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Abstract— Accurate and effective road object semantic
segmentation plays a significant role in supporting extensive intel-
ligent transportation system (ITS)-related applications. However,
most existing image-based methods and point-based methods
cannot deliver promising solutions with respect to segmentation
accuracy and robustness, especially in complex urban road
scenes. Thus, we design a saliency-guided transformer architec-
ture (STN) in this letter for point-wise semantic segmentation
from mobile laser scanning (MLS) point clouds. First, four
types of feature saliency maps are constructed to obtain more
compact feature spaces for enhancing the feature encoding
semantics. Then, integrated with offset attention mechanisms and
edge convolutions, an effective point-wise transformer network
is proposed to extract high-level features for point-wise label
assignment of road objects. The STN model is evaluated on the
Pairs-Lille-3D (PL3D) dataset and achieves satisfactory exper-
imental results with 87.2% overall accuracy (OA) and 81.7%
mean intersection-over-union (IoU), respectively. Comparative
studies with five deep learning-based methods also prove the
superior performance of the STN model for large-scale semantic
segmentation tasks.

Index Terms— Edge convolution, feature saliency, offset atten-
tion, point cloud, semantic segmentation, transformer network.

I. INTRODUCTION

THE point-wise segmentation task aiming to determine
the semantic label point-by-point in the entire point

clouds is a remarkably essential process to support extensive
applications, including intelligent robotics, autonomous vehi-
cles, and digital twins. Compared to the 2-D optical images,
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the 3-D point clouds could more precisely and frequently
monitor the spatial information, orientation, and geometric
shape attributes of road objects. Most significantly, they are
less sensitive to illumination conditions, shadow influence, and
viewpoint variations [1]. Unlike 2-D images with a regular grid
structure, 3-D point clouds captured by light detection and
ranging (LiDAR) sensors are in an unorganized data format
and disordered distributions, making it challenging to achieve
efficient and accurate road object semantic segmentation,
especially in complex and large-scale urban areas [2].

A potential solution for point-wise road object segmenta-
tion is rule-based or thresholding-based methods, which, yet,
require ample prior knowledge and have limited performance
when dealing with varying test scenarios. More recently, due
to the dominant capabilities of extracting representative and
multilevel features in an end-to-end manner with few human
interventions, deep learning-based approaches are being thor-
oughly investigated to segment road objects from point cloud
data. These deep learning-based approaches commonly adopt
two processing tactics, that is, image-based tactic and point-
based tactic.

The image-based tactic transforms point clouds into a
collection of georeferenced feature images, thus, the well-
designed learning-based methods in image processing domains
could be performed. Accordingly, in [3], a multiview convolu-
tional neural network (MVCNN) as the pioneer was proposed
to investigate a 3-D–2-D dimension reduction strategy for
3-D shape representation. First, multiple views were captured
using a view pooling operation without assigning specific
orders. Then, such views were fed into CNN models sepa-
rately and combined via max pooling layers to encode the
high-level and inherent features. Furthermore, Qi et al. [4]
improved the MVCNN model performance by proposing an
anisotropic probing kernel for image rendering. Compared
with MVCNN, this method introduced multiresolution filter-
ing and sphere rendering algorithms to obtain more spatial
information in multiscale, which achieves view-invariant and
enhances the model robustness for object shape diversities.
Dai and Nießner [5] leveraged the imagery and geometry
data for semantic scene segmentation. Feature maps were
first extracted from images. Depending on differentiable back
projectors, these feature maps were thus projected into the
3-D information. Then, a multiview pooling method was
conducted to learn more discriminative features. Meanwhile,
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Kanezaki et al. [6] introduced a CNN-based model that inputs
multiview images of 3-D objects and outputs their object
categories. Different from preceding studies that take known
viewpoint labels for training, this model was trained in an
unsupervised way by taking these viewpoint labels as poten-
tial variables. To reduce information loss during projection,
SnapNet [7] was presented to generate a depth and RGB
image pairs using snapshots derived from input point clouds.
Each pair of images was accordingly labeled pixel-by-pixel
based on fully convolution networks. Likewise, SnapNet-R
[8] was developed by directly generating multiple views and
capturing dense 3-D point markers for segmentation per-
formance improvement. Additionally, Yang et al. [9] tested
a multiview semantic learning network (MVSLN) to obtain
the representative features for 3-D object detection. In their
work, to preserve much more low-level features, four views
of an object were first created by projecting 3-D point
clouds to planes with specific angles. Then, a spatial recal-
ibration operation was performed for deviation correction
due to different projection angles and adjusted the relative
feature locations of these four views, followed by a region
proposal network for object detection. On the whole, the
image-based tactic could deliver high efficiency in process-
ing large scenarios, yet some important geometric spatial
information will be lost during the transformation from
3-D spaces to 2-D images, as well as causing redundant
information.

