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A B S T R A C T   

Traffic signs are indispensable fixtures in modern transportation activities, which are installed along the roadside 
or over the pathway to provide important prompt messages. The timely emergences, complete visibilities, and 
definite signals of traffic signs matter significantly to direct the driving behaviors and ensure the convenience and 
security of the transportation activities. Moreover, the efficient and accurate recognition of traffic signs can also 
provide decisive evidences to a variety of intelligent transportation systems. Nevertheless, the unignorable 
presence issues of traffic signs caused by vision factors, such as small sizes, dimness, deformations, and occlu-
sions, impact essentially on the high-quality recognition of traffic signs. This paper develops a novel attentive 
semi-anchoring guided high-resolution network, named SignHRNet, for street-level traffic signs recognition 
purpose. First, stacked with a high-resolution network boosted by a dual-attention module as the feature 
extractor, the SignHRNet can exploit informative channel features and task-oriented spatial features to generate 
multiscale strong feature semantics for instance-level predictions. Second, designed with a semi-anchoring 
guided detection strategy assisted by instance-aware feature alignment, the SignHRNet can achieve highly- 
efficient sign type categorization and highly-accurate sign location determination. The proposed SignHRNet is 
intensively evaluated on three large-size datasets towards traffic signs recognition. Quantitative verifications 
demonstrate a competitive accuracy with an average mAP, mAP50, and mAP75 of 72.85%, 96.48%, and 85.31%, 
respectively, in processing traffic signs of varying self-conditions under diverse scenarios. Ablative and 
comparative analyses also confirmed the practical reliability and performance superiority of the SignHRNet in 
traffic signs recognition applications.   

1. Introduction 

In modern road constructions, traffic signs are common types of in-
frastructures placed along the road corridors, which are leveraged to 
direct the transportation activities. Traffic signs function to transmit 
important signals to the road users and manage and control the driving 
behaviors with specifically designed colors, shapes, characters, and 
figures. With the accurate and timely information and guidance pro-
vided by the traffic signs, road users can succeed in rapidly approaching 
the destinations, as well as helping smooth the traffic flows and ensure 
the driving safeties. Furthermore, traffic signs can also provide the 
traffic management departments with necessary law enforcement 

evidences, such as violations of regulations. In summary, the visibility, 
readability, timeliness, and correctness of the information on the traffic 
signs matter essentially to guarantee the quality and security of the 
transportation activities. However, caused by anthropogenic or natural 
factors (e.g., traffic accidents, climates, and surrounding scenarios), 
traffic signs might undergo different-level damages and abrasions or be 
shielded by nearby objects, thereby resulting in the signal inaccuracy or 
unavailability. Hence, regularly performing traffic signs inspections and 
inventories to fix the anomalies and update the databases acts vitally to 
better serve the road-related applications, as well as providing the up-to- 
date auxiliary ingredients to the advanced driver assistance systems 
(Møgelmose et al., 2012; Yue et al., 2020). In addition, the detail- 
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accurate and inventory-complete traffic signs information can be also 
applied to the documentation of high-definition maps, the creation of 
virtual scenes, and the design of intelligent vehicles. 

Considering the importance and wide use of traffic signs, intensive 
attentions have been drawn to carry out traffic signs measurements with 
increasingly advanced techniques. At the early stage, traffic signs mea-
surements were primarily accomplished with the means of on-site 
manual operations by bridle-wise workers. Nevertheless, such solu-
tions were inefficient and required a great amount of labors, especially 
when covering a large area of road networks. In recent decades, as the 
imaging sensors keep developing in resolutions and qualities, as well as 
the cost-effectiveness, image data have been positively used to assist in 
traffic signs measurement tasks. The rapid acquisition of traffic sign 
images along the road corridors can effectively reduce the consumption 
of manpower, more importantly, improving the work efficiency. 
Accordingly, numerous strategies have been put forward for the intel-
ligent interpretations of road-scene images for high-performance traffic 
signs measurement purposes in the literature. Thereinto, traffic signs 
recognition is a hot topic and acts as an indispensable prerequisite to a 
broad range of applications. To be specific, traffic signs recognition 
comprises the tasks of traffic sign instances localization to identify the 
existences and traffic sign types determination to interpret the signals. 
As yet, a variety of algorithms have been designed for traffic signs 
recognition with excellent accuracies and efficiencies (Liu et al., 2019; 
Wali et al., 2019), some of which have even been applied to actual ap-
plications. However, on account of the diversities of imaging sensors, the 
illumination and weather conditions of the collected images, the situa-
tions of the traffic sign instances with regard to the sizes, shapes, types, 
deformations, viewpoints, and occlusions, and the complicated sur-
rounding scenarios, the automation level and recognition accuracy of 
traffic signs still remain a certain gap in comparison with the human- 
level qualities. In other words, it is still remarkably challenging to 
achieve higher recognition accuracies and lower misidentification errors 
with totally automated processing schemes than those of manual rec-
ognitions by humans to handle traffic sign images of varying conditions. 
Therefore, the reliability and practicability should be further enhanced 
by investigating more advanced solutions in order to broaden the in-
tegrations and realize the values of traffic signs recognition modules in 
actual transportation-related applications. 

To be specific, the motivation of this paper is to develop an effective 
model to achieve high traffic signs recognition accuracies, especially 
correctly recognizing the small-size traffic signs and the traffic signs 
under complicated scenarios and weather conditions, and develop an 
efficient model to achieve rapid traffic signs recognition speeds. In this 
paper, considering the processing efficiency and effectiveness, we design 
a novel one-stage architecture for carrying out traffic signs recognition 
in street-level scenes. This architecture involves a multi-branch high- 
resolution backbone for multiscale, task-aware feature semantic 
exploitation and a detection head for sign category determination and 
sign location prediction. Specifically, channel and spatial feature at-
tentions are simultaneously taken into account for promoting the feature 
encoding quality and a semi-anchoring guided detection strategy, 
assisted by a feature alignment scheme, is proposed for efficiently 
obtaining high-quality bounding boxes of traffic signs. Noteworthily, the 
recognition accuracy improvement of the small-size traffic signs benefits 
significantly from the feature extraction backbone for maintaining a 
high-resolution branch across the entire network and the feature 
attention mechanism for highlighting the feature saliencies. The con-
tributions of this paper are mainly embodied in the following aspects. 
(1) A lightweight, efficient, and effective dual-attention module is 
formulated for boosting the feature semantic quality and robustness by 
attending to the significant, informative channel features and salient, 
task-oriented spatial features. (2) A semi-anchoring guided strategy 
functioned with a feature alignment component is proposed by 
leveraging an anchor-free scheme for efficient sign types prediction and 
an anchor-based scheme for accurate bounding boxes prediction. (3) A 

large-size street-level dataset with detailed annotations is built for 
serving traffic signs recognition tasks. 

The structure of this paper is formulated as follows. An intensive 
literature review on traffic signs recognition methods and feature 
attention techniques is presented in Section 2. The detailed architecture 
of the traffic signs recognition model is explained in Section 3. The 
quantitative and qualitative assessments are discussed in Section 4. 
Eventually, the conclusions and comments are summarized in Section 5. 

2. Related works 

2.1. Handcrafted feature based solutions 

Since traffic signs are usually designed with specific shapes, colors, 
and patterns, conventional solutions often utilized such prior knowledge 
to conduct traffic signs recognition. Intensity based thresholding ap-
proaches, shape based matching strategies, semantic based segmenta-
tion schemes, and handcrafted feature based learning models are 
intently taken into account. Timofte et al. (2014) integrated the color 
and shape priors to roughly yield a candidate set of potential traffic sign 
regions, which were elaborately selected and distinguished through an 
AdaBoost detector. By considering the global color characteristics and 
local edge patterns, Yuan et al. (2014) designed an effective traffic signs 
recognition model. Specifically, color, spatial, direction, and shape 
properties were reasonably combined to enhance the model robustness. 
Khan et al. (2011) investigated a couple of shape criteria to identify 
traffic signs from the pre-segmented candidates, which were prelimi-
narily determined using color cues. Later on, the sign types were subtly 
recognized through a reference based matching framework. On the issue 
of complex street scenarios, Guo et al. (2020) exploited the possibilities 
of color primitives, position priors, and structure parameters to locate 
text-form traffic signs. The textual signals with both vertical and hori-
zontal permutations were further extracted via text line tracking. Like-
wise, Greenhalgh and Mirmehdi (2015) suggested a region-constraint 
strategy to rapidly locate the candidate searching scopes. The textual 
signals on the signs were interpreted by color thresholding and spatial 
text line formulation. Aiming at alleviating the challenges of handling 
distorted or small-size traffic signs, Yazdan and Varshosaz (2021) pro-
posed a stereo image processing technique. First, potential traffic sign 
regions were segmented from the right image based on color features 
and classified to obtain the initial detection results using geometrical 
properties. Then, optimal recognition output was obtained through key 
point matching and skeleton construction with the assistance of the left 
image. To identity traffic signs of specific types, Ruta et al. (2010) 
proposed a prototype matching method to measure the similarity be-
tween a couple of images. The similarity measurement principle was 
established based on the SimBoost and regression tree models. Boume-
diene et al. (2014) exploited the transferable belief functions to encode 
region semantics for the pre-generation of test areas. Then, a template 
matching technique was applied to verify the traffic signs of interest. 

As another research route, a number of studies dedicated to the 
design of semantic models or target classifiers on the basis of hand-
crafted feature encodings. Lu et al. (2012) developed a graph embedding 
formulation for modeling the intra-category variations and inter- 
category distinctions of traffic signs. The representation quality was 
significantly enhanced cooperated with a sparse learning technique. Liu 
et al. (2016) designed a cascaded tree detector to rapidly recognize the 
complete traffic signs from high-contrast region proposals, while the 
occluded signs were further discovered using a sparse representation 
based classifier. As for text traffic signs, González et al. (2014) employed 
a bag of visual words (BoVWs) representation to depict the semantic 
statistics of image features. The identification was finalized based on a 
support vector machine (SVM) classifier. In Yang et al. (2016), histo-
gram of oriented gradient (HOG) features were considered to build the 
SVM classifier. Specifically, the region proposals of traffic signs were 
pre-located through color probability map analysis. In contrast, 
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Greenhalgh and Mirmehdi (2012) constructed a group of SVM classifiers 
serving different tasks and integrated them in a cascaded manner to 
gradually obtain the sign locations and type details. In addition, channel 
feature architectures (Møgelmose et al., 2015), decision reasoning sys-
tems (Meuter et al., 2011), incremental frameworks (Yuan et al., 2017), 
and tree classifiers (Liu et al., 2014; Zaklouta and Stanciulescu, 2012) 
were also investigated for traffic signs recognition tasks. Macroscopi-
cally speaking, the prior cues or handcrafted features based solutions 
required a great deal of vigor to manually design the semantic rules and 
formulate the feature descriptors. The relaxation degrees of the rules and 
the representation robustness of the descriptors impact unignorably on 
the recognition performances, especially on the cases of challenging and 
varying circumstances. 

