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José Marcato Junior f, Hemerson Pistori a,b, Wesley Nunes Gonçalves a,f 

a Faculty of Computer Science, Federal University of Mato Grosso do Sul, Av. Costa e Silva, Campo Grande 79070-900, MS, Brazil 
b INOVISAO, Dom Bosco Catholic University, Avenida Tamandaré, 6000, Campo Grande 79117-900, MS, Brazil 
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A B S T R A C T   

Fingerling counting is an important task for decision-making in the aquaculture context. The counting is usually 
performed by a human, which is time-consuming and prone to errors. Artificial intelligence methods applied to 
image interpretation can be a great strategy for solving this task automatically. However, applying machine 
learning to attend to aquaculture issues is an underexplored field that requires novel investigations, especially of 
methods that explore temporal information in videos. In this study, we propose a new method to locate and count 
fingerlings in a sequence of images using convolutional neural networks. The proposed method estimates three 
tasks in a multi-task approach. The first task consists of predicting the probability of a fingerling occurring in 
each pixel of the frame, while the second and third tasks estimate the movement performed by the fingerlings. 
Motion prediction is used as a complement to fingerling detection, including relevant information especially 
when two or more fingerlings are in contact. Experimental results indicated that the use of temporal information 
considerably increases the results, reaching F1 of 97.89. The proposed method was evaluated in frames with 
different numbers of fingerlings (from 0 to 10) and all obtained relevant results, with an F1 of 95.42 or higher. 
The study also showed that, in most cases, the proposed method can detect the contact of two or more finger
lings, which is considered the main challenge of the detection and counting of fingerlings.   

1. Introduction 

Fingerling counting is the task of estimating the number of animals in 
a given area for decision-making. This data is important to calculate the 
production potential, the necessary amount of feed, and the sale of a 
specific amount of animals. Counting is usually performed visually by a 
human, although it is time-consuming and error-prone. Currently, a 
translocation between tanks is performed by estimating the weight of 
animals in a sieve (e.g., one kilo is equivalent to N fingerlings on 
average) whereas, in sales, excessive time is required to count the exact 
number of animals (Zhang et al., 2020a). 

To reduce errors and speed up the process, automatic systems using 
images have been proposed (França Albuquerque et al., 2019; Garcia 
et al., 2020). These systems collect images and the counting is performed 
by analyzing the images, making counting faster and less costly. 
Counting occurs in two ways: i) detecting each fingerling (detection- 
based methods) or ii) regressing a number that correlates the entire 
image or parts of it with the number of fingerlings (regression-based 
methods). In addition, these methods can include temporal information 
from a sequence of images. 

Detection-based methods locate each fingerling in the image. Garcia 
et al. (2020) and França Albuquerque et al. (2019) presented a system 
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for counting fingerlings using background subtraction, blob detection 
and Kalman filter. Although relevant results have been achieved, the 
system is susceptible to a large amount of parameterization (e.g., 
average fingerling size, average distance, etc.), which makes it difficult 
to use on a large scale. Some studies already used neural networks in 
aquaculture cases (Sveen et al., 2021; Zhao et al., 2018; Zhou et al., 
2019). Recently, counting methods have been proposed using con
volutional neural networks (CNNs), such as R-CNN used by Salman et al. 
(2019), Faster R-CNN Ren et al. (2015), and FCOS Tian et al. (2019). 
These methods consider a bounding box for each object and can provide 
both the position (center of the bounding box) and the count (number of 
bounding boxes). To analyze the effectiveness of the Convolutional 
Neural Network (CNN) in detecting and counting fingerlings, Lainez and 
Gonzales (2019) tested the method based on image processing on four 
sizes of tilapia fingerlings, achieving an average accuracy greater than 
0.99. 

Fishes species recognition can also be useful in counting tasks (Dos 
Santos and Gonçalves, 2019). Li et al. (2015) apply Fast R-CNN for fish 
detection and recognition in complex underwater environments and 
Villon et al. (2018) compare the performance of a CNN with the human 
ability to identify fish species. Despite achieving satisfactory results, 
such works do not focus on fish counting. 

On the other hand, regression-based methods directly estimate the 
number of fingerlings establishing a correlation between the features 
extracted from the image and the target number. Zhang et al. (2020a) 
proposed a method that divides the image into sub-images containing 
one or more fish using segmentation. For each subimage, regression is 
applied to estimate the number of local fish and contributes to the total 
image count. Fan and Liu (2013) proposed a method that estimates the 
number of fingerlings based on geometric features (e.g., area, perim
eter). The features are inputs for the least squares support vector ma
chine (LS-SVM) that performs the regression. CNNs have also been used 
for regression and counting fish. Zhang et al. (2020b) proposed a hybrid 
neural network model to estimate a density map and the total number of 
fish in the image. The hybrid model based on a multi-column CNN and a 
dilated CNN obtained an accuracy above 0.95 and a Pearson correlation 
coefficient, referring to the ground truth and the estimation, of 0.99. 