On the contrary, the point-based tactic could directly con-
sume point clouds without information loss. PointNet [10],
as a pioneering framework for 3-D point-wise classification
and segmentation, was designed to extract spatial features of
unordered point clouds through multilayer perceptron (MLP)
operations and then fused these features by max-pooling
layers. In addition, to address the dilemma of transforma-
tion invariance, PointNet presented a data-dependent spatial
transformer network to canonicalize the raw point clouds
before feeding them into MLP layers, so as to greatly
improve the experimental results. However, PointNet is less
effective to acquire local features of point clouds due to
max-pooling operations, resulting in less robust to intricate
scenarios and multigrained fashions. To solve this problem,
PointNet++ [11] was further constructed to extract more
local features using the multiscale sampling and grouping
mechanisms from coarse layers to fine layers, followed by
PointNet for global high-level feature extraction. Li et al. [12]
designed a X -transformation operator that could directly
convolve kernels on point features, contributing to inherent
feature encodings and object shape information preservation.
Meanwhile, Wang et al. [13] proposed a dynamic graph con-
volutional neural network (DGCNN) for effective geometric
feature encodings in local areas through edge convolutions.
These edge convolutions encapsulated in most mainstream
network architectures could dynamically adjust the given fixed
graph for each layer output, incorporate local information in
local regions, and are suitable for multilayer structures to cap-
ture global shape properties. Likewise, Ma et al. [14] improved
the DGCNN performance by designing a multiscale fea-
ture extraction scheme, followed by conditional random field

postprocessing for 3-D point-wise segmentation refinement.
According to the self-attention mechanism and point-wise
operations, Zhao et al. [15] proposed a Transformer-based
self-attention neural network, called Point Transformer, for
semantic scene segmentation tasks from indoor 3-D point
clouds. These point-based methods can well preserve the
spatial and geometric information of road objects, which are
more suitable for accurate and robust 3-D object segmentation,
particularly for complex test scenes.

In this letter, we introduce a saliency-guided transformer
network, called STN, combined with overall accuracy (OA)
mechanisms and edge convolutions for road object semantic
segmentation from mobile laser scanning (MLS) point clouds.
The STN model takes generated feature saliency maps derived
from raw MLS point clouds as the input and outputs point-
wise road object semantic labels. The main contributions are
summarized as follows: 1) four types of feature saliency maps
are constructed to obtain more compact feature spaces for
improving the feature encoding semantics and 2) an effective
point-wise transformer network integrated with offset attention
and edge convolutions is introduced to extract high-quality
features for point cloud semantic segmentation.

II. POINT-WISE SEMANTIC SEGMENTATION

The proposed STN model mainly contains four modules:
feature saliency construction, point-wise transformer network,
offset attention, and edge convolution. Fig. 1 details the
workflow of the STN framework.