2.2. Deep feature based solutions 

Profiting from the development of hardware performances, deep 
learning architectures, typified by the convolutional neural networks 
(CNNs), have recently demonstrated superior advantages in a wide 
range of vision tasks. Roughly speaking, the mainstream detection 
models typically concentrate on the one-stage and two-stage processing 
pipelines. To be specific, the two-stage solutions involve the pre- 
generation of redundant object region proposals, which are further 
processed to provide finer recognitions. On the contrary, the one-stage 
solutions merely rely on a single forward regressor to yield the target 
parameters. Hence, due to the remarkable achievements and extensive 
attentions, deep learning models have also been intensively exploited for 
traffic signs recognition purposes. Zhu et al. (2018) stacked a pair of 
fully convolutional network (FCN) structures as the traffic signs seg-
mentor and texts detector to, respectively, locate the text signs and fetch 
the signal details. Sun et al. (2020) formulated a single-shot detector, 
named Dense-RefineDet, to solve the small-size traffic signs identifica-
tion issue. In this model, an anchor-refinement module exported opti-
mized anchors to an object detection module for the purpose of 
promoting the localization accuracy. For lightweighting the model pa-
rameters, Song et al. (2019) designed an efficient CNN architecture to 
accelerate the detection of traffic signs in large contents. The efficiency 
promotion benefitted from the convolution pruning and substitution 
operations. Shen et al. (2021) integrated a feature attention mechanism 
into a pyramidal architecture to extract informative feature encodings at 
multiple scales, which contributed crucially to the detection of varying- 
size traffic signs. Faced with the phenomena of small sizes and occlu-
sions, Liu et al. (2021) focused on the abstraction of scale-sensitive and 
context-aware feature representations with the assistance of an attentive 
pyramidal formulation and an adaptive context fusion module. To 
achieve traffic signs boundary delineations, Lee and Kim (2018) adopted 
the single shot multibox detector (SSD) to obtain the initial pose of a 
traffic sign, followed by a template transform to estimate the boundary 
corners. You et al. (2020) optimized the SSD architecture by applying 
small-size kernels to speed up the processing efficiency. The detection 
output was further enhanced based on spectral analysis and appearance 
transformation. Differently, Jin et al. (2020) improved the SSD model by 
fusing multilevel features and emphasizing salient feature channels, 
while Xie and Weng (2019) exploited multiscale and depthwise convo-
lutions to boost the model robustness. As a representative family of one- 
stage detectors, you only look once (YOLO) architectures were paid 
close attentions towards traffic signs recognition. Gao et al. (2020) 
embedded the Gaussian mixture model into the YOLOv3 to serve for 
anchor clustering, thereby resulting in high-quality regression parame-
ters. Tai et al. (2020) connected a spatial pyramidal pooling module into 
the YOLOv3 for boosting the multiscale feature saliencies, which was 
beneficial for the identifications of varying-size traffic signs. In addition, 
YOLOv4 and its variants (Avramović et al., 2020; Dewi et al., 2021; 
Wang et al., 2021) were also considered and applied to fulfil the real- 
time traffic signs recognition demands. 

Aiming at enhancing the localization accuracies and recall rates, the 

two-stage models generated a quantity of redundant region proposals to 
cover the potential traffic sign instances, which were specifically tested 
to filter out the fake ones. Luo et al. (2018) adopted a spectral channel- 
based region segmentation approach to extract rough region proposals 
that possibly contained traffic sign instances. After proposal refinement, 
traffic signs were distinguished from the background using a multi-task 
CNN model. Kamal et al. (2020) formulated a segmentation network 
with the combination of the SegNet and U-Net, named SegU-Net, to 
extract the region candidates. These region candidates were post- 
processed through a CNN classifier to examine the presences of traffic 
signs. Wei et al. (2020) treated the recognition issue as a detection and 
classification task and cascaded a pair of CNNs to realize the goals 
separately. Specifically, the detector achieved the target localizations 
based on center point evaluations. In Zhang et al. (2020), region pro-
posals were determined using a region proposal network (RPN) under 
multiple feature spaces. The recognition results were refined via a 
classification and regression CNN. Li and Wang (2019) combined the 
faster R-CNN with the Hough transform technique to elaborately 
delineate the sign contours. In this framework, Hough line and circle 
transforms cooperated to refine the bounding boxes on the assumption 
of shape priors. Shao et al. (2019) suggested an improved version of the 
faster R-CNN by optimizing the RPN with wavelet and extremal ana-
lyses. For handling small-size traffic signs, cross-stage features were 
reasonably fused for saliency preservation. Alternatively, Cao et al. 
(2021) promoted the multiscale feature encodings with a high- 
resolution network (HRNet) backbone alongside with an attentive 
sample selection scheme. Zhou et al. (2021) investigated the capability 
of the attention mechanism in enhancing the feature representation 
quality. The attention module operated parallelly to take into account 
the multiscale feature subspaces. The entire network followed the Libra 
R-CNN architecture. In contrast, Wang et al. (2020) designed an 
inception-based attention module functioning to access and integrate 
multiscale contextual semantics. As a strategy for narrowing the 
searching ranges, location and size priors were employed to build a 
probability distribution model. To better handle oriented text traffic 
signs, Bagi et al. (2022) constructed a position-sensitive oriented RPN, 
which can produce rotated anchors for tightly enclosing arbitrarily- 
oriented traffic signs. For feature boosting, channel selection and 
attention were embedded together with separable convolution opera-
tions. Serna and Ruichek (2020) proposed a processing pipeline of 
detection, refinement, and classification. To be specific, the mask R-CNN 
was first leveraged to supervise traffic signs detection; then, location 
cues were applied to filter out false alarms; finally, the sign types were 
determined based on a CNN classifier. As for challenging image condi-
tions, Ahmed et al. (2022) built an encoder-decoder structure to recover 
the details. The enhanced image was fed into a proposal localizer to crop 
the sign contents, which were directly input to a category classifier for 
sign types recognition. In addition, few-shot models (Zhou et al., 2020), 
capsule networks (He et al., 2021), semi-supervised learning architec-
tures (Nartey et al., 2020), transfer learning techniques (Mannan et al., 
2019), extreme learning formulations (Zeng et al., 2017), and multi-
source data fusion strategies (Guan et al., 2020; Javanmardi et al., 2021) 
were also exploited for traffic signs recognition tasks. 

Comparatively, the deep features based models usually show excel-
lent robustness on different image sources and reliable performances 
under varying instance conditions and scene variations. This is the key 
factor that they have attracted good graces in a wide range of vision 
tasks. However, the constructions of these models generally require 
large numbers of annotated samples and a bulk of computation re-
sources, which more or less restrict their applications to some extent in 
some special cases. 

2.3. Attention mechanisms in CNNs 

In order to further promote the feature representation quality to 
improve the prediction accuracies of the vision tasks, many attempts 
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have been recently made to strengthen the contributions of the useful 
feature semantics (Guo et al., 2022). Roughly speaking, existing tech-
niques generally focus on the recalibrations of the channel feature se-
mantics to highlight the task-specific channels and the recalibrations of 
the spatial feature semantics to emphasize the task-specific regions. Hu 
et al. (2020) developed a squeeze-and-excitation (SE) block to adap-
tively recalibrate the channel feature semantics. The SE block deter-
mined the channel-wise significances by modelling the 
interdependencies among the channels. As a modification, Zhang et al. 
(2021) proposed a pyramid squeeze attention (PSA) module for channel 
feature promotion under different scales. Specifically, the PSA module 
took the multiscale channel features as the input and accomplished 
feature recalibration based on the SE block. Differently, Qin et al. (2021) 
presented a frequency channel attention module to exploit channel 
features under different frequencies. In this module, the feature se-
mantics from different frequencies were concatenated and comprehen-
sively considered to determine the channel feature saliencies. Hou et al. 
(2021) designed a coordinate attention block by embedding positional 
attributes into channel attentions. The coordinate attention block 
investigated the feature significances along the horizontal and vertical 
directions, respectively, which were finally combined to form the 
position-aware feature encodings. To integrate both local and global 
contents, Zhong et al. (2020) constructed a squeeze-and-attention (SA) 
module. Different from the SE block, the SA module employed a non- 
fully-squeezed scheme to parse the local feature details. Jaderberg 
et al. (2015) pioneered a spatial transformer network (STN) architecture 
to recalibrate feature semantics in the spatial domain. The STN con-
tained three main components, including a localization net, a grid 
generator, and an image sampler, to determine an affine-transformation- 
invariant feature representation of the semantic target. Almahairi et al. 
(2016) developed a dynamic capacity network (DCN) formulation to 
adaptively assign the feature significances to different image portions. 
The selection was determined based on a gradient-based attention 
mechanism. To improve localization accuracy, Mayo et al. (2021) pro-
posed a spatial embedding principle by using attention mechanisms. 
Through reinforcement learning, the built attention probability map was 
applied to infer the spatial information. Ulutan et al. (2020) employed a 
spatial graph network structure to exploit the relative spatial and 
structural correlations between the semantic objects. The spatial atten-
tion was achieved by learning the spatial interaction patterns between 
the object pairs. Aiming at realizing relative saliency encodings to 
highlight the foreground regions, Fang et al. (2021) suggested a 
position-preserved attention strategy. The attention module comprised a 
position embedding stage for enriching the feature semantics with po-
sitional properties and a feature interaction stage for making use of the 
mutual features between object proposals. 

As a hybrid type of feature attention mechanisms, multiple feature 
attention schemes have been combined in some researches. Woo et al. 
(2018) designed a convolutional block attention module (CBAM) to 
simultaneously attend to the semantic-related channel and spatial fea-
tures. The two subparts were cascaded to sequentially recalibrate the 
channel and spatial feature semantics. As an alternative, Fu et al. (2019) 
developed a dual-attention (DA) module by paralleling a position 
attention unit and a channel attention unit. These two units served, 
respectively, to emphasize the task-aware spatial and channel feature 
semantics, which were eventually fused to enhance the feature repre-
sentation quality. Differently, Zhao and Wu (2019) applied the channel 
and spatial attention mechanisms, respectively, to different levels of 
features to conduct feature recalibrations separately. The attentive 
multilevel feature semantics were finally combined for directing pre-
dictions. Guo et al. (2021) proposed a separable self-attention module 
(SSA), which sequentially modeled the spatial and temporal correla-
tions. By embedding the spatial contexts into the temporal modelling, 
the localization accuracy was significantly promoted. Chen et al. (2020) 
combined the feature attention with the confidence attention to opti-
mize the model robustness. Specifically, the confidence attention 

scheme was applied to formulate the loss function for supervising the 
model training. To model long-range dependencies, Wiles et al. (2021) 
suggested a co-attention module to match feature semantics with precise 
spatial location evidences. The attention information was computed by 
comparing the similarities between feature pairs. Similarly, Feng et al. 
(2021) also employed a co-attention strategy by considering the channel 
and spatial feature saliencies. In addition, residual attention (Zhu and 
Wu, 2021), depth-sensitive attention (Sun et al., 2021), dynamic visual 
attention (Wang et al., 2019b), domain attention (Wang et al., 2019a), 
and vision transformers (Chen et al., 2021; Angles et al., 2021) were also 
investigated to perform feature attentions. 