Although the regression-based methods have good results, they are 
not able to estimate the position of each fingerling in the image. In 
addition, the fingerlings are distributed inhomogeneously in the images 
containing, in general, more examples with low density. Thus, these 
methods present a long tail distribution of counts, providing un
derestimations in high density regions and overestimations in low 
density regions (Liu et al., 2020). 

Although recent methods have obtained promising results, the high 
density with overlapping fingerlings is a challenge for counting. In 
general, object detection methods are not suitable for dense object 
scenarios (Goldman et al., 2019). In this case, the overlapping of the 
bounding boxes due to occlusion makes detection and counting difficult. 
To assist in counting in occlusion scenarios, counting in a sequence of 
images can be important. Analysis of the movement that objects perform 
in frames can provide valuable information that is not always taken into 
account when counting objects in an image. In this context, studies show 
that the movement of objects can assist in the detection and counting, as 
well as distinguishing them from the background (Ma et al., 2015; Nam 
and Han, 2016; Danelljan et al., 2015; Wang et al., 2019; Hou et al., 
2019; Gonçalves et al., 2020). 

In this regard, we proposed a detection-based method for analyzing 
fingerlings in a video stream. Locating or detecting fingerlings consists 
of identifying the positions (x,y) in the frame. In this way, the count can 
be obtained by the number of fingerlings detected. Our approach fits 
into the detection-based category as it performs the fingerling detection 
through the confidence map, different from regression-based methods 
that estimate the quantity directly from the image. It refers to an original 
approach for locating and counting fingerlings in a video stream using 
convolutional neural networks. We hypothesize that there is an 

improvement in the detection when the past frame information is used 
to count and locate fingerlings in a current frame. For example, knowing 
the movement of fingerlings from the previous frame can benefit 
detection of the current frame. Up to the writing moment, this refers to 
the first attempt to combine the movement of the fingerlings from one 
frame to the other for estimating a movement direction vector which 
improves robustness in fingerling detection. Our dataset is composed of 
videos with up to 10 fingerlings and with contact between them, which 
makes detection difficult. Despite this, the results showed the promising 
results with an F1 of 97.89. 

2. Materials and methods 

2.1. Image capture and dataset 

The videos used in this work was collected by (França Albuquerque 
et al., 2019; Garcia et al., 2020). To capture the images, a closed 
structure with a ramp inclined at approximately 12 degrees was used. 
The inclined ramp helps the fingerlings slide with water, which flows 
continuously. On top of the structure, a Logitech C920 camera was 
placed to capture images at 30 frames per second with a resolution of 
640 × 480 pixels. To improve image quality, a light source was placed 
for indoor lighting. 

To build the dataset, 20 videos were captured in a company located 
in Terenos, Mato Grosso do Sul, Brazil. The fingerlings used in the 
dataset are of the Pintado real species due to their importance in pro
duction. In the experiments, the frames were scaled to 512 × 512 pixels. 
Table 1 shows the number of frames and the total number of fingerlings 
for each of the training, validation, and test sets. The number of fin
gerlings per frame is shown in Table 2. Most frames have up to two 
fingerlings, although challenging scenarios with up to 10 fingerlings are 
present in the dataset. We also counted the number of times two or more 
fingerlings were in contact. In the test frames, there were 111 adhesions 
between fingerlings, which poses a greater challenge in detection. 
Adhesion or contact between fingerlings usually occurs in frames with 
6–10 fingerlings, and of the 69 frames, 41 of them have contact with one 
or more fingerlings. 

Each frame was manually annotated with the center of mass of each 
fingerling. Given an image, an expert annotated a point at the approx
imate center of mass. In addition, the center of mass of each fingerling in 
the previous frame is available to assist in the inclusion of temporal 
information, as used by the proposed method. 

2.2. Proposed approach 

This section describes a method for detecting and counting finger
lings in a video. Fig. 1 presents an overview of our method. Initially, two 
frames are concatenated (Fig. 1(a)) and a feature map is extracted using 
a CNN (Fig. 1(b)). This feature map is given as an input to the multi-task 
learning (Fig. 1(c)) that estimates i) the probability of a pixel being part 
of a fingerling, ii) the probability of the pixels belonging to the move
ment of a fingerling from a previous frame to the current one, and iii) a 
movement direction vector for each pixel. From the estimation of the 
first task, the proposed method detects the fingerlings forming a com
plete bipartite graph (Fig. 1(d)). This graph is composed of two groups of 
vertices representing the fingerlings in the previous frame (circled in 
blue) and the current frame (circled in orange). Each vertex of a group is 

Table 1 
Description of the dataset in relation to the number of frames and fingerlings.  

