaining D = 2 during the testing phase. 

Fig. 5(a) illustrates different F1-score and forward propagation time 
obtained by varying R values. Intuitively, the performance curves locate 
in the top-left area of two diagrams, which means the SD-GCN could 
achieve high F1-score with low computational complexity. More spe
cifically, the forward pass time of SD-GCN increases with the decrease of 
the radius size R. The reason is that at the stage of cylinder dilated graph 
convolutions, more cylinder data spaces will be built with the decreasing 
sizes of R. Note that, crack extraction performance increases by 1.7% 
when varying the radius sizes R = 0.5m (F1-score = 77.6%) to R = 0.4m 
(F1-score = 78.3%), that is because the proposed SD-GCN could learn 
more high-level features and avoid the overfitting issue by using less 
training data in smaller cylinder data spaces. Therefore, R = 0.4m was 
defined as the fine-tuned hyperparameter setting so that the SD-GCN 
could achieve high extraction accuracy and low computational costs. 

Size of D: At the stage of cylinder-based dilated convolutions, an 
appropriate value of the dilation rate D could deliver both effective and 
robust pavement crack extraction results in an efficient manner. Herein, 
considering various point densities within different input point cloud 
segments, we tested the SD-GCN model performance by setting D = 1, 
2, and 3 through trial and error, respectively, on the testing dataset 
while keeping R = 0.4 m all the time. Fig. 5(b) shows the model 

Fig. 4. RIEGL VMX-450 MLS point cloud samples. (a) Road crack samples with intensity information. (b) Manually annotated ground truth data, the black color 
represents pavement points and the yellow color denotes crack points. 

Table 1 
Specifications of the RIEGL VQ-450.  

Specification Value 

Scan frequency 200 lines/sec 
Measurement range 1.5–800 m 
Measurement precision 5 mm 
Absolute accuracy 8 mm 
Angle measurement resolution 0.001 
Scanner FOV Full circle 
Laser wavelength Near infrared  
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performance by setting different D values. As can be perceived, to make 
the best balance between representative feature encodings and rela
tively low computational burden, it can deliver the best performance for 
pavement crack extraction by setting D = 2. Note that, for the point- 
wise crack extraction task, the F1-score increases by 4.8% when 
changing D = 3 to D = 2. On the whole, the smaller the dilation rate is, 
the more local and geometrical features the model can learn, but the 
lower computational cost. Therefore, in the SD-GCN, we determined 
D = 2 as the optimal hyperparameter setting. 

5.2. Crack extraction results 

According to various experiments by setting different hyper
parameter combinations, we predefine the optimal settings as R = 0.4 m 
and D = 2 in the training process. Meanwhile, the dropout rate, batch 
size, initial learning rate, and momentum of Adam are 0.5, 32, 0.0001, 
and 0.9, respectively, which could achieve the best extraction results. 
Fig. 6 presents the pavement crack extraction results from MLS point 
clouds, which demonstrates that the designed SD-GCN model could 
deliver a promising solution for the crack extraction task in complex 
road environments. Despite pavement cracks obtained from highway 
environments in different structures and sizes, the experimental results 
indicate a variety of pavement cracks were completely extracted. 

SD-GCN network has powerful feature saliency construction and 
graph representation capabilities in local regions, contributing to ac
curate point-wise crack extraction results. However, complex structures 
and low connectivity of pavement cracks in varying shapes have pro
found impacts on the feature encoding performance. As shown in Fig. 6, 
some crack points were misclassified as pavement points. The crack 
occlusion, decay, and moving road users (e.g., vehicles) in the QT 
Freeway can conduce to the false point-wise classification. 

5.3. Comparative study 

To demonstrate the model performance and practical feasibility, we 
compared the developed SD-GCN model with the existing methods, in 
terms of pixel-wise methods, i.e., U-Net (Ronneberger et al., 2015) and 
AU-Net (Oktay et al., 2018), and point-wise methods, i.e., 3D-Skeleton 
(Yu et al., 2014), PointNet (Qi et al., 2017b), DGCNN (Wang et al., 
2019), and Feng’s method (Feng et al., 2021). We adopted the same 
testing protocols used in Feng’s method (Feng et al., 2021). Fig. 7 shows 
the extracted pavement cracks using five different methods. 

More specifically, for pixel-wise comparison methods, the point 
cloud samples were first transformed into 2D intensity images. Then, 
such images were used to train and test both U-Net and AU-Net net
works, resulting in average pixel-wise evaluation metrics. Meanwhile, 
all hyperparameters evolving in the process of training are predefined as 
default. Nevertheless, such methods normally cause information loss 
during the dimensionality reduction process. 

For point-wise comparison methods, 3D-Skeleton is a traditional 
threshold-based method that consists of Otsu thresholding, density 
filtering, Euclidean distance-based clustering, and L1-median skeleton 
extraction algorithms. We used the same hyperparameter settings as in 
Feng et al. (2021) by keeping the density threshold ds = 1.2 and the 
local radius rd = 0.2 m for crack extraction and outlier removal pur
poses. Nevertheless, it is remarkably challenging to ascertain the fine- 
tuned threshold settings in different testing scenarios. PointNet is the 
pioneer of point-wise classification methods, which comprises a sym
metric function with respect to permutation invariance. But PointNet 
cannot effectively learn local features, which makes fine-grained pattern 
recognition difficult, particularly for complex road scenes. DGCNN 
introduced a dynamic edge convolution for 3D point cloud segmenta
tion. Furthermore, Feng’s method developed a graph-widen deep 

Fig. 5. SD-GCN model performance evaluation based on F1-score and forward propagation time. (a) Testing with different R values. (b) Testing with different 
D values. 