3. Methodology 

Aiming at realizing competitive processing efficiency and advanta-
geous recognition accuracy, the proposed model is designed as a one- 
stage semi-anchoring guided architecture. Fig. 1 shows the proposed 
attentive semi-anchoring guided high-resolution network (SignHRNet) 
developed for the traffic signs recognition task. The SignHRNet com-
prises two main components: a feature extraction backbone and a 
detection head, which are directly connected for feature encoding and 
target detection, respectively. The feature extraction backbone employs 
an HRNet formulation to exploit feature semantics in different sub-
spaces. The detection head adopts a semi-anchoring guided strategy to 
narrow the searching spaces by focusing on salient regions. Notewor-
thily, a novel feature attention module is integrated into the HRNet 
backbone for boosting the multiscale feature semantics and a bounding 
box refinement process is mounted on the detection head for promoting 
the localization accuracy. 

3.1. HRNet feature extraction backbone 

A distinctive and powerful attribute of the HRNet architecture (Sun 
et al., 2019) is that it parallels a set of convolution branches to simul-
taneously explore different feature subspaces with different spatial res-
olutions towards high-level feature semantics extraction. Specifically, 
cross-branch information exchange is repeatedly carried out to pro-
vide each feature subspace with a global perspective of the feature 
contents under different spatial resolutions, thereby effectively 
enhancing the representation quality of the output features in each 
branch. Thus, in our architecture, we formulate the feature extraction 
backbone as the HRNet structure on the purpose of providing high- 
quality feature semantics. 

As illustrated by the left part in Fig. 1, the HRNet backbone is 
structurized by four parallel branches, which, respectively, function to 
extract feature encodings with multiple stages in different subspaces 
under certain spatial resolutions. Specifically, a stage in a branch in-
volves the convolutional layers between two successive cross-branch 
feature exchange processes. From top to bottom, the spatial resolu-
tions of these branches are gradually reduced. Within each branch, the 
sizes and spatial resolutions of the feature maps are totally selfsame, 
which favors to guarantee the localization accuracy. Generally, the high- 
resolution branches make for the saliency preservations of the small-size 
instances, whereas the low-resolution branches are beneficial to the 
characterizations of the large-size instances. In our architecture, the top 
branch (Branch 1) maintains the same spatial resolution as the input 
image, and the other lower branches are successively zoomed out with a 
scaling coefficient of 0.5. Specifically, by maintaining the high- 
resolution branch of Branch 1 across the entire network, it is signifi-
cantly beneficial to the feature characterization and recognition of the 
small-size traffic signs. To conduct cross-branch feature exchange, at the 
end of each stage, the higher-resolution branches are downscaled to the 
desired size of the target branch through strided convolutions and the 
lower-resolution branches are upscaled to the expected size of the target 
branch through deconvolution convolutions. These scale-adjusted fea-
tures are concatenated with the copied features from the target branch 
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and fused by a 1 × 1 convolution to form the semantic-promoted fea-
tures in the next stage of the target branch. Eventually, the generated 
multiscale feature maps from all the four branches are leveraged as the 
semantic evidences for traffic signs recognition based on the detection 
head. 

3.2. Feature attention module 

As a matter of fact, convolution operations employ a sliding window 

pattern to interpret the feature semantics within the receptive field by 
using a certain size of convolution kernel. However, there is a fly in the 
ointment by performing only the pure convolutions. On the one hand, 
the distinctiveness and significance of different feature channels, 
particularly those closely associated with the foreground, are not 
specially considered and focused on, which impedes the extraction of 
high-quality, recognizable feature representations due to the equal 
contributions of the feature channels. On the other hand, the saliency 
and emphasis of the spatial positions, especially the ones covering the 

Fig. 1. Architecture of the proposed traffic signs recognition model.  

Fig. 2. Architecture of the proposed dual-attention module.  
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foreground, are not excellently considered and concentrated on, which 
goes against the extraction of robust, task-oriented feature representa-
tions due to the equal contributions of the spatial positions. Thus, recent 
studies have endeavored to design effective feature attention mecha-
nisms aiming at enhancing the convolution performances by explicitly 
recalibrating the contributions of different feature semantics. For the 
same purpose, to further boost the quality and robustness of the 
generated multiscale features from the HRNet backbone, we build a 
novel dual-attention module and embed it into each branch of the 
HRNet backbone to supervise feature extraction. As shown by Fig. 2, the 
dual-attention module involves two components: a channel-specific 
attention unit and a spatial-specific attention unit, which, respectively, 
serve for recalibrating the channel and spatial feature contributions to 
highlight more important feature semantics. These two units operate 
parallelly on the input feature map and combine their outputs to form 
the quality-boosted feature map that preserves the identical channel 
number and spatial size. The design of the dual-attention module is 
inspired by the dual-attention module proposed by Fu et al. (2019), 
which parallels two branches to recalibrate spatial and channel feature 
semantics, respectively. However, the novelty and difference are that 
the proposed dual-attention module employs a more effective feature 
attention mechanism for obtaining higher-quality feature semantics and 
designs a more efficient lightweight architecture with less convolution 
parameters and less complex matrix operations. In addition, the dual- 
attention module contributes significantly to emphasize the feature sa-
liencies of the small-size traffic signs, thereby improving the recognition 
accuracy of these small-size traffic signs. 

As illustrated by the top path of the dual-attention module, the 
channel-specific attention unit achieves channel feature recalibration by 
upgrading the contributions of the informative channels. Concretely, 
given the input feature map with the dimension of H × W × C, where H, 
W, and C denote the height, width, and number of channels, respec-
tively, first, two 1 × 1 convolutions are performed separately on the 
input feature map to produce a feature mapFC

R ∈ RH×W×C and a feature 
mapFC

W ∈ RH×W×1. Here, FC
R can be treated as a feature response map, 

where each position encodes the task-aware feature responses related to 
the same position on the input feature map. While, FC

W can be regarded 
as a spatial weighting map that reflects the importance of the feature 
responses at each position. To facilitate channel feature informativeness 
determination, FC

R is reshaped to a feature matrix VC ∈ RC×N and FC
W is 

reshaped to a feature vector SW ∈ RN×1, where N = H × W. Next, VC is 
multiplied with SW based on normal matrix multiplication operations, 
resulting in a channel attention vector CA ∈ RC×1. Specifically, the 
softmax function is applied to SW before carrying out matrix multipli-
cation to normalize the weighting factors. Each entry of CA is computed 
by weighted aggregating the feature responses in each channel of FC

R 
with a comprehensive evaluation of their significances, therefore it re-
flects the informativeness of the corresponding channel of the input 
feature map. To well portray the channel feature informativeness on the 
same baseline, the sigmoid function is applied to CA to limit its encod-
ings within one. Finally, by multiplying each of the attention factors in 
CA to all the positions in the corresponding channel of the input feature 
map, we attain a quality-boosted feature map FC ∈ RH×W×C, which 
explicitly attends to the important and informative channel feature 
semantics. 

As illustrated by the bottom path of the dual-attention module, the 
spatial-specific attention unit achieves spatial feature recalibration by 
highlighting the saliencies of the foreground regions. Likewise, given the 
input feature map, two 1 × 1 convolutions are operated solely to 
generate a feature mapFS

R ∈ RH×W×C and a feature mapFS
W ∈ RH×W×C. 

Notice that, FS
W is post-processed by a global average pooling (GAP) 

operation to squeeze it into a feature vector CW ∈ R1×C. Here, FS
R can be 

treated as a feature response map that encodes the task-sensitive feature 
responses at each position of the input feature map. While, CW can be 
regarded as a channel weighting map that reflects the feature relevance 

of the feature responses in each channel. To facilitate spatial feature 
saliency determination, FS

R is reshaped to a feature matrix VS ∈ RC×N, 
where N = H × W. Then, VS is multiplied by CW through normal matrix 
multiplication operations to intently investigate the inter-channel de-
pendencies. Specifically, the softmax function is applied to CW before 
performing matrix multiplication to normalize the weighting co-
efficients. Next, after reshaping the product matrix along a row manner, 
we attain a spatial attention map SA ∈ RH×W×1, where each entry is 
computed by comprehensively taking into account the dependencies of 
the feature responses in all the channels, therefore, it reflects the sa-
liency of the corresponding position on the input feature map. Similarly, 
to well portray the spatial feature saliency on the same baseline, the 
sigmoid function is applied to SA to limit its encodings within one. 
Finally, by multiplying each of the attention factors in SA to the corre-
sponding position in each channel of the input feature map, we attain a 
quality-boosted feature map FS ∈ RH×W×C, which explicitly attends to 
the salient and task-oriented spatial feature semantics. 

As shown in Fig. 2, the recalibrated feature maps FC and FS generated 
by these two parallel attention units are directly concatenated and 
organically fused via a 1 × 1 convolution to form the final quality- 
boosted feature map that concurrently attends to both the channel and 
spatial useful feature semantics. As illustrated by Fig. 1, the dual- 
attention module is integrated in each branch of the HRNet backbone 
to boost the feature semantics used in the cross-branch feature exchange 
procedure. Concretely, the dual-attention module is mounted at the end 
of each stage in each branch of the HRNet backbone, i.e. at the point 
before performing cross-branch feature exchange in each stage. 

3.3. Detection head 

Considering the processing efficiency of the traffic signs recognition 
model, the detection head is devised to be a one-stage formulation. In 
regard to the one-stage solutions, the anchor-free architectures 
demonstrate advantageous efficiencies, but they might suffer from the 
slight inaccuracy of the regressed target parameters. On the contrary, 
the anchor-based architectures demonstrate competitive accuracies, but 
they undergo the substantial computation overhead in regressing the 
large quantities of anchors, even a considerable portion of useless an-
chors are distributed in the background regions. Hence, targeting at 
combining the strengths of the anchor-free structures in processing ef-
ficiency and the anchor-based structures in regression accuracy, we 
propose a semi-anchoring guided architecture as the detection head. 
Concretely speaking, first, we employ an anchor-free strategy to directly 
verify the positions on the feature map to identify the region candidates 
(i.e., the foreground positions) where the traffic signs possibly reside. 
Then, we adopt an anchor-based strategy to deploy a set of predesigned 
anchors at only the foreground positions to perform geometric param-
eters regression. With such a design pattern, the total number of anchors 
deployed on the feature map is dramatically reduced. In summary, the 
superiorities of the semi-anchoring guided architecture are embodied in 
the following two aspects. First, by narrowing the searching scopes and 
processing lightweight anchors, the detection head can achieve 
compatible efficiency with the anchor-free architectures. Second, by 
regressing geometric parameters with high-quality anchors, the detec-
tion head can achieve compatible accuracy with the anchor-based ar-
chitectures. Noteworthily, the semi-anchoring guided architecture is 
quite different from the RPN used in the faster R-CNN (Ren et al., 2017). 
Specifically, the RPN deploys dense anchors at each position of a feature 
map and sorts and selects the high-quality regressed anchors to generate 
a set of region proposals, which are further classified to conduct object 
detection. In contrast, the novelty and difference of the semi-anchoring 
guided architecture are that it deploys anchors only at the predicted 
foreground positions rather than the entire feature map and directly uses 
the anchors to regress the object bounding boxes for object detection 
without generating any region proposals, which significantly improves 
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the processing efficiency while achieving promising recognition 
accuracy. 