Set N. of frames N. of fingerlings 

Train 2730 4079 
Validation 210 461 
Test 1080 2102 
Total 4020 6642  
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connected to all vertices of the other group by edges. Edge weights are 
calculated using the movement information estimated in the multi-task 
learning. Finally, the fingerlings from the previous frame are matched 
with those detected in the current frame, discarding those without a 
match. In addition, fingerlings from the current frame without a match 
but with a high probability of occurrence are kept, as they are probably 
new fingerlings entering the scene. The subsections below describe each 
step in detail. 

2.2.1. Feature map extraction 
Given two consecutive RGB frames It and It− 1 with w × h × 3, they are 

concatenated to form an input I = [It− 1, It] with dimension w × h × 6. In 
this way, the previous frame It− 1 can add relevant information for the 
detection and counting of fingerlings in frame It. Input I is passed 
through a CNN to extract a feature map. The backbone is composed of 
convolutional layers similar to the VGG16 architecture (Simonyan and 
Zisserman, 2015) (see Fig. 2). 

2.2.2. Multi-task learning 
For fingerling count, three tasks are learned to take advantage of the 

temporal information in a video. The first task is to estimate a confi
dence map for the position of the fingerlings in frame t only (see Fig. 3 
(c)). Thus, the first task predicts the probability of any individual image 
pixel being part of a fingerling. The ideal scenario would be to use 
fingerling segmentation, however, only the centroid of each fingerling 
was labeled and made available in the dataset. Therefore, we use a 
confidence map in the first task instead of predicting the centroids 
directly. 

Table 2 
Number of fingerlings per frame.  

N. of Fingerlings per frame N. of frames 

Train Val Test 

0–2 2192 158 749 
3–5 466 29 262 
6–10 72 23 69  

Backbone

a( )

Mul�-task
Learning

(b) (c)
(d)

G H

A B

Frame t

Frame t-1

Fig. 1. General illustration of the proposed method. Initially (a) two consecutive frames are used to extract a (b) feature map via a backbone. This map is used to 
estimate (c) three tasks, one related to the position of the fingerlings and two related to the movement from one frame to another. Finally, these tasks are used to 
compose a (d) bipartite graph to detect fingerlings in the current frame. 

Fig. 2. Extraction of the feature map from 
two frames using a backbone based on the 
VGG architecture. The first two convolution 
layers have 64 filters of size 3 × 3, followed 
by a maxpooling layer with window 2 × 2 
and stride 2. Then, two layers with 128 fil
ters, one of maxpooling and another four 
convolution layers with 256 filters are used. 
As the estimate of the fingerling positions is 
a dense map, an upsampling layer is applied 
followed by two convolution layers with 256 
and 128 3 × 3 filters, respectively. The last 
convolutional layer provides the feature map 
with resolution w

2 ×
h
2. Reducing the feature 

map by half is important to extract local 
features while decreasing the computational 
cost of the backbone.   
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The second and third tasks estimate temporal information to assist in 
detection and counting. For this, consider that a fingerling is in a certain 
position (xt− 1,yt− 1) in frame t − 1 and that, in the next frame t, it has 
moved to a position (xt,yt). The second task (Fig. 3(d)) estimates a 
confidence map that represents the probability that a pixel belongs to 
the movement performed by a fingerling. Therefore, this task produces a 
high probability for all pixels belonging to the line that connects (xt− 1, 
yt− 1) to (xt,yt). This information is equivalent to the estimation of the 
footprint left by the fingerling from one frame to another. The third task 
is similar to the second, but estimates for each pixel a vector that points 
in the direction of the movement performed by the fingerling (Fig. 3(e)). 
This third task is related to the dense optical flow, but here estimated by 
a branch of the proposed method. 

Given the feature map extracted from two frames, each task is esti
mated on a branch consisting of S stages (Fig. 3). The first stage of each 
of the three branches receives the feature map F and performs a series of 
convolution layers. The first three convolution layers have 128 filters of 
size 3 × 3 followed by a layer with 512 filters of size 1 × 1, all with the 
ReLU activation function. The last layer of the first and second branches 
has only one filter to estimate a confidence map for the position of the 
fingerlings in frame t (C1

p) and a confidence map corresponding to the 
temporal movement of the fingerlings (C1

d). The last layer of the third 
branch has two filters to estimate a motion vector on the x and y-axis 
(C1

v). 
At the end of the first stage of each of the three branches, estimates 

C1
p, C1

d, and C1
v could be used to detect fingerlings. However, we found 

that they can be refined by more convolutional layers as shown in the 
experiments. As the information from a previous stage is concatenated, 
the stages assist in collaborative learning between tasks. The task of 
detecting the position of the fingerlings in the current frame can be 
impacted by information related to their movement and direction. In 
general, the first stage provides a rough prediction that is further refined 
by the other stages with the exchange of information between tasks. 