A. Feature Saliency Construction

In this letter, we investigate four new features for the
unordered point clouds to amplify the distinction of different
point features and enhance intraclass compactness. These new
features could not only help generate more compact feature
spaces, but also strengthen input embedding performance in
the proposed STN framework. These four new features are
height context feature (HCF), intensity context feature (ICF),
density context feature (DCF), and normal context feature
(NCF). For each point pi(xi , yi , zi , ri ), i = 1, 2, . . . , n,
where n denotes the number of input points, si (xi , yi , zi )
represents the spatial information, and ri indicates the intensity
values. Accordingly, two cotangent functions are employed to
calculate both HCF and ICF feature saliency as follows:⎧⎪⎪⎨

⎪⎪⎩
HCFi = cot

(
1

1 + e−δ×zi

)

ICFi = cot

(
1

1 + e−δ×ri

) (1)

where HCFi and ICFi indicate the new salient height features
and intensity features of each point pi , cot(·) is a cotangent
function. δ is a transformation degree, which is predefined as
δ = 1 in this letter.

Next, the DCF can be determined by computing the number
of adjacent points of each point in a given neighborhood as
follows:

DCFi = N (R, range (0, 1)) (2)
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Fig. 1. Workflow of the STN framework. Numbers on the above of different modules present their output channels.

where DCFi represents the new spatial DCF, R denotes
the searching radius of the spherical neighborhood of each
point, and N normalizes the input value to the range [0, 1].
Specifically, R = 0.5 m is set in this letter.

Moreover, the normal context feature NCFi (Nxi , Nyi , Nzi )
of each point is further calculated to enhance the spatial
coordinate distinction among different points. Finally, all these
new features are concatenated together to generate the new
input features as npi(Nxi , Nyi , Nzi , HCFi , ICFi , DCFi ) of
each point pi , then, we can obtain a new output dataset, that
is, M = {np1, n p2, . . . , n pn}, which can be fed into the
transformer-based neural network to extract more high-level
features.

B. Point Transformer Network

The straightforward way to directly apply Transformer to
3-D point clouds is to consider the whole input point clouds
as a sentence, while points are treated as different words. This
point-wise transformer network is performed by conducting a
feature embedding and constructing attention layers with the
self-attention (SA) modules.

Similar to word embedding in natural language process-
ing, feature-based point embedding focuses on grouping
points together in different embedding feature spaces if
these points are more semantically similar. To this end,
the point cloud dataset M generated in Section II-A is fed
into a d f -dimensional space F ∈ RN×d f using four cas-
caded transformer and edge convolution layers, each with a
d f -dimensional output. To make a tradeoff between computa-
tional costs and model performance, d f = 256 is set based on
prior knowledge [16].

Moreover, self-attention modules, as the key element in
transformer-based networks, are employed to calculate seman-
tic affinities between different points. Specifically, assume Q,
K, and V are the query, key, and value matrices, respectively.
These matrices are calculated by a series of linear operations of
the input features Fin ∈ RN×d f using the following equations:

(Q,K,V) = Fin · (Wq,Wk,Wv

)
(3)

where Wq , Wk , and Wv denote the shared learnable weights,
Wq,Wk ∈ Rd f ×dt , Wv ∈ Rd f ×d f , Q,K ∈ RN×dt , V ∈ RN×d f ,
and dt denotes the dimensions of the query and key vectors.
We set dt = (d f /4) in this letter for computational efficiency.

First, depending on both Q and K matrices, the attention
weights are computed through the matrix dot product, the

Fig. 2. Offset attention architecture. N indicates dimensions and d indicates
feature channels.

output weights are then normalized as follows:
Ã = (ã)i, j = Q · KT (4)

āi, j = softmax
(
ãi, j

) = exp
(
ãi, j

)
∑

k exp
(
ãk, j

) (5)

ai, j = (ã)i, j∑
k āi,k

(6)

where A = (a)i, j is the attention weight. Furthermore, the
intermediate output features Fmid that are the weighted sum
of value vectors, which are determined as follows:

Fmid = A · V . (7)

The Q, K, and V matrices are ascertained by taking the both
shared linear transformation matrices and the input feature Fin

into consideration, which are therefore invariant to permuta-
tions. Additionally, weighted-sum and softmax operations are
both order-independent. Herein, the self-attention operation is
permutation-invariant, which makes it more suitable for the
unorganized and discrete point clouds.