As illustrated by the right part in Fig. 1, the detection head is 
composed of two branches: an anchor-free position classification branch 
and an anchor-based bounding box regression branch. The position 
classification branch predicts a category map through a shallow con-
volutional subnetwork, where each position outputs a (T + 1)-dimen-
sional softmax prediction associated with the T categories of traffic signs 
and the background, respectively. That is, the entry with the maximum 
softmax output figures out the category label of a position. Then, the 
positions confirmed to belong to the traffic sign regions constitute the 
foreground positions, which will be treated as the reference searching 
scopes and attentively considered to deploy anchors for supervising 
bounding boxes regression. 

The bounding box regression branch convolves a shallow subnet-
work to generate a multi-task feature map, which is used for bounding 
boxes prediction in an anchor-based manner. Concretely, as illustrated 
by Fig. 1, a set of K predesigned anchors with different sizes and aspect 
ratios are distributed only at the foreground positions, which are pre-
dicted by the position classification branch, on the multi-task feature 
map. Similar to that in the faster R-CNN (Ren et al., 2017), the prede-
signed anchors are manually determined based on the prior knowledge 
of the traffic signs and quantitatively evaluated through experiments. 
The design of the anchors should take into consideration the size and 
aspect ratio variations of the traffic signs in the images. By default, we 
use three sizes and three aspect ratios, resulting in K = 9 anchors at a 
position. Based on the multi-task feature map and the deployed light-
weight anchors, the bounding box regression branch first produces two 
outputs for anchor classification and anchor regression, respectively. 
The anchor classification terminal functions to examine whether an 
anchor at a foreground position optimally encloses a traffic sign 
instance. Therefore, the anchor classification terminal outputs 2K pre-
diction scores (each anchor involves two softmax outputs) at each po-
sition to deduce the objectness probability (i.e., optimally enclosing a 
traffic sign instance or not) for each anchor. As shown in Fig. 3(a), the 
bounding box of a traffic sign is parameterized by a quaternion repre-
sentation (x, y, w, h), which signifies a horizontal box with a width w and 
a height h centered at position (x, y). Therefore, based on such a 
bounding box parameterization, the anchor regression terminal outputs 
4K predictions at each position for representing the four regression pa-
rameters of each of the K anchors. Eventually, by combining the pre-
diction results from the anchor classification and anchor regression 
terminals, the bounding boxes of the traffic sign instances can be 
attained. That is, if an anchor at a position is confirmed to optimally 
enclose a traffic sign instance by the anchor classification terminal, the 
corresponding regressed parameters at the same position by the anchor 
regression terminal form the bounding box of the traffic sign. 

As a matter of fact, by applying the same convolution operations with 

the same receptive fields, the multi-task feature map used for bounding 
boxes prediction provides the same scale of feature semantics and the 
same size of feature contexts at all positions across the entire feature 
map, which weakly exploits the variations and distinctiveness of the 
traffic sign instances at different positions to provide instance-oriented 
optimal feature encodings. As a result, with the weakly focused 
feature encodings, the regressed bounding boxes might be slightly 
inaccurate on the cases of small-size traffic signs or the traffic signs 
under complex scenarios (Fig. 4(a)). Ideally, a large-size instance should 
access a large feature context to focus on a large receptive field for 
obtaining a complete feature representation, whereas a small-size 
instance should only involve a small feature scope to focus on a small 
receptive field for reducing the impacts from the background features. 
Thus, as shown in Fig. 1, aiming at further optimizing the predicted 
bounding boxes, we propose a feature alignment module (FAM) for 
recalibrating the multi-task feature map based on the primary bounding 
boxes to generate an enhanced instance-oriented aligned feature map 
that focuses tightly on instance regions. As illustrated by Fig. 5, the FAM 
takes the bounding box regression map from the anchor regression ter-
minal and the multi-task feature map as the input and performs a 3 × 3 
deformable convolution operation to generate the aligned feature map. 
Specifically, the offset field used in the deformable convolution is 
generated based on the bounding box regression map by applying a 1 ×
1 convolution operation. Then, the aligned feature map is leveraged to 
predict the anchor offsets, which are used to adjust the primarily 
regressed bounding boxes. That is, the anchor offset output involves 4K 
predictions at each position corresponding to the four offset parameters 
of each of the bounding boxes. Finally, the predicted anchor offsets are 
directly added to the primarily regressed bounding boxes from the an-
chor regression terminal to generate the final set of optimized bounding 
boxes prediction results (Fig. 4(b)). 

Noteworthily, to finalize traffic signs detection, the non-maximum 
suppression process is applied only to the optimized bounding boxes 
at the foreground positions to remove those redundant overlapping 
bounding boxes belonging to the same traffic sign. In this way, the total 
number of bounding boxes being processed is dramatically reduced. 
Then, the objectness scores predicted by the anchor classification ter-
minal are leveraged to determine the traffic signs from the remaining 
bounding boxes at the foreground positions. 

3.4. Loss functions 

The construction and optimization of the SignHRNet should be su-
pervised with well-annotated ground-truth label maps. Since there are 
four sets of outputs in the detection head: one for the position classifi-
cation branch and three for the bounding box regression branch, four 
sets of ground-truth label maps should be coupled for directing the 
backpropagation process. However, the two sets of outputs in the 

Fig. 3. Illustrations of (a) the parameterization of the bounding box and (b) the bounding box-based partition of the positive and negative regions.  
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bounding box regression branch pursue the same objective of bounding 
boxes regression, thus, they share the same set of ground-truth label 
map. For the position classification branch, a category label map that 
marks the positive positions associated with the traffic signs and the 
negative positions associated with the background is provided. As 
shown by Fig. 3(b), the regions enclosed by the bounding boxes are 
marked as the positive positions, whereas the external background re-
gions are marked as the negative positions. Based on this category label 
map, the loss function used for optimizing the position classification 
branch is designed as the focal loss (Lin et al., 2020) as follows: 

Lpos =
∑

i
− (1 − pi)

2logpi (1)  

where pi denotes the softmax prediction corresponding to the ground- 
truth category entry marked in the category label map at position i. 

For the bounding box regression branch, the ground-truth bounding 
box parameters are provided as the references. Specifically, the loss 
functions used for optimizing the anchor regression terminal and the 
optimal bounding box prediction terminal have the same formulation 
and are designed as the combination of two loss terms as follows: 

Lreg = Lsmooth− L1 + LGIoU (2)  

where Lsmooth - L1 denotes the smooth-L1 loss (Girshick, 2015) between 
the regressed parameters and the ground-truth parameters for serving 
for parameter-wise regression supervisions and LGIoU denotes the 
generalized intersection over union (GIoU) loss (Rezatofighi et al., 2019) 

Fig. 4. (a) Primarily regressed bounding boxes and (b) optimized bounding boxes.  

Fig. 5. Architecture of the feature alignment module.  
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between the regressed bounding box and the ground-truth bounding box 
for serving for bounding box-wise regression supervisions. In addition, 
the loss function used for optimizing the anchor classification terminal is 
also designed as the focal loss (Lin et al., 2020) as follows: 

Lcls =
∑

a
− (1 − pa)

2logpa (3)  

where pa denotes the binary softmax prediction (i.e., positive anchor or 
negative anchor) at a foreground position corresponding to the ground- 
truth category entry of anchor a. 

4. Results and discussions 

4.1. Datasets 

As benchmarks to verify the performance of the proposed Sign-
HRNet, as well as providing comparative analyses with the other models 
used in this paper, we conducted intensive evaluations on two publicly 
released traffic signs recognition datasets and a large-size traffic signs 
recognition dataset built in this paper. The details of these three datasets 
are described in the following. 

Tsinghua-Tencent 100K (TT-100K) (Zhu et al., 2016). This dataset 
involves 100,000 images, which were collected by using the Tencent 
Street View panoramas. The images exhibit with different weather 
conditions and illumination conditions. There are a total of about 
30,000 traffic sign instances of different sizes and self-conditions from 
45 categories. Specifically, 90 % of the images in this dataset are 
background images containing no traffic sign instances. The traffic signs 
in this dataset were annotated with horizontal bounding boxes and 
associated with the corresponding category labels. All the images have 
the same resolution of 2048 × 2048 pixels. 

Challenging unreal and real environments for traffic sign detection 
(CURE-TSD) (Temel et al., 2019). This is a large-scale dataset containing 
about 1.72 million video frames with controlled synthetic challenging 
conditions. The video frames are of 1236 × 1628 pixels in resolution. 
The video frames are basically categorized into two types: real data and 
unreal data. The real data correspond to the frames collected from the 
real-world scenes, while the unreal data correspond to the synthesized 
frames generated in a virtual environment. To be specific, there are 49 
real video sequences and 49 unreal video sequences, respectively, which 
are called challenge-free data without any post-processing. The 49 
challenge-free real video sequences were further post-processed with 12 
different kinds of effects and 5 different levels of challenges, thereby 
resulting in 2989 real video sequences. Furthermore, the 49 challenge- 
free unreal video sequences were post-processed with 11 different 
kinds of effects and 5 different levels of challenges, thereby generating 
2744 unreal video sequences. The traffic signs in all the frames were 
annotated with horizontal bounding boxes as the localization references. 

In-vehicle images for traffic sign recognition (IVI-TSR). This is a 
large-size dataset that was specifically built in this paper for traffic signs 
recognition tasks. This dataset includes 80,000 images, which were 
captured by an OPPO A93 mobile phone installed inside a Buick vehicle 
(Fig. 6(a)). The images were collected on the roads in Huaian, Jiangsu, 
on the roads in Nantong, Jiangsu, and on the highways between Huaian 
and Nantong. Each of the images has a size of 4000 × 3000 pixels and 
contains at least one traffic sign instance. The traffic signs cover 35 
different categories with great variations in illumination and weather 
conditions, as well as under diverse surrounding scenarios and self- 
conditions. As shown in Fig. 6(b), a traffic sign is annotated with a 
horizontal bounding box that tightly encloses the traffic sign and tagged 
with a category label. The annotations of the images were manually 
accomplished by twelve undergraduate students from Huaiyin Institute 
of Technology by using the labelme tool (https://github.com/wkentar 
o/labelme). After annotations, double check was carried out by 
another five postgraduate students from Huaiyin Institute of Technology 
to correct the annotation errors by including the missing unannotated 
traffic sign instances and correcting the inaccurate bounding boxes or 
the wrong category labels of the traffic sign instances. Specifically, to 
provide a versatile benchmark dataset for different evaluation choices, 
the IVI-TSR dataset was not divided into the training, validation, and 
test sets. In summary, the main differences between the IVI-TSR dataset 
and the existing datasets lie in the following aspects. (1) The images 
were captured using a mobile phone sensor. (2) The images were 
collected in different places with different road environments, including 
urban and suburban roads, as well as highways. (3) The images covered 
different illumination and weather conditions, especially at dusk or 
early night and in rain and fog weathers. (4) The traffic signs exhibited 
varying self-conditions, especially occlusions caused by nearby objects. 
(5) The road scenes contained many advertising boards showing very 
similar appearances to the traffic signs. 