For refinement, the later stage s concatenates the estimates from the 
previous stage Cs− 1

p , Cs− 1
d , Cs− 1

v and the feature map F to estimate the 
refined information Cs

p, Cs
d and Cs

v. The final S − 1 stages are composed of 
seven convolutional layers, five layers with 128 7 × 7 filters, one layer 
with 128 1 × 1 filters, and a final layer with the number of filters ac
cording to the first stage. 

2.2.3. Modeling fingerlings movement 
The position of the fingerlings in frame t is obtained by the peaks in 

the confidence map of the last stage CS
p. A position (x,y) is a peak if its 

probability in CS
p is greater than its 8 neighbors. To prevent low proba

bility peaks from being detected as fingerlings, a position (x,y) is 
considered only if its probability is greater than a threshold τ. 

The positions detected as fingerlings in the current frame and a 
previous frame are modeled with a complete bipartite graph. The 
vertices correspond to the detected fingerlings, being a set of vertices 
composed of fingerlings from the current frame t and the other set from 
the previous frame t − 1. Fig. 4(a) presents an example of the complete 
bipartite graph with fingerlings detected in a previous frame (vertices in 
blue) and the current one (vertices in green). The vertices i of the pre
vious frame are connected by edges eij with all the vertices j of the 
current frame as illustrated by the red edges in Fig. 4(a). 

To include temporal information, the weight of an edge is calculated 
using estimates from motion vector CS

v and motion confidence map CS
d as 

shown in Figs. 4(a) and 4(b). Given an edge eij, equidistant points are 
sampled from the line segment between (xi,yi) and (xj,yj). For example, 
consider the edge connecting vertices A and C in Fig. 4(a). This edge can 
be seen as a line and equidistant points belonging to it can be sampled. 

For each sampled point (xl,yl), we calculate the alignment between 

the line segment 
(
xi, yi

)(
xj, yj

)
and the motion vector estimated in CS

v(xl, 

yl). The alignment between two vectors can be calculated using the dot 
product according to Eq. 1 (Cao et al., 2017). Finally, the weight of the 

Fig. 3. Multi-task learning that estimates the position of fingerlings, vector and confidence map of the movement.  
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edge considering the alignment eij
v is given by the sum of the alignment of 

all the sampled points, eij
v =

∑
leij, l

v , where eij, l
v is the alignment between 

the sampled point l and the edge (Eq. 1). In Fig. 4(a), the edge con
necting A and C (red vector) is aligned with the motion vectors (yellow 
vectors) and therefore its weight is high. On the other hand, the weight 

of the edge connecting A and D is low, as the alignment between the 
edge and the vectors is different. 

ev
ij,l = Cv

S(xl, yl)⋅
(
xj, yj

)
− (xi, yi)

‖
(
xj, yj

)
− (xi, yi)‖2

. (1) 

(a) (b)

A

C

B

D

A

C

B

D

Fig. 4. Process for calculating the two weights of an edge 
based on the (a) motion vector and (b) motion confidence map. 
The vertices in blue and green correspond to the fingerlings 
detected in the previous and current frames. We can see that 
the edge that connects the vertices A and C is aligned with the 
motion vectors (Fig. 4(a)) and the motion confidence map 
(Fig. 4(b)), both predicted by the proposed method. Therefore, 
this edge has a greater weight than the edge that connects the 
vertices A and D or B and C, for example. A high weight is also 
associated with the edge that connects vertices B and D. (For 
interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)   

Fig. 5. Steps for detecting and counting fingerlings in a current frame. For a frame t, Fig. 5(a) shows the fingerlings detected in the previous frame t − 1 (red dots) 
and in the current frame (blue dots). The confidence map of the fingerlings position is shown in Fig. 5(b). Fig. 5(c) represents the confidence map of the movement 
vectors and Fig. 5(d) represents the confidence movement map. The complete bipartite graph connecting the fingerlings from the previous and current frames is 
shown in Fig. 5(e). Figs. 5(f) and 5(g) shows the optimal match obtained using the Hungarian algoritm. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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In addition to the previous weight, we calculate a weight eij
d based on 

the probability that a pixel belongs to the movement performed by a 
fingerling. Similarly, we sample points from the line segment 

(xi, yi)
(

xj, yj

)
in the motion confidence map CS

d. The weight is given by 

the sum of each sampled point l according to Eq. 2. In Fig. 4(b), we can 
see that the probability of movement at the points belonging to the edge 
between A and C is high. On the other hand, the edge weight between A 
and D is low, as the probabilities estimated by our method are also low. 

ed
ij =

∑

l
Cd

S(xl, yl). (2) 

Finally, the weight of an edge eij is given by the sum of the two 
weights to include information from the two tasks (i.e., motion vector 
and motion confidence map): 

eij = ev
ij + ed

ij (3)  

2.2.4. Fingerlings detection 
To detect the fingerlings in the frame t to compose the bipartite 

graph, we use the confidence map prediction CS
v searching for peaks even 

with a low threshold τlow. Thus, the set of fingerlings detected in the 
frame t is generally greater than ideal and also greater than the number 
of fingerlings in the previous frame. The fingerlings in frame t are 
associated with the fingerlings in frame t − 1, that is, we need to find a 
pair of fingerlings. The fingerlings that are not associated with any 
fingerling in the previous frame, but their peak is greater than τhigh are 
maintained as they are probably fingerlings entering the scene. After 
preliminary experiments, we used τlow = 0.005 and τhigh = 0.01. 