C. Offset Attention

Moreover, as demonstrated in [16], point-wise transformer
networks could achieve better segmentation performance,
if the SA mechanism is improved by an OA mechanism.
Fig. 2 illustrates the architecture of offset attention layers.
More specifically, the OA layers compute the differences
between the input features Fin and the OA features Fmid via
element-wise subtraction. These differences are subsequently
fed into LBR networks (i.e., linear, batch normalization, and
ReLU layers) to calculate the out features Fout as follows:

Fout = OA(Fin) = Fin + LBR(Fin − Fmid) (8)

where Fin − Fmid is similar to a discrete Laplacian operator.
Consequently, this OA-based transformer network could not
only sharpen the attention weights, but also alleviate the
problem of noisy points, contributing to the feature extraction
during the segmentation tasks.
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D. Edge Convolutions

Transformer-based networks are effective for global feature
encodings; however, they ignore the local features that are
remarkably significant in point cloud segmentation. Herein,
we improve the EdgeConv operations developed in [13] to
improve the point embedding to strengthen the local feature
extraction capability of the STN model. More specifically, the
KNN algorithm is utilized to determine the k-nearest neighbors
of a given point. The number of neighbors can dynamically
adjust between adjacent layers and accordingly compute the
sequence of edge feature embedding. To this end, we construct
a graph g = (v, e) in d-dimensional space, and v and e
indicate vertices and edges, respectively. Let edge features be
ei j = hψ(Nxi , N x j), where hψ ∈ Rd×d indicates a nonlinear
transformation. Accordingly, the improved EdgeConv operator
is proposed by performing a channel-widen symmetric aggre-
gation function on edge features. Hence, the output at the i th
vertex is calculated using the following equations:

Nx ′
i = max

j :(i, j)∈e
hψ

(
Nxi , N x j

)
(9)

hψ
(

Nxi , N x j
) = hψ

(
Nxi ,

(
Nx j + Nxi

)
/2

)
(10)

where max j :(i, j)∈e indicates a max operation as the symmetric
aggregation function. Finally, all global features learned from
transform-based networks and local features learned by Edge-
Conv operators are concatenated together and put into LBRD
(LBR & dropout) and LBR layers to output segmentation
results.

III. EXPERIMENT AND RESULT ANALYSIS

A. Data Descriptions

In this letter, the Paris-Lille-3D (PL3D) dataset [17] was
used to evaluate the STN model performance. This dataset has
a total length of 1.9 km with over 143 million points. More-
over, nine different object classes, for example, Natural, Cars,
Pedestrian, Barrier, Trash Can, Bollard, Poles, Building, and
Ground, are manually labeled point-by-point for the semantic
segmentation task. The PL3D dataset was collected from
complex urban road scenarios, which typically represent real-
world road conditions with many moving obstacles, various
point densities, and occlusions, hence leading to significant
challenges for accurate point-wise semantic segmentation.
Specifically, the whole point cloud dataset is separated into
70% and 30% data subsets for training and testing, respec-
tively. We proposed and evaluated the STN model using Ten-
sorFlow 2.3.0, Python 3.6.9, and Nvidia RTX 3090 graphics
card with 24-GB memory on the Ubuntu 20.04 LTS operating
system. Based on prior knowledge and extensive experiments,
we predefined the initial learning rate, dropout rate, batch size,
and the number of iterations as 0.0001, 0.5, 32, and 200 in
the training stage, respectively.

B. Experimental Results

To provide an accurate assessment of the point-wise seman-
tic segmentation, two evaluation metrics, that is, intersection-
over-union (IoU) and OA, were employed to calculate the
model performance. Table I indicates the point cloud semantic

TABLE I

POINT-WISE SEMANTIC SEGMENTATION RESULTS ON THE PL3D DATASET

Fig. 3. Point-wise segmentation results in this letter. (Top row) Raw input
point clouds. (Middle row) Experimental results by using the STN model.
(Bottom row) Two zoomed-in views.

segmentation results obtained on the PL3D dataset, by estimat-
ing the OA and IoU across all the object classes. To visually
inspect the experimental results, Fig. 3 illustrates the road
object semantic segmentation in complex urban road scenes.
Nine different colors denote different types of road objects.