For each dataset, 70 % of the data were randomly selected as the 
training set including 10 % of the data as the validation set, and the 
remaining 30 % of the data formed the test set for performance evalu-
ation. This data partition scheme was applied to all the architectures and 
their repeatedly trained variants used in this paper. Specifically, the 
input sizes of the images to all the architectures used in this paper were 
configured as 1024 × 1024 pixels, 760 × 1000 pixels, and 1000 × 750 
pixels, respectively, for the TT-100K, CURE-TSD, and IVI-TSR datasets 
by considering the GPU memory. 

4.2. Parameter setting and model training 

In all the experiments, a cloud computing platform was used for 
model construction and testing. This platform was equipped with a 128- 
GB memory, a 16-core CPU, and ten 16-GB GPUs. The proposed Sign-
HRNet was trained using the Adam optimizer in an end-to-end way for 

Fig. 6. Illustrations of (a) the device used for collecting the IVI-TSR dataset, and (b) the image examples and the annotations of the traffic sign instances in the IVI- 
TSR dataset. 
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generating the model parameters. For the detection head, since the 
bounding box regression branch requires the prediction results from the 
position classification branch to supervise the distributions of the an-
chors, we employed a “divide-and-combine” scheme to construct and 
optimize these two branches. Moreover, for the bounding box regression 
branch, the primarily regressed bounding boxes from the anchor 
regression terminal are used as the references to attain the instance- 
oriented aligned feature map for the determination of the final opti-
mized bounding boxes. Hence, we also employed a “divide-and- 
combine” scheme to construct these two terminals. Concretely, first, we 
constructed the position classification branch alongside with the HRNet 
backbone based on the loss function in Eq. (1). During training, each 
training batch involved two images per GPU and optimized for 600 
epochs. The learning rate was initially set as 0.001 and decayed to 
0.0001 at the 401th epoch. When the position classification branch was 
constructed, we fixed the model parameters and further constructed the 
bounding box regression branch in an anchor-based manner. Here, only 
the anchor classification and regression terminals were constructed 
based on the loss functions in Eqs. (3) and (2), respectively. During 
training, these two terminals were trained for 400 epochs with a batch 
size of two images per GPU. The learning rate was configured as 0.001 
initially and decreased to 0.0001 at the 201th epoch. Once these two 
terminals were constructed, we fixed all the model parameters and 
optimized the bounding box regression terminal for 200 epochs based on 
the loss function in Eq. (2). The learning rate was set invariably as 
0.0001. Finally, we jointly optimized the entire SignHRNet for another 
100 epochs with a constant learning rate of 0.0001. 

4.3. Hyperparameter configuration 

In the proposed SignHRNet, there is a hyperparameter K, which 
denotes the number of predesigned anchors deployed at each position of 
the foreground regions. The configuration of K might influence the 
traffic signs recognition accuracy and efficiency. Thus, to determine an 
optimal configuration for K, we conducted a set of experiments by 
considering different sizes and different aspect ratios of anchors. Spe-
cifically, we evaluated the cases with two sizes, three sizes, and four 
sizes of anchors and the cases with two aspect ratios, three aspect ratios, 
and four aspect ratios of anchors, thereby resulting in nine different 
combinations. The sizes of anchors were configured as 8, 16, 32, and 64, 
respectively, and the aspect ratios of anchors were configured as 0.4, 
0.5, 1, and 2, respectively. The sizes and aspect ratios of anchors were 
manually determined based on the prior knowledge of the traffic signs in 
the images. For providing quantitative evaluations of these combina-
tions on the traffic signs recognition performances, we employed the 
commonly used mean average precision (mAP) metric. The mAP eval-
uates the overall recognition performance by considering both the pre-
cision and recall values of all traffic sign categories. The quantitative 
evaluation results of these nine combinations are reported in Table 1. 
Specifically, mAP50 and mAP75, respectively, represent the mAP ob-
tained at the IoU thresholds of 50 % and 75 % between the predicted 
bounding box and the ground-truth bounding box. Note that, all the 
experimental results in all the tables in this paper were reported with the 
average performance by repeating the same model for ten times with 
different randomly configured training and test sets. As reflected in 
Table 1, overall speaking, the mAP improved as either the number of 
sizes or the number of aspect ratios increased. It indicated that the 

increase of the number of anchors favored significantly to cover more 
shape and size variations of traffic signs, thereby effectively improving 
the recognition accuracy. Note that, when the number of sizes and the 
number of aspect ratios exceeded three, the recognition accuracy was 
almost stable. It meant that the combination of three sizes and three 
aspect ratios performed excellently to obtain a promising recognition 
accuracy. However, the increase of the number of anchors brought more 
computation burden due to the regressions and classifications of these 
anchors, thereby lowering the processing efficiency. Thus, by balancing 
the recognition accuracy and processing efficiency, we configured three 
sizes of [8, 16, 32] and three aspect ratios of [0.5, 1, 2], resulting in K =
9 anchors. 

Next, we evaluated the impacts of the input image sizes on the traffic 
signs recognition accuracy and efficiency of the SignHRNet. To this end, 
we conducted a set of experiments by considering different configura-
tions for the input image sizes. Specifically, for the TT-100K dataset, we 
set the input image sizes as 512 × 512 pixels, 1024 × 1024 pixels, and 
2048 × 2048 pixels, respectively; for the CURE-TSD dataset, we set the 
input image sizes as 380 × 500 pixels, 760 × 1000 pixels, and 1236 ×
1628 pixels, respectively; for the IVI-TSR dataset, we set the input image 
sizes as 500 × 375 pixels, 1000 × 750 pixels, and 2000 × 1500 pixels, 
respectively. The quantitative evaluation results of the SignHRNet with 
different input image sizes on the three test datasets are reported in 
Table 2. As reflected in Table 2, for each dataset, the traffic signs 
recognition accuracy improved as the input image size enlarged. It 
indicated that a larger input image exactly performed better than did a 
smaller input image. This is because the small-size traffic signs covered 
more image contents and exhibited more salient feature semantics in a 
larger input image, thereby improving the recognition accuracy of the 
small-size traffic signs. Note that, the SignHRNet with the largest input 
image sizes of 2048 × 2048 pixels, 1236 × 1628 pixels, and 2000 ×
1500 pixels didn’t achieve very significant recognition accuracy im-
provements compared with those of the SignHRNet with the medium 
input image sizes of 1024 × 1024 pixels, 760 × 1000 pixels, and 1000 ×
750 pixels. However, the enlargement of the input image size would 
result in dramatic increase on the memory consumption and signifi-
cantly lower the processing efficiency. Thus, by balancing the recogni-
tion accuracy and processing efficiency, we configured the input image 
sizes as 1024 × 1024 pixels, 760 × 1000 pixels, and 1000 × 750 pixels, 
respectively, for the TT-100K, CURE-TSD, and IVI-TSR datasets. 

Finally, to examine the influences of the number of feature channels 
in each layer of the HRNet backbone on the traffic signs recognition 
performance, we also conducted a set of experiments by considering 
different configurations for the number of feature channels. Concretely, 
we tested the following six settings for the number of feature channels: 
128, 256, 512, 768, 1024, and 1280. The quantitative evaluation results 
of the SignHRNet with different numbers of feature channels are re-
ported in Table 3. Overall speaking, when the number of feature chan-
nels increased, the recognition accuracy improved accordingly. It 
demonstrated that more feature channels favored positively to extract 
stronger, more distinctive, and higher-quality feature semantics, which 
were beneficial to the recognition of the traffic signs under challenging 
scenarios, thereby promoting the overall recognition performance. Note 
that, when the number of feature channels exceeded 512, the recogni-
tion performance improvement was not very significant. Nevertheless, 
more feature channels would result in more network parameters and 
more memory consumptions, as well as significantly degrading the 

Table 1 
Quantitative evaluation results obtained by different combinations of sizes and aspect ratios of anchors.  

Sizes [16,32] [16,32] [16,32] [8,16,32] [8,16,32] [8,16,32] [8,16,32,64] [8,16,32,64] [8,16,32,64] 
Aspect ratios [0.5,1] [0.5,1,2] [0.4,0.5,1,2] [0.5,1] [0.5,1,2] [0.4,0.5,1,2] [0.5,1] [0.5,1,2] [0.4,0.5,1,2] 

mAP (%)  55.93  65.87 66.77  69.94  72.85 72.86  70.75  72.87 72.87 
mAP50 (%)  80.47  90.36 91.32  94.27  96.48 96.48  95.01  96.49 96.49 
mAP75 (%)  67.76  78.61 79.59  83.09  85.31 85.32  83.85  85.33 85.33  
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processing efficiency. Thus, by balancing the recognition accuracy and 
processing efficiency, we configured the number of feature channels as 
512. 

4.4. Traffic signs recognition 

At the test stage, the aforementioned three datasets were used to 
examine the traffic signs recognition performance of the proposed 
SignHRNet. For a test image fed into the SignHRNet, the outputs pre-
dicted by the bounding box regression branch constituted the detected 
bounding boxes of the traffic sign instances in this image, and the 
category information corresponding to each traffic sign instance can be 
attained from the outputs predicted by the position classification 
branch. To provide quantitative evaluations on the traffic signs recog-
nition results, we also employed the mAP metric. 

Table 4 reports the quantitative assessment results based on the mAP 
metric on the three test datasets by using the proposed SignHRNet. 
Specifically, the results of mAP50 and mAP75 were also listed. The 
precision-recall (PR) curves on the three datasets are shown in Fig. 7. As 
reflected in Table 4 and Fig. 7, the traffic sign instances in the test images 
were excellently detected and recognized with correct categories in spite 
of the considerable variations of the scenes and the great diversities of 
the traffic sign instances. The background objects were reasonably 
distinguished from the traffic sign instances with a quite low false 
recognition rate with regard to the precision indicator. Moreover, the 
traffic sign instances in the test images were promisingly located and 
identified with a quite low missing detection rate with respect to the 
recall indicator. Thus, the proposed SignHRNet performed effectively on 
the three test datasets towards traffic signs recognition. To be specific, 
on the TT-100K dataset, the quantitative assessment results are about 
73.72 %, 97.08 %, and 85.97 % for the mAP, mAP50, and mAP75 
metrics, respectively. The recognition performance with the mAP, 
mAP50, and mAP75 metrics is about 74.05 %, 97.24 %, and 86.23 %, 
respectively, on the CURE-TSD dataset. For the IVI-TSR dataset, the 
SignHRNet obtained a recognition accuracy with an mAP of 70.78 %, an 
mAP50 of 95.13 %, and an mAP75 of 83.73 %, respectively. Notewor-
thily, the precision indicator has a higher value than that of the recall 
indicator on the TT-100K and CURE-TSD datasets, which means that the 
SignHRNet generated a small portion of false alarms, while a non- 
negligible portion of traffic sign instances were failed to be completely 
identified. The missing recognitions were primarily caused by the traffic 
sign instances with remarkably challenging conditions, such as small 
sizes due to long vision distances, blurs caused by sensor shakes or 
weather conditions, low contrasts due to illumination conditions, de-
formations due to large perspectives, and occlusions caused by neigh-
boring targets. These issues degraded the semantic saliencies of the 

Table 2 
Quantitative evaluation results obtained by different input image sizes.  