The optimal association between fingerlings in the complete bipar
tite graph is reduced to a maximum weight matching problem. Given a 
bipartite graph, a maximum matching is a subset of edges whose sum of 
their weights is maximized and that any two edges do not share a vertex. 
To find the optimal matching, we use the Hungarian algorithm (Kuhn, 
1955). 

Fig. 5 shows an example of the detection of fingerlings using the 
complete bipartite graph. The predictions for a frame t are shown in 
Figs. 5(b), 5(c) and 5(d), corresponding respectively to the confidence 
map of the fingerlings position, movement vectors and confidence 
movement map. Fig. 5(a) shows the fingerlings detected in a previous 
frame (red dots represented by the letters A to D) and the fingerlings 
detected in the current frame (blue dots with letters from E to K). We can 
see that the number of fingerlings detected in the frame t is over
estimated due to the low threshold used in the confidence map (Fig. 5 
(b)). Then, the complete bipartite graph is constructed (Fig. 5(e)) and 
the edges are weighted based on the confidence maps illustrated in 
Figs. 5(c) and 5(d). The optimal match is obtained using the Hungarian 
algorithm as shown in Fig. 5(f). Therefore, the fingerlings associated 
with a previous fingerling are maintained. In addition to these, the 
fingerlings not associated but with a high peak are also maintained (see 
the fingerling represented by the letter F in Fig. 5(g)). 

2.3. Experimental setup 

2.3.1. Proposed method training 
The predictions made by the proposed method using a CNN were 

trained using stochastic gradient descent. Our loss function is applied at 
the end of each stage s according to Eqs. 4, 5 and 6 for the predictions of 
the fingerlings confidence map, movement confidence map and move
ment vector, respectively. Finally, the overall loss function is given by 
Eq. 7. 

f p
s =

∑

i
‖ Ĉ

p
s (i) − Cp

s (i)‖
2
2 (4)  

f d
s =

∑

i
‖ Ĉ

d
s (i) − Cd

s (i)‖
2
2 (5)  

f v
s =

∑

i
‖ Ĉ

v
s(i) − Cv

s (i)‖
2
2 (6)  

f =
∑S

s=1

(
f p
s + f d

s + f v
s

)
(7)  

where Ĉ
p
s , Ĉ

d
s and Ĉ

v
s are the ground truths for fingerling positions, 

movements and vectors, respectively. 

Ground truths Ĉ
p
s , Ĉ

d
s and Ĉ

v
s are generated as follows. Ĉ

p
s for a stage s 

is generated by calculating a Gaussian convolution across each pixel 
labeled as a fingerling position (Osco et al., 2021). To promote refine
ment during the stages, the Gaussian kernel of each stage has a standard 

deviation equally spaced between [σmax,σmin]. On the other hand, Ĉ
d
s is 

generated from the movement of each fingerling. For this, a Gaussian 
kernel is positioned in each pixel of the line that connects the position of 
a fingerling in the previous and current frames that were previously 
labeled. The parameters of the Gaussian kernel of each stage follow the 

previous one. Finally, Ĉ
v
s is constructed similarly to Ĉ

d
s , but using unit 

vectors. Ĉ
v
s is a unit vector that points from the position of a fingerling in 

the previous frame to its position in the current frame. 
Fig. 6 presents the ground truths for three stages using different 

values of σ. The RGB image is shown in Fig. 6(a) while the ground truths 
are shown in Figs. 6(b), 6(c) and 6(d). We can see that the first stage 
(first column of images) has more coarse ground truths while the ground 
truths of the later stages are more adjusted. This allows the proposed 
method to learn to refine its predictions in the later stages. 

During training, the backbone was initialized with the pre-trained 
weights on ImageNet. We used the stochastic gradient descent opti
mizer with a learning rate of 0.01, a momentum of 0.9, and batch size of 
2 during 100 epochs. These parameters were defined after preliminary 
experiments with the validation set. 

