
International Journal of Applied Earth Observations and Geoinformation 108 (2022) 102690

Available online 17 February 2022
0303-2434/© 2022 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Semantic segmentation with labeling uncertainty and class imbalance 
applied to vegetation mapping 
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A B S T R A C T   

Recently, Convolutional Neural Networks (CNN) methods achieved impressive success in semantic segmentation 
tasks. However, challenges like class imbalance around samples and the uncertainty in human pixel-labeling are 
not completely addressed. Here we present an approach that calculates a weight for each pixel considering its 
class and uncertainty during the labeling process. The pixel-wise weights are used at the training phase to in
crease or decrease the importance of the pixels accordingly. Experimental results were conducted adapting well- 
known CNN methods FCN and SegNet; however, this strategy can be applied to any segmentation method. We 
evaluated the experiments for semantic segmentation of urban trees in aerial imageries. The robustness of the 
approach was assessed using a dataset with terrestrial images from vegetation with a drastic imbalance condi
tion. We achieved significant improvements in the tasks compared to the baseline methods. We also verified that 
the proposed strategy proved to be more invariant to noise. The approach presented in this paper could be used 
within a wide range of semantic segmentation methods to improve their robustness.   

1. Introduction 

Semantic segmentation is an image processing task that aims to 
establish a known class for each pixel. This task is crucial to infer 
knowledge of a scene in computer vision systems, as shown in recent 
studies of tree species segmentation (Lobo Torres et al., 2020b). In this 
field, significant advances have been achieved through Convolutional 

Neural Networks (CNNs) based methods, including ones such as SegNet 
(Badrinarayanan et al., 2017; Dowden et al., 2021), Fully Convolutional 
Network (FCN) (Long et al., 2015), and DeepLabv3+ (Chen et al., 2018). 
Even with the development of novel methods, the segmentation accu
racy in many remote sensing applications is far from the expectation 
(Tian et al., 2021). In this context, strategies that can improve and can be 
integrated into any semantic segmentation method become of great 
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interest. 
The combination of two factors has been little explored in the liter

ature during the training of CNNs for semantic segmentation. The first 
factor is the unbalance of class distribution, where dominant portions of 
the data are assigned to a few classes while many classes have little 
representation in the data. As a consequence, semantic segmentation 
methods are biased to the dominant classes during the inference process 
(López et al., 2013). One way to minimize imbalance is by uniformly 
sampling data and collecting images (such as well-known datasets, 
ImageNet (Deng et al., 2009; Chrabaszcz et al., 2017), MNIST (Modified 
National Institute of Standards and Technology) (Lecun et al., 1998) and 
CIFAR 10/100), under-sampling the majority classes (Liu and Tsouma
kas, 2019; Tsai et al., 2019; Sun et al., 2018; Ha and Lee, 2016), or over- 
sampling the minority classes (Fernández et al., 2018; Li et al., 2017; 
Nekooeimehr and Lai-Yuen, 2016; Castellanos et al., 2018). However, 
these approaches change the distribution of data and can affect learning 
and inference in a significant manner (Dal Pozzolo et al., 2015). 

The second factor, much less explored in the literature, is related to 
the uncertainty in the image labeling (Bulò et al., 2017; Bischke et al., 

2018). In low resolution or noisy images, the edges of objects become 
inaccurate, and even expert labeling may include annotation errors that 
affect the training of a network. Even in high-resolution images, some 
objects (e.g., trees (Lobo Torres et al., 2020b)) have complex edges that 
make them difficult to annotate. 

In this study, we propose an approach to deal with class unbalance 
and uncertainty in the labeling process for image segmentation tasks to 
overcome the aforementioned issues. Specifically, we introduce a loss 
function where the contribution of each pixel is weighted. First, pixels 
belonging to minority classes have their importance increased. Second, 
since pixels near the edges of the object generally have greater uncer
tainty on labeling, their importance is diminished during training. These 
two pixel-wise weights are then combined and produce a satisfactory 
impact during training and inference of the segmentation methods. 

Experiments were mainly conducted to segment urban trees in high- 
resolution aerial imageries. Urban trees benefit to the population, and 
their monitoring is relevant in multiple urban planning tasks. The 
adopted strategy significantly reduced the confusion between trees and 
undergrowth vegetation, improving the mapping of trees in urban en
vironments. This is the first approach that overcomes both challenges 
using these pixel-wise weights during training to the best of our 
knowledge. 