Dataset TT-100K CURE-TSD IVI-TSR 

Image size 
(pixels) 

512 × 512 1024 × 1024 2048 × 2048 380 × 500 760 × 1000 1236 × 1628 500 × 375 1000 × 750 2000 × 1500 

mAP (%)  69.54  73.72  73.95  69.73  74.05  74.21  66.53  70.78  70.96 
mAP50 (%)  93.77  97.08  97.31  93.92  97.24  97.44  91.16  95.13  95.45 
mAP75 (%)  82.68  85.97  86.22  82.85  86.23  86.41  79.97  83.73  83.97  

Table 3 
Quantitative evaluation results obtained by different numbers of feature 
channels.  

Number of feature 
channels 

128 256 512 768 1024 1280 

mAP (%)  65.56  70.33  72.85  73.09  73.11  73.12 
mAP50 (%)  90.12  94.71  96.48  96.74  96.77  96.79 
mAP75 (%)  78.43  83.46  85.31  85.53  85.55  85.56  

Table 4 
Quantitative evaluation results obtained by different models on the three test 
datasets.  

Model Dataset mAP (%) mAP50 (%) mAP75 (%) FPS 

SignHRNet TT-100K  73.72  97.08  85.97 28 
CURE-TSD  74.05  97.24  86.23 
IVI-TSR  70.78  95.13  83.73 

Overall  72.85  96.48  85.31  

Dense-RefineDet TT-100K  62.25  91.17  78.64 17 
CURE-TSD  53.84  86.89  73.51 
IVI-TSR  56.27  88.76  75.47 

Overall  57.45  88.94  75.87  

GMAPNet TT-100K  67.23  93.40  81.54 34 
CURE-TSD  70.84  95.15  83.77 
IVI-TSR  64.37  92.33  79.96 

Overall  67.48  93.63  81.76  

TSingNet TT-100K  67.54  93.51  81.72 23 
CURE-TSD  65.11  92.51  80.39 
IVI-TSR  65.52  92.63  80.62 

Overall  66.06  92.88  80.91  

MF-SSD TT-100K  62.44  91.22  78.75 36 
CURE-TSD  55.06  87.28  74.13 
IVI-TSR  59.21  89.57  76.69 

Overall  58.90  89.36  76.52  

SegU-Net TT-100K  65.06  92.50  80.37 19 
CURE-TSD  69.57  94.60  83.01 
IVI-TSR  63.87  91.72  79.61 

Overall  66.17  92.94  81.00  

MFPSANet TT-100K  69.91  94.73  83.25 25 
CURE-TSD  70.76  95.13  83.71 
IVI-TSR  66.33  92.83  80.92 

Overall  69.00  94.23  82.63  

Mask R-CNN TT-100K  64.66  92.37  80.11 10 
CURE-TSD  58.09  89.16  76.05 
IVI-TSR  62.24  91.15  78.57 

Overall  61.66  90.89  78.24  

Enhance-Net TT-100K  64.98  92.48  80.32 16 
CURE-TSD  62.13  91.13  78.53 
IVI-TSR  62.86  91.47  79.08 

Overall  63.32  91.69  79.31  

Faster R-CNN TT-100K  73.68  97.11  85.93 10 
CURE-TSD  74.08  97.29  86.24 
IVI-TSR  70.77  95.17  83.71 

Overall  72.84  96.52  85.29  
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traffic sign instances in the resultant feature maps, thereby leading to the 
omissions and the degradation of the recall indicator. In contrast, on the 
IVI-TSR dataset, the value of the recall indicator is higher than that of 
the precision indicator, which means that more background objects 
were incorrectly characterized and categorized as the traffic signs. The 
false recognitions were mainly caused by the roadside advertising 
boards that exhibited extremely similar geometric and semantic prop-
erties to the traffic signs. As a result, these background objects exhibited 
strong semantic presences in the resultant feature maps, thereby leading 
to the misidentifications and the lowering of the precision indicator. 
Comparatively, the best performance fell on the CURE-TSD dataset and a 
relatively worse accuracy appeared on the IVI-TSR dataset due to its 
more challenging background scenarios and more complicated self- 
conditions of the traffic sign instances. Overall speaking, the proposed 
SignHRNet demonstrated competitive accuracies and feasible solutions 
on the three test datasets for the task of traffic signs localization and 
recognition. As statistics, the average mAP, average mAP50, and 
average mAP75 are about 72.85 %, 96.48 %, and 85.31 %, respectively, 
by treating the three test datasets as a whole. Although the recognition 
accuracy is quite promising and competitive, it still remains a certain 
gap in comparison with the ideal human-level qualities and accuracies 
that allow no false recognitions and missing detections. 

The complexities and challenges that impacted the recognition per-
formance in the three test datasets resided in the following cases. (1) 
Some traffic sign instances had extremely small sizes covering only 
dozens of or hundreds of pixels in the test images owing to the long 
image capturing distances. (2) Some traffic sign instances were severely 
deformed and squished due to the large shooting perspectives, especially 
the unidentifiable signals on the sign boards. (3) Some traffic sign in-
stances were back on to the sensors while conducting image collection, 
thereby resulting in the signal unavailability and pattern discrepancy. 
(4) Some traffic sign instances exhibited with different-level rotations in 
the test images caused by the sensor rotations, particularly the rectan-
gular traffic signs. (5) The traffic sign instances showed different shapes 
for their special uses and meanings, such as round shapes, rectangular 
shapes, triangular shapes, octagonal shapes, etc. (6) Different categories 
of traffic signs were painted with different colors (e.g., blue, red, green, 
brown, yellow, etc.) and contained different-form contents (e.g., figures 
and characters). (7) Some traffic sign instances suffered from different- 
level occlusions caused by the neighboring background objects, thereby 
leading to the geometric structure and signal content incompleteness. 
(8) Some traffic sign instances exhibited with low contrasts with their 
surrounding environments due to the illumination conditions, such as 
dim lights and bright lights. (9) Some traffic sign instances underwent 
different-level blurs, which were caused by the sensor shakes or bad 
weather conditions, such as rain and fog. (10) The dense distributions 
and close connections of some traffic sign instances brought difficulties 
in accomplishing clear separations, especially the rectangular traffic 
signs. (11) Some background objects, such as advertising boards, 
showed quite similar pattern and texture attributes to the traffic signs. 

(12) The traffic sign instances existed in complicated scenes, such as 
road scenarios and highway scenarios. (13) The CURE-TSD dataset 
suffered from the manually added different types of effects and different 
levels of challenges. The aforementioned cases in the test images exactly 
resulted in the feature quality and distinguishability degradations of the 
traffic sign instances in the resultant feature maps, thereby unques-
tionably impeding the precise localization and correct identification of 
the traffic signs, probably leading to the failures in guaranteeing the 
detection integrity to achieve a high recall rate or the faults in intro-
ducing the background targets or misclassifying a traffic sign into an 
incorrect category to lower the recognition rate. Nevertheless, as re-
flected by the traffic signs recognition results in Table 4 and Fig. 7, the 
proposed SignHRNet still behaved excellently with quite high precision 
and recall evaluations on the handling of the traffic sign instances of 
diverse self-conditions under varying environments. The meritorious 
performance of the SignHRNet was embodied in the following aspects. 
Firstly, stacked by an HRNet structure as the feature extraction back-
bone to extract feature representations in different-size subspaces, the 
SignHRNet performed superiorly in providing high-quality, strong-se-
mantic feature encodings at each branch, which was beneficial to the 
localization and recognition of traffic signs with different sizes, varying 
conditions, and diverse scenarios. Secondly, embedded with the dual- 
attention module for feature semantic recalibration by comprehen-
sively considering the channel and spatial feature significances, the 
SignHRNet was further boosted to attend to semantic-important and 
task-aware features, thereby effectively promoting the feature repre-
sentation quality and robustness. Last but not least, designed with the 
semi-anchoring guided strategy and the feature alignment module, the 
SignHRNet can efficiently locate the traffic sign regions and accurately 
determine the tight bounding boxes of the traffic signs, thereby pro-
moting the detection and recognition efficiencies and accuracies. 

To visually check the performance of the proposed SignHRNet in 
handling the small-size traffic signs and the traffic signs under compli-
cated scenarios and weather conditions, Figs. 8, 9, and 10 also present 
some sample test images, alongside with the traffic signs recognition 
results, from the three test datasets. Apparently, the traffic sign instances 
showing varying sizes, shapes, colors, and patterns, exhibiting different 
contrasts, rotations, and deformations, contaminated by different types 
of effects and weather conditions, existing in different road scenarios, 
suffering from occlusions, and distributing densely were promisingly 
identified and located with tight bounding boxes. Specifically, as shown 
in these figures, some traffic sign instances occupy quite small image 
contents and exhibit very small sizes in the images due to the long 
shooting distances and some traffic sign instances undergo severe geo-
metric deformations due to the large shooting perspectives. As a matter 
of fact, accurately identifying these traffic sign instances is tough 
because of the lack of sufficient feature presences or the lack of repre-
sentative feature semantics. Furthermore, in some images, the traffic 
sign instances demonstrate quite low or high brightness due to the 
variations of illumination conditions. Some images in the IVI-TSR 

Fig. 7. Precision-recall curves of different models on (a) the TT-100K dataset, (b) the CURE-TSD dataset, and (c) the IVI-TSR dataset.  
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dataset were even collected at dusk or early night. These traffic sign 
instances are easily to be regarded as the background components due to 
their non-salient features. Moreover, some traffic sign instances in the 

test images are contaminated by bad weather conditions (e.g., rain and 
fog), manually added effects (e.g., the images in the CURE-TSD dataset), 
and image blurs, which lead to detail unsharpnesses and low visibilities. 

Fig. 8. Traffic signs recognition results on the TT-100K dataset.  

Fig. 9. Traffic signs recognition results on the CURE-TSD dataset.  

Fig. 10. Traffic signs recognition results on the IVI-TSR dataset.  
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As a result, their feature saliency and distinguishability are also 
impacted to some extent. In addition, the nearby vegetation and the 
other in-sight objects shield parts of the traffic sign boards, thereby 
resulting in the structure incompleteness and content loss. This is also a 
challengeable issue to precisely and completely recognize these traffic 
sign instances as they might be less concentrated on and less intensively 
characterized. Last but not least, the traffic sign instances exhibited 
different levels of rotations, different patterns of spatial distributions, 
different shapes, and different color appearances under different 
complicated road scenarios (e.g., urban roads, suburban roads, and 
highways) in the images. Some images even contained very densely 
distributed or overlapped traffic sign instances. It is not easy to accu-
rately and tightly determine the bounding boxes of these traffic sign 
instances due to the interference of the background. Fortunately, 
benefitting from the employment of the HRNet architecture as the 
feature extraction backbone to maintain a high-resolution branch 
through the entire network and repeatedly carry out cross-branch 
feature exchange, the boosting of the dual-attention module for chan-
nel and spatial feature semantic promotions, and the assistance of the 
feature alignment module for instance-oriented feature generation, the 
traffic sign instances under the aforementioned challenging conditions 
were nicely located and recognized. 