Fig. 7 shows the loss function in the training and validation set for 
the three tasks separately, with the final loss corresponding to their sum. 
The blue, red and green curves correspond to the tasks of 1) fingerlings 
confidence map, 2) movement confidence map and 3) movement vector, 
respectively (Eqs. 4, 5 and 6). The loss function of the second and third 
tasks has higher values than the first one. This is because the movement 
of the fingerlings (second and third task) occupies a larger area of the 
image when compared to the center of the fingerlings (first task), and 
therefore a higher value is expected. Despite this, the loss function of the 
three tasks has similar values at the end of the training, i.e., 0.00026, 
0.00067, and 0.00065. This indicates that multi-task learning was 
important and acted actively to solve the problem. It is also possible to 
observe that the loss in the training and validation set are close, indi
cating that there was no overfitting. 

2.3.2. Metrics 
To assess the detection of fingerlings, we use the Precision, Recall 

and F1 (F-measure) commonly applied in the literature. These metrics 
can be calculated according to Eqs. 8, 9, and 10. 

P =
TP

TP + FP
(8)  

R =
TP

TP + FN
(9)  

F1 = 2⋅
P⋅R

P + R
(10)  

where TP, FP and FN stand for True Positive, False Positive, and False 
Negative, respectively. Since the labeling of each fingerling is only one 
point, a prediction is correctly assigned to a labeled fingerling if the 
distance between them is less than 20 pixels. This distance was empir
ically chosen to cover a fingerling in the image. 
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3. Experiments and results 

3.1. Assessment of multi-task learning 

We assess the main parameters of the multi-task learning, including 
σmax and σmin (ground truth generation) and the number of stages S. The 
results for different values of σmax are shown in Table 3 (we fix S = 2 and 
σmin = 1.0). The best result was obtained with σmax = 4, as it adequately 
covers the fingerling (see Fig. 8(a)). 

We also assessed the influence of σmin according to Table 4. σmax was 
set to 4 due to previous results and we maintained two stages. A small 
value for σmin gives superior results because the smaller spreading 

around the fingerling allows for precise refinement of its position, even 
when two fingerlings are nearby. For comparison, Fig. 8 shows the 
prediction of multi-tasks using σ = 1 and 4. It is possible to observe that 
the predictions using smaller values are more adjusted to the center of 
the fingerling. 

Finally, we evaluated the number of stages as reported in Table 5. 
When using only one stage, the results are inferior to the others, which 
shows that refinement is an important part of the proposed method. 
Using two and three stages, the proposed method achieves its best re
sults with F1 of 98.11 and 97.89, respectively. With more stages, the 
number of layers and consequently the number of weights to be learned 
increases, which can make training difficult. With these experiments, 

(a)

(b)

(c)

(d)

Fig. 6. Example of the ground truths generated for frame. Each column of images presents the ground truth for the stages.  
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the best results of the proposed method were obtained using σmax = 4, 
σmin = 1 and number of stages S = 2 or 3. 

3.2. Temporal analysis in the detection of fingerlings 

The first and second lines of Table 6 presents the results by per
forming the detection directly on the confidence map of the fingerlings’ 
positions. The first line presents the results when one frame is used as 
input while the second line when two frames are considered as input. 
These experiments show the results without temporal information from 
the other tasks, although the prediction may contain indirect temporal 
information (e.g., two-frame input). We can see that the input with one 
or two frames presents similar results, with F1 of 93.96 and 93.25, 
respectively. 

In the proposed method, the detection of fingerlings in the current 
frame occurs after the association in the complete bipartite graph, where 
the edge weight is calculated based on the fingerlings movement. The 
other lines of Table 6 show the results when temporal information is 
used explicitly. The second and third lines present the results consid
ering separately the two motion predictions in edge weight. Finally, the 
last line of the table presents the results of the proposed method, in 
which the two predictions are used. The results show that not using 
temporal information directly results in low accuracy, as information on 
the amount of previous fingerlings is relevant to detect fingerlings in the 
current frame. Despite a small improvement, using temporal informa
tion in isolation (second and third rows of the table) also leads to an 
overestimation of fingerlings (false positives). On the other hand, the 
proposed method decreases the detection of false fingerlings improving 
the precision without decreasing the recall. 

Detection without the use of temporal information is not adequate, 
especially when the fingerlings are in overlap close, forming a composite 
representation. The use of temporal information increases results 

considerably (e.g., from 93.25 to 96.94 and 96.82). The combination of 
the two predictions further increases the results, reaching F1 of 97.89. 

3.3. Density analysis 

Table 7 presents the results considering the detection in frames with 
low (0 to 2 fingerlings), medium (3 to 5) and high (6 onwards) presence 
of fingerlings. With up to two fingerlings per frame, the proposed 
method reached F1 of 98.61 while from three to five fingerlings, F1 of 97 
was obtained. Fig. 9 shows examples of detection of fingerlings in the 
0–2 and 3–5 ranges. Red and blue dots indicate the position of finger
lings detected in the previous and current frames, respectively. The 
connections show the result of the association of the bipartite graph. 
(See Fig. 1.) 