In summary, our original contributions are described as follows: 

1. Development of a novel loss function to deal with both class unbal
ance and uncertainty issue in the labeling process for remote sensing 
image segmentation task;  

2. Assessment in two very distinct datasets to show the strengthening of 
the proposed approach;  

3. Significant reduction in the confusion between vegetation and 
background classes. We also verified that the proposed strategy 
proved to be more invariant to noise considering both datasets. 

2. Related works 

2.1. Imbalance Data 

In semantic segmentation, approaches have already been proposed 
to deal with class imbalance. Traditional approaches can use resampling 
(e.g., oversampling and undersampling) and rebalancing schemes via 
statistic analysis, such as inverse or median frequency (Chan et al., 2019; 
Xu et al., 2015; Caesar et al., 2015). Despite correcting the imbalance, 
these approaches include several disadvantages on both oversampling 

Fig. 1. The segmentation method receives the RGB image and provides the prediction. The GT mask is used to calculate the unbalance of the classes and the un
certainty in the annotation. All this information is combined into the new loss function, which calculates the loss value to guide learning the segmentation method. 

Fig. 2. Example of calculating the uncertainty δ(x) of each pixel x. As a pixel 
approaches the edge, the greater its uncertainty. The top figure represents the 
labeled mask of the object, while the bottom image corresponds with the un
certainty calculated. 
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and undersampling methods. Oversampling methods increase compu
tational cost and may be more prone to overfitting due to the inclusion of 
duplicated data. On the other hand, undersampling methods can discard 
important data for learning, reducing accuracy in the prediction. 

Approaches are also based on constraints during training, such as 
restricting the number of pixels contributing to the loss function during 
backpropagation at random (Bansal et al., 2016), based on the k highest 
loss of the pixels (Wu et al., 2016) or hard samples (Dong et al., 2019). 

Fig. 3. Sample images from Urban Tree (UT) dataset. The top images correspond with the RGB input dataset while the bottom images correspond with the 
labeled example. 

Fig. 4. Sample images from Soybean Disease (SD) dataset. The top images correspond with the RGB input dataset while the bottom images correspond with the 
labeled example. 
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Huang et al. (2016) reduced the effect of class imbalance by enforcing 
inter-cluster and inter-class margins in standard deep learning frame
works. These margins can be applied through quintuplet instance sam
pling and the associated triple-header hinge loss. Ren et al. (2018) 
proposed a meta-learning framework that assigns weights to training 
examples based on their gradient directions to reduce class imbalance 
and corrupted label problems. Recently, focal loss (Lin et al., 2020) was 

proposed to penalize hard samples assuming that they belong to the 
minority class. However, this does not happen when minority classes are 
well defined and may not have their participation in training effectively. 
A survey on deep learning with class imbalance can be found in Johnson 
and Khoshgoftaar (2019). 

2.2. Labeling Uncertainty 

Labeling uncertainty is related to image resolution and object-edge 
complexity. As of recently, Bischke et al. (2018) applied an adaptive 
uncertainty weighted class loss to segment satellite imagery. However, 
only the uncertainty of the class is considered and not the uncertainty of 
every single pixel, as proposed in this research. Bulò et al. (2017) pro
posed a max-pooling loss that adaptively re-weights the contributions of 
each pixel based on their observed losses. However, this method does 
not consider objects whose edges are not well defined and therefore 
present uncertainties during labeling. 

Ding et al. (2019) proposed learning boundary objects as an addi
tional class to increase the feature similarity of the same object. Simi
larly, Shen et al. (2015) addressed the contour detection problem by 
combining a loss function for contour versus non-contour samples. The 
labeling uncertainty problem is also related to the size of the object in 
the image since small objects are harder to label. Islam et al. (2017) 
proposed a new CNN architecture to predict segmentation labels at 
several resolutions. At each stage (scale), a loss function provides su
pervision to improve detail on segmentation labels. Although it im
proves the segmentation of object edges, labeling uncertainty is still a 
problem that degrades the result. Hamaguchi et al. (2018) proposed a 
novel architecture called local feature extraction, which aggregates local 

Table 1 
Comparative results between the proposed approach using SegNet and baseline 
in the two image datasets.  

Method Urban Tree SD  

PA (%) IoU (%) PA (%) IoU (%) 
SegNet 74.4 67.6 35.0 32.4 

SegNet + σ = 1  81.2 70.0 68.7 51.0 
SegNet + σ = 2  83.8 70.5 77.7 56.7 
SegNet + σ = 3  80.5 69.8 66.8 50.9  

Table 2 
Comparative results between the proposed approach using FCN and baseline in 
the two image datasets.  