However, as shown in Fig. 11, some traffic sign instances have 
extremely small sizes occupying only dozens of pixels and containing 
indiscernible signal details (Fig. 11(a) and (d)). Some traffic sign in-
stances are severely occluded with only a very small visible part (Fig. 11 
(b)). Some traffic sign instances are back on to the sensors with no 
recognizable attributes (Fig. 11(c)). As a result, owing to the insufficient, 
non-salient, and indistinguishable feature semantics, these traffic sign 
instances were not successfully identified. In addition, some roadside 
advertising boards have extremely similar structure and content prop-
erties to the traffic signs, especially the rectangular advertising boards, 
and exhibited very strong feature presences in the resultant feature maps 
(Fig. 11(d)). Hence, they were incorrectly recognized as the traffic signs. 

At the test stage, the processing time was also recorded to evaluate 
the efficiency of the proposed SignHRNet. Specifically, the processing 
efficiency was measured by the frames per second (FPS) indicator, 
which denoted the number of image frames being processed each sec-
ond. On average, the proposed SignHRNet achieved a processing effi-
ciency of about 28 FPS. 

4.5. Comparative analyses 

On the purpose of further analyzing the feasibility and superiority of 
the designed SignHRNet, a group of intensive comparative experiments 
were also conducted with some recently developed state-of-the-art deep 
learning models that served for traffic signs recognition tasks. The 
selected models include: Dense-RefineDet (Sun et al., 2020), group 
multiscale attention pyramid network (GMAPNet) (Shen et al., 2021), 

scale-aware and context-rich feature network (TSingNet) (Liu et al., 
2021), multi-feature SSD (MF-SSD) (Jin et al., 2020), SegU-Net (Kamal 
et al., 2020), multiscale fusion and prime sample attention network 
(MFPSANet) (Cao et al., 2021), mask R-CNN (Serna and Ruichek, 2020), 
and prior enhancement network (Enhance-Net) (Ahmed et al., 2022). All 
the models kept the same network architectures as those proposed in the 
corresponding papers without any modifications on their network ar-
chitectures. Concretely, the Dense-RefineDet and the MF-SSD adopted 
the VGG-16 as the backbone, the GMAPNet adopted the ResNet-50 as 
the backbone, the TSingNet adopted the ResNet-50 with a bilateral 
feature pyramid network (FPN) architecture as the backbone, the SegU- 
Net and the Enhance-Net adopted the SegU-Net architecture as the 
backbone, the MFPSANet adopted the HRNet-W18 as the backbone, and 
the mask R-CNN adopted the ResNet-101 with an FPN architecture as 
the backbone. Among the eight models, the first four models are one- 
stage object detection architectures and the other four models follow 
the two-stage object detection pipelines. Specifically, all the models 
investigated the multiscale or multilevel feature semantics and reason-
ably combined them to provide high-quality and robust instance 
encodings, such as skip connections and feature pyramid structures. 
Worth mentioning, similar to our proposed SignHRNet, the MFPSANet 
also employed the HRNet formulation as the feature extraction back-
bone. In addition, feature attention mechanisms and context augmen-
tation schemes were also considered in some models for boosting the 
feature semantic quality. Aiming at providing comparative analyses on 
the same baseline, all the eight models were trained and tested on the 
three datasets used in this paper with the same training and test data 
partition scheme and the same input sizes of the images as those of the 
SignHRNet. The performances of these models quantitatively evaluated 
by the means of mAP, mAP50, and mAP75, as well as their processing 
efficiencies measured by the FPS indicator, are reported in detail in 
Table 4. The PR curves of these models are shown in Fig. 7. 

As shown by the quantitative statistics in Table 4, the MFPSANet, 
GMAPNet, SegU-Net, and TsingNet behaved similarly, but showed 
obviously more advantageous recognition accuracies than the other 
models, while the recognition performances of the MF-SSD and Dense- 
RefineDet were relatively lower. Interestingly, the one-stage model 
GMAPNet even performed better than the three two-stage models SegU- 
Net, Enhance-Net, and mask R-CNN. Specifically, the accuracy differ-
ence between the MFPSANet and the Dense-RefineDet was about 11.55 
% with respect to the average mAP on the three test datasets. Such a 
performance superiority of the MFPSANet benefitted from the HRNet 
architecture with an attention sample selection strategy, which 
comprehensively fused multilevel and multiscale feature semantics, and 
attended to significant feature encodings. As a result, the strong feature 
semantics well supported the detection of the small-size traffic signs. In 
contrast, the GMAPNet took advantage of the pyramidal feature repre-
sentations and leveraged a group-wise multiscale attention scheme, 
whereas the TSingNet also employed a pyramidal feature extractor and 

Fig. 11. Illustrations of (a) an extremely small-size traffic sign, (b) a severely occluded traffic sign, (c) a traffic sign back on to the sensor, and (d) an adver-
tising board. 
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exploited scale-aware feature representations and multiscale contextual 
feature contents. Therefore, the extracted features of these two models 
were also semantically strong and instance-sensitive, which served 
positively to locate small-size instances and the instances having com-
plex surroundings and varying self-conditions. The performance de-
clines of the MF-SSD and the Dense-RefineDet were primarily caused by 
the output lower-resolution feature maps used for traffic signs classifi-
cation and bounding boxes regression. Thus, they showed weak capa-
bilities in handling the small-size traffic signs. 

Comparatively, the proposed SignHRNet demonstrated significant 
improvement over all the compared models. For example, the accuracy 
difference between the SignHRNet and the best model MFPSANet was 
about 3.85 % with regard to the average mAP metric. Note that, the 
accuracy difference between the SignHRNet and the Dense-RefineDet 
was even about 15.40 % with regard to the average mAP metric. Spe-
cifically, the performance gains of the SignHRNet over the mask R-CNN 
benefitted significantly from the HRNet backbone with the dual- 
attention module for higher-quality feature semantics extraction. 
Through comparative analyses, we concluded that the proposed Sign-
HRNet supplied a competitive, reliable, and effective solution to highly 
accurate traffic signs recognition applications. 

As another comparative experiment, we further analyzed the effi-
ciency and effectiveness between the proposed semi-anchoring guided 
architecture and the RPN-based faster R-CNN architecture (Ren et al., 
2017). To this end, we replaced the feature extraction backbone in the 
faster R-CNN by the HRNet feature extraction backbone with the dual- 
attention module proposed in this paper. That is, the modified faster 
R-CNN had the same feature extraction backbone as the SignHRNet, but 
having different detection heads. Specifically, the modified faster R- 
CNN employed the anchor-based architecture, while the SignHRNet 
employed the semi-anchoring guided architecture. Likewise, the modi-
fied faster R-CNN was trained and tested on the three datasets with the 
same training and test data partition scheme and the same input sizes of 
the images as those of the SignHRNet. The performance of the modified 
faster R-CNN model quantitatively evaluated by the means of mAP, 
mAP50, and mAP75, as well as its processing efficiency measured by the 
FPS indicator, are reported in detail in Table 4. The PR curves are shown 
in Fig. 7. As reflected in Table 4, the modified faster R-CNN achieved 
equal-matched traffic signs recognition performance compared with the 
proposed SignHRNet. However, it showed significantly lower processing 
efficiency compared with the SignHRNet. Thus, it demonstrated that the 
proposed semi-anchoring guided architecture can achieve compatible 
accuracy with the anchor-based architectures, but achieving signifi-
cantly higher processing efficiency than the anchor-based architectures. 

4.6. Ablation studies 

In the proposed SignHRNet, the high-resolution branch of the HRNet 
backbone, the dual-attention module, and the feature alignment module 
contributed positively and significantly to the promotions of the feature 
representation quality and the quality of the regressed bounding boxes. 
As ablation studies, we intently examined the advanced superiorities of 
these three modules to the enhancement of the traffic signs recognition 
accuracies. To realize this objective, first, we conducted a group of 
ablation experiments to evaluate the dual-attention module. To be 
specific, first, we removed all the dual-attention modules from the 
HRNet backbone to abolish the feature semantic attention mechanisms. 
The modified architecture was named as the SignHRNet-NULL. Second, 
we removed the spatial-specific attention unit from the dual-attention 
module, leaving only the channel-specific attention unit for recalibrat-
ing channel features. The modified architecture was named as the 
SignHRNet-CSA. Third, we removed the channel-specific attention unit 
from the dual attention module, leaving only the spatial-specific atten-
tion unit for recalibrating spatial features. The modified architecture 
was named as the SignHRNet-SSA. Fourth, we integrated the dual- 
attention module at the beginning of each stage to perform feature 

attention, i.e. at the point after cross-branch feature exchange in each 
stage. The modified architecture was named as the SignHRNet-BA. 
Finally, we integrated the dual-attention module in the middle of each 
stage to perform feature attention. The modified architecture was named 
as the SignHRNet-MA. 

Table 5 details the traffic signs recognition results obtained by these 
modified models on the three test datasets. Likewise, the mAP metric, as 
well as the mAP50 and mAP75, were also leveraged for quantitative 
analyses and comparisons. Note that, by abandoning the dual-attention 
module for feature semantic promotion, the SignHRNet-NULL behaved 
less promisingly with considerable accuracy degradations on all the 
three test datasets. The reason is that, without the dual-attention module 
for attending to the important, informative channel features and the 

Table 5 
Quantitative evaluation results of different modified models on the three test 
datasets.  

Model Dataset mAP 
(%) 

mAP50 
(%) 

mAP75 
(%) 