Fig. 6. Pavement crack extraction results using the proposed SD-GCN model. Top: Original input point cloud samples with intensity information. Middle: Ground 
truth data. Bottom: Pavement crack extraction results. The black parts are crack points and the white ones are pavement points. 
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learning framework to extract pavement cracks from MLS point clouds 
by constructing descriptive graph structures and salient feature repre
sentations. However, these graph-based methods cannot tackle the 
sample imbalance problem when using KNN to explore the surrounding 
points in large-scale point cloud spaces. Likewise, all hyperparameters 
used in the training phase are set as default. 

Table 2 indicates the model performance comparison results by 
calculating precision, recall, and F1-score evaluation metrics. For pixel- 
wise comparison methods, U-Net and AU-Net achieve an average of 
precision, recall, and F1-score of [80.1%, 72.9%, 76.3%] and [75.8%, 
77.2%, 76.5%], respectively. For point-wise comparison methods, 3D- 
Skeleton, DGCNN, PointNet, and Feng’s method achieve an average of 
precision, recall, and F1-score of [33.3%, 71.8%, 45.5%], [73.4%, 
67.2%, 70.2%], [69.7%, 64.5%, 67.0%], and [70.2%, 73.5%, 71.8%], 

respectively. In contrast, the proposed SD-GCN model in this work de
livers an average of precision, recall, and F1-score of [79.5%, 77.1%, 
78.3%], which is 32.8% higher than 3D-Skeleton and 11.3% higher than 
PointNet in term of F1-score. The experimental results demonstrate that 
the SD-GCN outperforms most traditional rule-based and supervised 
learning-based algorithms, mainly because of the descriptive feature 
encoding capability reinforced by feature saliency space construction 
and dilated graph convolutions in multiple scales. As can be seen in 
Fig. 7, the pavement cracks are incompletely extracted using four 
comparative methods, while the pavement cracks extracted by the SD- 
GCN network could achieve higher completeness and fewer outliers by 
comparison. On the whole, the SD-GCN model proposes a potential so
lution for pavement crack extraction from unorganized and massive MLS 
point clouds. 

5.4. Efficiency evaluation 

Moreover, to highlight the performance efficiency of the SD-GCN 
model, we carried out a model complexity comparison by taking 
model size, forward propagation time, and F1-score into account using 
the same training and testing datasets created in this study. Table 3 
shows the comparison results. Note that, the model size of our method is 
66% smaller than PointNet and 58% smaller than DGCNN, respectively. 
Besides, compared to PointNet and DGCNN, our method only consumes 

Fig. 7. Comparison results of pavement crack extraction using different methods.  

Table 2 
Pavement crack extraction results obtained by varying methods.  

Method Type Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

U-Net (Ronneberger et al., 
2015) 

Pixel- 
wise  

80.1  72.9  76.3 

AU-Net (Oktay et al., 2018) Pixel- 
wise  

75.8  77.2  76.5 

3D-Skeleton (Yu et al., 
2014) 

Point- 
wise  

33.3  71.8  45.5 

DGCNN (Wang et al., 2019) Point- 
wise  

73.4  67.2  70.2 

PointNet (Qi et al., 2017b) Point- 
wise  

69.7  64.5  67.0 

Feng’s Method (Feng et al., 
2021) 

Point- 
wise  

70.2  73.5  71.8 

Ours Point- 
wise  

79.5  77.1  78.3  

Table 3 
Model complexity, forward time, and performance of different methods.  

Method Model size (MB) Forward time (s) F1-score (%) 

PointNet (Qi et al., 2017b)  23.8  27.5  67.0 
DGCNN (Wang et al., 2019)  19.3  42.2  70.2 
Ours  8.1  7.7  78.3  
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28% and 18% forward pass time but achieves 11.3% and 8.1% F1-score 
improvement, respectively. The reason is that the SD-GCN model is 
designed in a semi-supervised manner, which consumes less training 
data due to downsampling operations and dilated graph convolutions. In 
conclusion, the developed SD-GCN model in this paper not only provides 
more accurate pavement crack extraction results but also consumes less 
processing time than most existing methods, including PointNet and 
DGCNN. Accordingly, multiple GPU parallel computing techniques 
could be further employed to dramatically accelerate the SD-GCN 
framework for real-time applications, e.g., autonomous driving. 

6. Conclusion 

In this work, we have developed a novel deep learning framework, 
named SD-GCN, by exploring feature saliency space construction and 
cylinder-based dilated graph convolutions for pavement crack extrac
tion from MLS point clouds. Experimental results demonstrate that the 
SD-GCN model could achieve high extraction accuracy and low 
computational costs, benefitting from effective feature mapping and 
saliency construction, powerful feature encoding capability, and 
compact-designed neural network architecture. Consequently, the SD- 
GCN model delivers an average of precision, recall, and F1-score of 
79.5%, 77.1%, and 78.3%, respectively. Moreover, comparison results 
indicate that our method outperforms SOTA point-wise segmentation 
approaches regarding extraction accuracy and computational efficiency. 
To summarize, we have developed a promising solution, which signifi
cantly reinforces the pavement crack extraction performance from MLS 
point clouds. For further research, we are dedicated to exploiting more 
effective loss functions to tackle sample imbalance problems and 
designing more compact network structures in an unsupervised pattern 
to capture more geospatial correlations and adjacency relationships 
among neighboring points. 
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