Method Urban Tree SD  

PA (%) IoU (%) PA (%) IoU (%) 
FCN 82.0 73.0 75.0 61.1 

FCN + σ = 1  89.2 75.4 98.9 36.8 
FCN + σ = 2  90.0 76.0 98.9 37.1 
FCN + σ = 3  89.6 72.9 98.2 42.5  

Fig. 5. Example of ground-truth (in the left - a), FCN (in the middle - b), and proposed approach (in the right - c) from Urban Tree dataset.  
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features with decreasing dilation factor to segment small objects in 
remote sensing imagery. 

2.3. Semantic segmentation applied to vegetation mapping 

The mapping and monitoring of vegetation are crucial for applica
tions in urban and rural environments. Semantic segmentation methods 
based on CNN have been employed for this task, providing total vege
tation coverage throughout the study area. 

Osco et al. (2021) investigated the use of FCN, U-Net, SegNet, DDCN, 
and DeepLabV3 + for the segmentation of citrus trees. The authors 
verified that all the methods performed equally for this task. Lobo Torres 
et al. (2020a) assessed SegNet, DeepLabv3+, U-Net, and FC-DenseNet 
for the segmentation of tree species. Minor differences occurred be
tween the methods. 

In the context of urban tree segmentation, Martins et al. (2021) also 
assessed most of the previously mentioned methods and also verified 
minor differences among them. The authors verified that most errors 
occurred in the edges of the canopies, and also, there were confusions 
with grassland. 

In general, we verified that minor differences occur between se
mantic segmentation deep learning-based methods for segmenting the 
vegetation. However, it is still necessary to develop tools to maximize 
the segmentation accuracy (Tian et al., 2021). Here, we addressed this, 
proposing an approach that deals with class unbalance and uncertainty 
in the labeling process. 

3. Methods 

3.1. Proposed Approach 

The purpose of semantic segmentation methods is to assign a label to 
each pixel x of an image I(x), providing a pixel-level mask M̂(x). The 
most common methods for this task are based on CNNs composed of 
convolution, pooling, and upsampling layers (Long et al., 2015; Badri
narayanan et al., 2017). Accordingly, the pixel-level mask M̂ is obtained 
through a CNN fθ with layer parameters θ, M̂ = fθ(I). The dominant loss 
function used to train a CNN takes the following equation: 

min
θ∈Θ

∑

(I,M)∈T

L

(

M̂ ,M

)

+ λR

(

θ

)

(1)  

where (I,M) is an example consisting of an image I and a ground-truth 
mask M of the training set T, M̂ = fθ(I) is the predicted mask, L is a 
loss function (e.g., cross-entropy) that penalizes the wrong labels, and R 
is a regularizer. 

In semantic segmentation tasks, the loss function L is usually 
decomposed into a sum of pixel losses according to Eq. 2. The weight of 
each pixel contributes uniformly during training. 

L

(

M̂ ,M

)

=
1
n

∑n

x=1
L

(

M̂

(

x

)

,M

(

x

))

(2)  

where n is the number of pixels. 
The consequence of class imbalance is a bias towards the dominant 

classes over those that occupy smaller parts of the image. This occurs in 

Fig. 6. Example of ground-truth (in the left - a), FCN (in the middle - b), and proposed approach (in the right - c) from Soybean Disease dataset.  
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most real-world image segmentation problems, where few classes 
dominate most images. Also, some classes do not have well-defined 
borders (e.g., trees), resulting in uncertainly labeled pixels. An incor
rectly labeled pixel influences the models’ learning task, making filter 
convergence and learning even more difficult for small objects. 

3.2. Proposed loss function 

To improve these issues, we propose to weight the contribution of 
each pixel based on its labeled class importance and uncertainty of its 
labeling as shown in Fig. 1. A weight for each pixel w(x) is used in the 
loss function according to Eq. 3. 

L

(

M̂ ,M

)

=
1
n
∑n

x=1
ω
(

x

)

⋅L

(

M̂

(

x

)

,M

(

x

))

(3)  

Unlike other approaches (e.g., focal loss (Lin et al., 2020)), the weight 
ω(x) of the pixel x is calculated by considering two important charac
teristics as shown in Eq. 4. The first part φ(c(x)) considers class imbal
ance, where c(x) is the class labeled for pixel x. The second part δ(x)

considers the labeling uncertainty of the pixel x. Both parts are described 
in detail in the sections below. 