Relevant results were also obtained in frames with a large number of 
fingerlings (6–10) with an F1 of 95.42. It is interesting to note that 
precision was slightly lower in frames with 3–5 fingerlings compared to 
frames containing 6–10 fingerlings. However, this difference is small 
and we believe it is due to the greater adhesion between fingerlings of 
these frames. In any case, F1 that combines precision and recall proved 
to be consistent with the challenge posed by the numbers of fingerlings. 
Examples of detection with high density of fingerlings (6–10) are shown 
in Fig. 10. The proposed method was able to detect six, seven and ten 
fingerlings even when they are close and moving due to the use of multi- 
tasks approach. 

The main challenge in the detection and counting of fingerlings is the 
overlap of two fingerlings visually forming a composite representation. 
Despite the challenge, the proposed method is able to detect the two 
fingerlings in most cases, as shown in Fig. 11. This is possible due to the 
association of a fingerling detected with low probability in the current 
frame with a fingerling in the previous frame. Without this association 
and the use of multi-task, one of the fingerlings would be discarded due 
to its low probability. 

On the other hand, the errors of the proposed method occur mostly 
when two or more fingerlings enter the scene connected. The sequence 
of frames in Fig. 12 illustrates this situation. Although it is not possible to 
visually observe, three fingerlings enter the scene, but only one finger
ling is detected initially. In the following frame, the proposed method 
detects two fingerlings while the third fingerling is only detected in the 
seventh frame of that sequence. 

Fig. 7. Loss function of the three tasks in the training and testing set.  

Table 3 
Influence of σmax on fingerling count using σmin = 1 and number of stages S = 2.  

σmax Precision Recall F1 

1 90.03 98.20 92.90 
2 94.09 98.15 95.37 
3 96.96 99.02 97.61 
4 97.51 99.37 98.12 
5 96.07 99.20 97.17  
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3.4. Comparison with object detection methods 

This section compares the results of the proposed method with two 
object detection methods, Faster R-CNN Ren et al. (2015) and FCOS Tian 

et al. (2019). Faster R-CNN is a widely used object detection method and 
the basis for many works. FCOS is an object detection method that is 
similar to our proposal, as it performs detection on a confidence map. 
Both methods were trained and applied in isolated frames in order to 
validate the hypothesis that the proposed method benefits from tem
poral information. 

Table 8 presents the comparative results using F1 (harmonic mean 
between precision and recall). We can see that FCOS and the proposed 
method outperform Faster R-CNN when there are few fingerlings in the 
frames, i.e., from 0 to 2 fingerlings. In this case, information from iso
lated frames is sufficient to detect and count the fingerlings, as there is 
little or no contact between them. On the other hand, when the number 
of fingerlings increases and consequently the contact between them, the 
proposed method outperforms the others. This can be observed for 
frames with 3–5 fingerlings, in which the proposed method reached F1 
of 97 against 94.15 and 92.23 of FCOS and Faster R-CNN, respectively. 
For frames with 6–10 fingerlings, the proposed method provided F1 of 
95.42 while FCOS and Faster R-CNN provided 91.86 and 93.84, 
respectively. The results corroborate the importance of using temporal 
information when there is contact between fingerlings. 

4. Discussion 

We propose an approach that allows us to automatically locate and 
count fingerlings in RGB images based on a multi-task convolutional 
neural network. This method can support aquaculturists in many 
important tasks, such as translocation of animals between breeding 
tanks and sale issues. Although the experiments were developed with a 
type of commercial fish, the Pintado, due to their importance in pro
duction in Brazil, the proposed method is capable to deal with finger
lings fishes in general, implying in its generability application. Our 
results demonstrated, with high accuracy (F1 of 95.42 or higher), that 
the CNN is capable to deal with different numbers of fingerlings (with up 
to 10) in the images. Identifying the contact of two or more fingerlings 
up to now represented a challenge (França Albuquerque et al., 2019; 
Garcia et al., 2020; Fouad et al., 2013; Rauf et al., 2019; Salman et al., 
2019), but our method was able to solve this issue, which is an advan
tage for aquaculture tasks related to detecting and counting of 
fingerlings. 

To evaluate the computational cost of the proposed method, we 
calculated the average time for prediction on a computer with 16 GB 
memory and an NVIDIA RTX 2080 card. The results showed that a frame 
runs in 0.26 s on average, which makes it feasible to use in real 
applications. 

The main characteristic of the proposed method is related to its 
strategy of taking the advantage of the temporal information in the 
video (i.e., sequence of RGB imagery) to develop the task of interest. For 

(a) σ = 4 (b) σ = 1

Fig. 8. Example of predictions made in (a) the first and (b) last stages. Each 
row of images represents the predictions for the position of the fingerlings, the 
confidence map of the movement and the movement vectors. 