FPS 

SignHRNet-NULL TT-100K  68.66  94.45  82.61 31 
CURE- 
TSD  

70.32  94.87  83.48 

IVI-TSR  65.14  92.51  80.29 

Overall  68.04  93.94  82.13  

SignHRNet-CSA TT-100K  70.54  95.83  83.87 29 
CURE- 
TSD  

72.18  95.97  84.18 

IVI-TSR  66.88  93.66  81.34 

Overall  69.86  95.15  83.13  

SignHRNet-SSA TT-100K  70.22  95.51  83.49 29 
CURE- 
TSD  

71.94  95.63  83.82 

IVI-TSR  66.61  93.40  81.07 

Overall  69.59  94.85  82.79  

SignHRNet-BA TT-100K  73.44  96.83  85.73 28 
CURE- 
TSD  

73.71  97.02  85.98 

IVI-TSR  70.45  94.89  83.47 

Overall  72.53  96.25  85.06  

SignHRNet-MA TT-100K  73.23  96.67  85.51 28 
CURE- 
TSD  

73.49  96.84  85.77 

IVI-TSR  70.28  94.66  83.25 

Overall  72.33  96.06  84.84  

SignHRNet-lower TT-100K  68.74  94.55  82.68 33 
CURE- 
TSD  

70.37  94.92  83.54 

IVI-TSR  65.28  92.63  80.36 

Overall  68.13  94.03  82.19  

SignHRNet-wo- 
FAM 

TT-100K  72.94  96.53  85.27 28 
CURE- 
TSD  

73.17  96.71  85.56 

IVI-TSR  69.03  94.07  82.46 

Overall  71.71  95.77  84.43  

SignHRNet-FGS TT-100K  73.73  97.09  85.97 22 
CURE- 
TSD  

74.05  97.23  86.24 

IVI-TSR  70.79  95.14  83.74 

Overall  72.86  96.49  85.32  
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salient, task-oriented spatial features, the semantic and quality of the 
extracted feature maps were weakened and lowered, thereby leading to 
the performance decline on the cases of the traffic sign instances with 
challenging conditions, such as the small-size traffic signs. Overall, the 
accuracy decline of the SignHRNet-NULL with regard to the mAP was 
about 4.81 % on the three test datasets compared with that of the 
SignHRNet. Furthermore, by integrating the channel-specific attention 
unit or the spatial-specific attention unit, the performances of the 
SignHRNet-CSA and SignHRNet-SSA improved significantly compared 
with that of the SignHRNet-NULL. This well demonstrated that each of 
the two attention units behaved positively to the promotion of the 
feature semantic quality, thereby leading to the improvement of the 
recognition accuracy. Comparatively, the SignHRNet-CSA achieved 
slightly higher mAP than the SignHRNet-SSA, which means that the 
channel-specific attention unit is relatively powerful than the spatial- 
specific attention unit in feature semantic recalibration. For visual 
comparisons, Fig. 12 show some examples of the feature saliency maps 
of these models generated in Branch 1 with and without feature atten-
tion mechanisms. These feature saliency maps were generated and 
visualized using the CNN-based Grad-CAM tool (Selvaraju et al., 2017), 
which used the gradients of the traffic sign classes to produce a locali-
zation map highlighting the important regions in the image for pre-
dicting the traffic signs. That is, the brighter the regions, the more 
important and more salient the feature semantics in the regions. It can be 
observed that, with feature attention mechanisms, the feature saliencies 
focused more and better on the traffic sign regions, especially for the 
small-size traffic signs, which were well located and whose feature se-
mantics were well highlighted, thereby improving the recognition ac-
curacy of the small-size traffic signs. In addition, by integrating the dual- 
attention module at different positions (i.e. at the beginning and in the 
middle) in each stage, the recognition performances of the SignHRNet- 
BA and SignHRNet-MA were slightly degraded. However, the degrada-
tions were not significant compared with that of the SignHRNet. This 
was mainly caused by the quality of the feature semantics used in the 
cross-branch feature exchange procedure. By mounting the dual- 
attention module at the end of each stage, the feature semantics from 
different branches were first promoted and then integrated, which was 
beneficial to generate higher-quality feature representations in each 
branch, thereby improving the recognition accuracy. In conclusion, the 
design pattern of the dual-attention module meant significantly to the 
feature semantic enhancement. 

Except for the dual-attention module contributing to the recognition 
accuracy improvement of the small-size traffic signs, we further evalu-
ated the high-resolution branch (i.e. Branch 1) of the HRNet backbone to 
the recognition accuracy improvement of the small-size traffic signs. To 
this end, we discarded the feature map generated in Branch 1 and only 
applied the feature maps generated in the last three lower-resolution 
branches to conduct traffic signs recognition. The modified architec-
ture was named as the SignHRNet-lower. As reported in Table 5, the 
recognition accuracies of the SignHRNet-lower declined significantly on 
the test datasets compared with those of the SignHRNet. The 

performance degradation was mainly caused by the missing recognition 
of the small-size traffic signs, which showed quite low feature saliencies 
in the lower-resolution feature maps. To provide visual comparisons, 
Fig. 13 also shows some sample results obtained by the SignHRNet- 
lower and the SignHRNet. As reflected in Fig. 13, some small-size 
traffic signs failed to be recognized by the SignHRNet-lower, whereas 
they were successfully recognized by the SignHRNet. In conclusion, it 
demonstrated that by maintaining the high-resolution branch across the 
entire network, it is significantly beneficial to the recognition of the 
small-size traffic signs. 

Next, we removed the feature alignment module and its associated 
layers from the detection head, and directly used the outputs exported 
by the anchor regression terminal as the predicted bounding boxes. The 
modified architecture was named as the SignHRNet-wo-FAM. As re-
ported in Table 5, the recognition accuracy decline also appeared on the 
SignHRNet-wo-FAM without the connection of the feature alignment 
module. However, the decline was not as dramatic as that of the 
SignHRNet-NULL. To be specific, the accuracy decline was only about 
1.14 % with respect to the mAP. The main adverse impact was the 
quality degradation of the predicted bounding boxes of the traffic signs, 
especially those traffic sign instances with small sizes, vague boundaries, 
or partial occlusions. As shown in Fig. 14, the SignHRNet (Fig. 14(b)) 
generated more accurate and tighter bounding boxes than the 
SignHRNet-wo-FAM (Fig. 14(a)). For clear visual comparisons, Fig. 14 
(d) and (c) also show the feature saliency maps generated with and 
without the feature alignment module. Obviously, the feature saliency 
map generated with the feature alignment module focuses more tightly 
on the traffic sign regions. In conclusion, we confirmed that the feature 
alignment module behaved meaningfully and usefully to the enhance-
ment of the recognition performance. 

As another ablation experiment to analyze the effectiveness and ef-
ficiency of the semi-anchoring guided strategy, we modified the detec-
tion head of the SignHRNet into the standard full-anchoring guided 
strategy. Concretely, we cut the connection between the position clas-
sification branch and the bounding box regression branch, and deployed 
densely a set of K predefined anchors at each position of the multi-task 
feature map. In this way, each position of the feature map had to carry 
out traffic sign bounding boxes regression without any supervisions 
about the traffic sign regions. The modified architecture was named as 
the SignHRNet-FGS. As reported in Table 5, the SignHRNet-FGS ach-
ieved equal-matched performance to that of the SignHRNet. It meant 
that the semi-anchoring guided strategy with less number of anchors can 
still act compatibly with the full-anchoring guided strategy, thereby 
proving the effectiveness of the proposed semi-anchoring guided strat-
egy. However, as reflected by the processing speed, the SignHRNet-FGS 
attained an FPS of 22, which was slower than that of the SignHRNet. It 
indicated that the SignHRNet operated more efficiently than the 
SignHRNet-FGS. The efficiency decline of the SignHRNet-FGS was 
caused by the regressions of the large-volume dense anchors at all the 
positions of the feature map, whereas the SignHRNet only required to 
regress a small number of anchors located in the traffic sign regions, 

Fig. 12. (a) Test image and feature saliency maps generated (b) without the dual-attention module, (c) with only the channel-specific attention unit, (d) with only 
the spatial-specific attention unit, and (e) with the dual-attention module. 
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thereby significantly improving the processing efficiency. In conclusion, 
the semi-anchoring guided strategy performed both effectively and 
efficiently. 

Aiming at analyzing the superiorities of the proposed feature atten-
tion module in promoting the feature semantics, we also conducted a set 
of ablation experiments to make a comparison with the existing feature 
attention mechanisms. The following four attention mechanisms were 
considered: SE block (Hu et al., 2020), coordinate attention (Hou et al., 
2021), CBAM (Woo et al., 2018), and DA module (Fu et al., 2019). To be 
specific, we substituted the proposed feature attention module in the 
SignHRNet with the SE block, coordinate attention, CBAM, and DA 
module, respectively, to construct four modified architectures. These 
modified architectures were named as the SignHRNet-SE, SignHRNet- 
CA, SignHRNet-CBAM, and SignHRNet-DA, respectively. As reported in 
Table 6, the SignHRNet-DA achieved the best recognition accuracy 
among the four modified models, whereas the SignHRNet-CBAM 
behaved less promisingly. Besides, the SignHRNet-CA performed 
slightly better than the SignHRNet-SE due to the embedding of the po-
sition information when exploiting the channel feature saliencies. The 
performance gains of the SignHRNet-DA benefitted from the concurrent 
consideration and integration of both the channel and spatial feature 
significances, thereby effectively promoting the feature representation 
quality. Nevertheless, the SignHRNet with the proposed feature atten-
tion module demonstrated significant accuracy improvement compared 
with these modified models, which convinced the effectiveness of the 
designed feature attention strategy. Note that, as reported by the pro-
cessing speeds, the SignHRNet-DA showed lower efficiency than the 
other modified models due to the complex matrix operations in the DA 
module, whereas the SignHRNet-SE behaved quite efficiently. However, 
the proposed SignHRNet showed obvious efficiency improvement 
compared with the SignHRNet-DA and compatible efficiency with the 
SignHRNet-CA due to the lightweight architecture of the proposed 
feature attention module. 

5. Conclusion 

This paper has designed an effective attentive semi-anchoring guided 
high-resolution network, termed as SignHRNet, for street-level traffic 
sign recognition tasks. The SignHRNet employed a one-stage processing 
architecture and consisted of an attentive HRNet as the feature extractor 
and a semi-anchoring guided detection head for traffic signs recognition 
and bounding boxes regression. To be specific, stacked with an HRNet 

Fig. 13. Traffic signs recognition results obtained by (a) the SignHRNet-lower and (b) the SignHRNet.  

Fig. 14. Predicted bounding boxes by (a) the SignHRNet-wo-FAM and (b) the SignHRNet. Feature saliency maps generated (c) without and (d) with the feature 
alignment module. 

Table 6 
Quantitative evaluation results of the modified models with different feature 
attention mechanisms on the three test datasets.  

Model Dataset mAP (%) mAP50 (%) mAP75 (%) FPS 

SignHRNet-SE TT-100K  69.44  94.95  83.36 30 
CURE-TSD  71.18  95.48  83.84 
IVI-TSR  66.17  92.94  80.52 

Overall  68.93  94.46  82.57  

SignHRNet-CA TT-100K  69.72  95.33  83.57 29 
CURE-TSD  71.46  95.63  83.94 
IVI-TSR  66.58  93.12  80.77 

Overall  69.25  94.69  82.76  

SignHRNet-CBAM TT-100K  69.05  94.71  82.95 27 
CURE-TSD  70.71  95.17  83.66 
IVI-TSR  65.68  92.73  80.41 

Overall  68.48  94.20  82.34  

SignHRNet-DA TT-100K  70.81  96.06  84.11 23 
CURE-TSD  72.46  96.15  84.47 
IVI-TSR  67.23  93.92  81.68 

Overall  70.17  95.38  83.42  
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structure boosted by a dual-attention module, the SignHRNet can export 
multiscale strong and task-aware feature semantics, which favored 
significantly the localization and identification of the traffic sign in-
stances with diverse conditions, especially the small-size ones. 
Furthermore, designed with a semi-anchoring guided strategy, which 
used an anchor-free scheme for categorization and an anchor-based 
scheme for localization, the SignHRNet can achieve competitive effi-
ciency and effectiveness with lightweight, high-quality anchors. In 
addition, assisted by an FAM for providing instance-sensitive feature 
semantics, the quality of the predicted bounding boxes was further 
promoted. The proposed SignHRNet has been intensively examined on 
three large-size datasets. Experimental results showed that an excellent 
overall performance with an average mAP of 72.85 %, an average 
mAP50 of 96.48 %, and an average mAP75 of 85.31 %, respectively, was 
attained for handling traffic signs of varying conditions under diverse 
scenarios. Ablative and comparative analyses also demonstrated the 
superior applicability and advanced effectiveness of the SignHRNet in 
traffic signs recognition tasks. However, the construction and optimi-
zation of the SignHRNet still requires large numbers of annotated data 
and large amount of computation resources. In our future works, we will 
investigate weakly supervised or few-shot strategies to well alleviate 
these issues. 
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