ω(x) = φ(c(x))⋅δ(x) (4)  

3.3. Dealing with Class Imbalance 

The first characteristic takes the unbalance of classes into account. 
To determine the weight of each class c, we use the training set ac
cording to Eq. 5. The lower the number of pixels in a given class, the 
higher the weight so that CNN layer filters fit evenly. When φ(c) equals 1 
for all classes, training is performed as traditionally. It is important to 
note that this weight is the same for all pixels in the same class c. 

φ
(

c
)
=

m
C ∗ nc (5)  

where m is the number of pixels of all training images, C is the number of 
classes, and nc is the number of pixels that belong to class c. 

3.4. Dealing with Labeling Uncertainty 

The second characteristic considers labeling uncertainty and is 
calculated for each pixel in the image. This is especially true for objects 
with poorly defined edges or low-resolution images. We consider that 
the closer to the edge of the object, the greater the uncertainty of the 
class label for a given pixel. On the other hand, pixels near the center of 
objects are labeled more accurately. This feature can be modeled by Eq. 
6 considering the distance of a pixel to the edges. The main parameter σ 
determines the spread of uncertainty around the edge. 

Fig. 7. Original images and their respective noisy images.  

Table 3 
Comparative results between our method and the baseline FCN using noisy 
images to train.  

Method Noisy Images Noise-free Images  

PA (%) IoU (%) PA (%) IoU (%) 
FCN R-CNN 77.6 68.6 12.2 12.2 

Ours 87.5 69.7 84.7 56.9  
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δ
(

x
)

= 1 − e−
d(x)2

2σ2 (6)  

where d(x) is the distance from the pixel x to the nearest edge pixel (can 
be calculated efficiently using the Euclidean Distance Transform) and σ 
is the standard deviation. 

Fig. 2 illustrates the process of calculating δ(x) for each pixel x. It is 
possible to observe that the closer to the object’s edge, the lower the 
value of δ(x), and therefore, it is considered as a pixel with high un
certainty. As a given pixel moves away from the edge, its uncertainty in 
the labeling is reduced. 

To evaluate the proposed approach, we used two well-known se
mantic segmentation methods: SegNet (Badrinarayanan et al., 2017; 
Dowden et al., 2021) and FCN (Long et al., 2015). SegNet (Badrinar
ayanan et al., 2017) is a CNN with encoder and decoder networks, with a 
final pixel-wise classification layer. The encoder provides a low- 
resolution activation map representing the most important features for 
each input. In this study, the encoder is composed of the convolutional 
and max-pooling layers of VGG16 (Simonyan and Zisserman, 2014). 
Then, the segmented image is reconstructed by the decoder. The decoder 
network is composed of convolutional and upsampling layers that use 
the corresponding max-pooling indices from the encoder to upsample 
the low-resolution feature map. In the last layer, a softmax classifier 
receives the feature map from the decoder for pixel-wise classification. 

The FCN (Long et al., 2015) extends the standard classification CNN 
(VGG16 (Simonyan and Zisserman, 2014)) by transforming it into fully 
convolutional, where the fully connected layers were replaced by con
volutional layers. In this way, the first part produces a feature map with 
low-resolution from the image, which is upsampled to produce pixel- 
wise predictions for segmentation. 

It is important to highlight that the proposed strategy can be adopted 
considering any semantic segmentation method. As previous studies 
showed that even some traditional deep learning methods outperformed 
state-of-the-art methods, here we focused only on showing the benefits 
of adopting the proposed approach compared to the baselines (method 
not adopting the strategy). 

4. Experiments and Results 

4.1. Image Datasets 

Initially, we considered a dataset for semantic segmentation of urban 
trees. This dataset has the challenges of class imbalance and labeling 
uncertainty. Fig. 3 presents examples illustrating the challenges of se
mantic segmentation methods. The trees in Fig. 3 show that the fore
ground covers fewer pixels than the background (class imbalance). 
Besides, trees have edges that are difficult to label, and some pixels may 
be incorrectly labeled. Fig. 3 also illustrates the labeling challenge, in 
which some parts of the object are not visible in the image due to noise 
when capturing images. 