As shown in Table I, the proposed STN model could
achieve 87.2% OA and 81.7% mean IoU on the PL3D dataset,
respectively. Apparently, the STN model delivered superior
accuracies in extracting the road object types of Ground
and Building. On the contrary, a relatively low segmentation
accuracy was obtained on the road object type of Pedestrian.
Moreover, similar segmentation accuracies were achieved on
the road object types of Pole, Bollard, Trash Can, and Barrier.
However, according to the magnified views in Fig. 3, it is seen
that some points belonging to barriers were misidentified as
natural points, while some natural points were misidentified
as pedestrians. The reasons leading to different segmentation
accuracies are: the complexity of road scenes and varying
object structures have considerable influences on the feature
encoding ability of the STN model. Moreover, the moving road
users (e.g., cyclists), distortion, and background interference
in the PL3D dataset could also cause incorrect point-wise
segmentation results. To sum up, benefiting from the design
of several feature saliency maps and the point-wise trans-
former network with the assistance of OA mechanisms and
edge convolutions for feature learning, the STN model could
behave effectively and promisingly on point-wise semantic
segmentation of MLS point clouds.

C. Comparative Study

In order to further demonstrate the superior perfor-
mance of the proposed STN model for point-wise semantic
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TABLE II

SEGMENTATION RESULTS USING DIFFERENT POINT-WISE FRAMEWORKS

segmentation, a comparative study was performed to compare
the STN model with several point-wise segmentation methods,
including PointNet [10], PointNet++ [11], PointCONV [12],
DGCNN [13], and Point Transformer [15]. To make the com-
parison fair, all methods were evaluated using the same testing
dataset, and the same training and testing protocols were
applied under the same operating environment. In addition,
all parameters involved in these methods were set in default.

Table II shows the comparison results. Note that, as the
pioneer point-wise segmentation network, PointNet achieved
38.6% mIoU, which is far from promising segmentation
results. Besides, as the advanced version of PointNet,
PointNet++ employed sampling and grouping techniques in
multiple scales for local feature extraction from unordered
point clouds, yet the mIoU decreased by 6.6% due to nonuni-
form data distributions in urban road scenes and relatively
limited global feature learning capability. Compared with the
low-level feature encoding enforcement in both PointNet and
PointNet++, the improved performance of PointCONV and
DGCNN was because of the investigation of deep, high-
level, and inherent feature descriptiveness through powerful
transformation operators and edge convolutions. Consequently,
PointCONV and DGCNN achieved 60.5% mIoU and 52.9%
mIoU, respectively. As demonstrated in [16], the semantic seg-
mentation performance will be improved if the SA mechanism
is replaced by the OA mechanism. Thus, Point Transformer
that used the SA layers achieved 78.7% mIoU, which was
lower than the STN embedded with SA layers. In contrast,
due to effective feature saliency construction, significant point-
wise global feature encoding enhancement boosted by the OA
operations, and improved edge convolutions for local feature
promotion, the proposed STN model outperformed these point-
wise segmentation networks with respect to both OA and mean
IoU. On the whole, the STN model presented a promising
solution to road object semantic segmentation from large-scale
MLS point clouds.

IV. CONCLUSION

In this letter, we introduce a saliency-guided transformer
network, called STN, for point-wise semantic segmentation
from MLS point clouds of urban scenarios. Training the
STN model with four types of salient features of MLS point
clouds, the transformer-based architecture of the STN could
extract inherent, descriptive, and high-level feature represen-
tations to achieve accurate road object semantic segmentation

in complex urban road environments. Benefitting from OA
mechanisms for effective attention weight enhancement and
edge convolutions for powerful local feature encodings, both
point semantics and feature quality are remarkably improved
to boost the segmentation performance of the STN model.
Experimental results show that the proposed methods could
deliver an average of 87.2% OA and 81.7% mIoU across all
the object categories of the Paris-Lille-3D dataset. Compara-
tive experiments with five deep learning-based methods also
demonstrate the superior performance of the STN model in
point-wise semantic segmentation tasks, especially in large-
scale and complex urban road scenes.
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