Urban Tree (UT). This dataset is composed of aerial RGB orthoim
ages generated with a GSD (Ground Sample Distance) of 10 cm from 
Campo Grande municipality in Brazil. The pixels of this dataset were 
labeled in two classes: trees and background. Examples of the Urban 
Tree dataset in Fig. 3 show that the boundaries of the trees are difficult 
to label. This dataset is composed of 966 non-overlapping patches of 
256 × 256 pixels. In the experiments, 580, 193, and 193 patches were 
randomly used for training, validation, and testing, respectively. 

Although this work focuses on tree segmentation from aerial images, 
an additional experiment considering a more drastic imbalance situation 
was conducted using terrestrial imagery. This experiment assesses the 
robustness of the approach among other types of images and challenging 
scenarios. The dataset is described as follows. 

Soybean Disease (SD). The images from this dataset were obtained 
through PlantVillage (Hughes and Salathé, 2015), which contains 
several photographs taken by cell phones in soybean plantations. To 
compose the image dataset, 201 images with the frog-eye disease were 
identified and manually annotated as shown in Fig. 4. Thus, this dataset 
is composed of two classes: frog-eye disease and background. It is 
important to emphasize that the images were taken in the field and 
present several lighting challenges. The images were randomly divided 
into three sets: 121 for training, 40 for validation, and 40 for testing. 

(a) Noisy image (b) FCN (c) Proposed Approach

(d) Noisy-free (e) FCN (f) Proposed Approach

Fig. 8. Comparative results of the proposed approach and FCN trained in noisy images. The first row of images shows the segmentation using a noisy test image, 
while the second row of images shows the results using a noise-free test image. 
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4.2. Experimental Setup 

For the Urban Tree (UT) and Soybean Disease (SD) datasets, the 
images were resized to 256 × 256 and 1024 × 1024 pixels, respectively. 
We chose 1024x1024 pixels for the SD dataset due to the high resolution 
of the original images. Also, the soybean disease class occupies a small 
area in the original image, and resizing to 1024 × 1024 pixels ensures 
that the class occupies a reasonable amount of pixels (see Fig. 4). 

For all segmentation methods, we use Stochastic Gradient Descent 
(SGD) optimizer with a learning rate of 0.001, momentum of 0.9 and 
weight decay of 0.0005. The number of epochs was 100 with a batch size 
equal to 4 for UT dataset and 2 for SD dataset. Due to the higher reso
lution of the SD dataset images, the batch size has been reduced to fit the 
GPU memory. The number of epochs, learning rate, momentum, and 
weight decay (same for both datasets) were defined after empirical ex
periments with the validation set that presented the best learning 
convergence. The backbone weights of the segmentation methods star
ted with pre-trained weights on ImageNet. 

We use the following popular segmentation metrics to evaluate the 
proposed approach and baselines: pixel accuracy (PA) and intersection 
over union (IoU). In semantic segmentation, these two metrics are 
consolidated and used in most works. PA is the percentage of pixels 
correctly classified for each class. On the other hand, IoU is given by 
dividing the intersection area by the union area between prediction and 
ground-truth. Since the background is dominant in most images, we 
report the PA and IoU results only for the class of interest (e.g., trees). 

4.3. Results 

In Tables 1 and 2, we compare the baseline methods and the pro
posed approach using SegNet and FCN, respectively. The main param
eter of the proposed approach is σ, which corresponds to the spread of 
uncertainty used in the loss function. Therefore, results for different 
values of σ were also reported. 

For SegNet (Table 1), the proposed approach improved pixel accu
racy (e.g., from 74.4 to 83.8% in Urban Tree dataset, and 3.5 to 77.7% in 
Soybean Disease dataset). The proposed approach also showed superior 
IoU results, especially in Urban Tree and SD datasets, where IoU 
improved from 67.6 to 70.5%, and from 32.4 to 56.7%, respectively. 
Further, it is found that using σ = 2 provided the best result in both the 
Urban Tree and SD datasets. A lower value of σ for Urban Tree and SD 
datasets is expected due to the size of the foreground. 

The proposed approach also provided better results using the FCN. 
From Table 2 it is observed that the results increase with the inclusion of 
the proposed approach. In Urban Tree and SD datasets, considerable 
increases of 8% and 23.9% were obtained in the pixel accuracy, 
respectively. On the other hand, IoU obtained by the proposed approach 
was slightly higher in the UT dataset and lower in the SD dataset. Hence, 
the approach described here has proven to be effective for two datasets 
that include challenges of class imbalance and labeling uncertainty and 
for two semantic segmentation methods. 

4.4. Discussion and Qualitative Results 

As shown in the previous section, FCN achieved better results than 
SegNet in the two image datasets. Therefore we discuss and present 
visual results of the FCN baseline and FCN using the proposed approach. 

Urban tree dataset. Fig. 5 presents two examples that show the 
advantages of the proposed approach. The first column shows the 
ground-truth, while the second and third columns present the result of 
the segmentation using the baseline and the proposed approach. The 
first example (first row) shows that the baseline incorrectly segments 
grass as a tree. On the other hand, the proposed approach can correctly 
segment the grass as a background, even though the colors are similar. 
The second example shows that the proposed approach is capable of 
correctly segmenting small foreground regions. This is because the 

importance of these pixels is increased during training and the weights 
of the convolutional layers tend to adjust better for these regions. 
Finally, the third example also shows small regions correctly segmented 
by the proposed approach. Also, it is possible to observe that the tree 
edge is better defined when compared to the baseline. This is possible 
due to the uncertainty included in tree-border regions, which are hardly 
labeled correctly. Concerning the border of objects, the proposed 
method decreases the importance of pixels, making CNN weights take 
this into account. 

Soybean disease dataset. As shown in Fig. 6, the proposed 
approach was able to segment soybean diseases with high pixel accu
racy. It detects regions of disease that the baseline was not capable of, as 
illustrated in the second example. The proposed approach also segments 
the disease pixels more accurately compared to the baseline (see the 
third example). However, the proposed approach generally segments a 
region larger than the ground-truth, which explains the lower IoU 
compared to the baseline. In this task, it is important to have a low false- 
negative (as in the proposed approach) to detect diseases early and 
reduce losses. 

4.5. Noise Invariance 

Noise invariance of semantic segmentation methods was assessed on 
the Urban Tree dataset. Gaussian noise with a standard deviation of 0.02 
was added to the images. We chose this value after empirical testing in 
order to obtain images with a medium severity, as illustrated in Fig. 7 
We trained the proposed approach and the FCN baseline using the noisy 
images. Then, we evaluated them in the test set with and without noise. 
For the proposed method, we used the configuration that obtained the 
best results (see Tables 1 and 2), i.e., with a loss function considering the 
unbalance and the labeling uncertainty (σ = 2). 

The results using noisy images in the training of both approaches are 
shown in Table 3. The second column of the table presents the results 
using noisy test images. As expected, both approaches still provided 
good results as they were trained and tested on noisy images. Our 
approach has achieved superior pixel accuracy, and IoU compared to the 
baseline (e.g., 87.5% versus 77.6% and 69.7% versus 68.6%). 

Although these results are promising, it is not possible to guarantee 
that the methods discarded noise in training since the test images were 
also noisy. To effectively assess the noise invariance, the third column of 
Table 3 shows the results using noisy images in the training and noise- 
free images in the test. The baseline FCN presented weak results, 
showing that the noise had great interference in its training. On the 
other hand, the proposed approach showed consistent results, which 
demonstrates its robustness to noise. Our approach obtained pixel ac
curacy of 87.5% and 84.7% in test images with and without noise, a drop 
of only 0.2%. 

Fig. 8 shows visual segmentation results of both methods in test 
images with and without noise. The results of the baseline FCN and the 
proposed approach in a noisy test image (Fig. 8(a)) are shown in Figs. 8 
(b) and 8(c), respectively. As the methods were trained on noisy images, 
they achieved satisfactory results despite the apparent noise. However, 
when a noisy-free image is used in testing methods trained with noisy 
images, the results of the proposed approach are superior to FCN, as 
shown in Figs. 8(d)- 8(i). 

5. Conclusions 

A correctly weighting loss is important for semantic segmentation 
methods, mainly in datasets with imbalanced classes and labeling un
certainty. This paper shows how these challenges can be considered in a 
new loss function. The proposed approach combines two weights: i) the 
importance of the class given its occurrence and ii) the uncertainty in the 
labeling of pixels close to the edges. The robustness of the proposed 
approach can be ascertained for the two datasets considered, which 
presented different characteristics and challenges. 
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The results showed that the proposed approach obtains superior 
metrics regardless of the segmentation method adopted (e.g., SegNet 
and FCN). Significant results with an increase of up to 40% in accuracy 
were achieved by the proposed approach, which clearly shows its rele
vance in segmenting the datasets. Our approach also proved to be more 
invariant to noise, even when training was performed on noisy images 
and tested on noise-free images. Further research should include the 
application of the proposed approach to segmentation problems with 
several classes in other situations. 
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