Table 4 
Influence of σmin on fingerling count using σmax = 4 and number of stages S = 2.  

σmin Precision Recall F1 

1 97.51 99.37 98.12 
2 95.56 99.35 96.87 
3 94.52 98.48 95.90  

Table 5 
Influence of the number of stages on fingerling count using σmin = 1 and σmax = 4.  

Stages (S) Precision Recall F1 

1 83.73 97.80 88.40 
2 97.51 99.37 98.11 
3 97.45 98.99 97.89 
4 94.81 98.96 96.26  

Table 6 
Comparative results using temporal information on edge weight.  

Temporal Information Precision Recall F1 

Confidence map (one input frame) 92.09 97.15 93.96 
Confidence map (two input frames) 90.27 98.74 93.25 
CS

d 95.97 98.82 96.94 
CS

v 95.87 98.72 96.82 
Both 97.45 98.99 97.89  

Table 7 
Results of detection and counting in frames with different amounts of 
fingerlings.  

N. of Fingerlings per frame Precision Recall F1 

0–2 98.01 99.81 98.61 
3–5 95.94 98.87 97.00 
6–10 96.81 94.41 95.42  
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(a) (b) (c)

Fig. 9. Examples of detection of (a) two, (b) four and (c) five fingerlings.  

(a) (b) (c)

Fig. 10. Examples of detection of (a) six, (b) seven and (c) ten fingerlings.  

Fig. 11. Example of counting and detecting fingerlings in contact.  
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that, three tasks are learned: (i) to estimate the position of the fingerlings 
in a frame using the probability information that any individual image 
pixel is part of a fingerling; (ii) to determine the probability that a pixel 
belongs to the movement performed by a fingerling; and, (iii) to esti
mate, for each pixel, a vector that points in the direction of the move
ment performed by the fingerling. Consequently, the positions detected 
as fingerlings in the current frame and a previous frame are modeled 
with a complete bipartite graph. When evaluating the influence of pa
rameters like σmax, σmin, and the number of stages of the multi-task 
learning, we found out that the results are affected, being the σmax =

4, σmin = 1, and the number of stages S = 2, the best configuration to 
obtain the higher F1 value in the proposed task. This configuration is 
recommended to be adopted in future experiments with other 

fingerlings datasets. We also noted that the results are substantially 
improved (the F1 value achieved 98% as can see Table 6, and it is the 
harmonic mean between precision and recall measurements) when the 
detection of fingerlings occurs using temporal information. This fact 
probably is because the complete bipartite graph is adopted, in which 
the edge weight is calculated using the fingerlings movement. These 
findings point out that temporal information usage is essential when the 
fingerlings are particularly in overlap close. 

The evaluation of the proposed method for detecting and counting 
different amounts of fingerlings in frames is an important issue espe
cially to prove its generalization capacity. Although the literature pre
sents several studies (França Albuquerque et al., 2019; Garcia et al., 
2020; Fouad et al., 2013; Rauf et al., 2019; Salman et al., 2019), related 
to the count of fingerlings, the main challenge in the detection and 
counting of these targets is the overlap of them, which visually forms a 
composite representation. Our results demonstrated the capacity of our 
approach of solving these situations like the number of fingerlings 
varying 6 to 10 elements. This was possible because our model associ
ates the information of fingerling between frames (current and previous 
frame). The not usage of this information probably would result in one of 
the fingerlings discard which impacts the counting task accuracy. The 
main challenge faced by the proposed approach occurred mostly when 

(a) #211 (b) #212 (c) #213

(d) #214 (e) #215 (f) #216

(g) #217 (h) #218 (i) #219

Fig. 12. Sequence of frames illustrating one of the main challenges for the proposed method.  

Table 8 
Comparative results between the proposed method and object detection 
methods using F1.  

N. of Fingerlings per frame Faster R-CNN FCOS Proposed Method 

0–2 96.35 98.67 98.61 
3–5 92.23 94.15 97.00 
6–10 93.84 91.86 95.42  
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two or more fingerlings enter the scene connected, however even in this 
situation our approach delivered high performance as demonstrated in 
Fig. 12. 

5. Conclusions and future works 

In this paper we proposed a detection-based method for counting 
fingerlings in an image sequence. Our method fits into the detection- 
based category, as it performs the fingerling detection through the 
confidence map, different from regression-based methods that estimate 
the quantity directly from the image. The proposed method showed 
satisfactory results to locate and count fingerlings using convolutional 
neural networks. The experimental results indicated that the use of 
temporal information increases results considerably, reaching F1 of 
97.89. The proposed method was evaluated in frames with different 
numbers of fingerlings. The results showed that with up to two finger
lings per frame, the proposed method reached F1 of 98.61, from three to 
five fingerlings, F1 of 97, but also obtained relevant results in frames 
with a large number of fingerlings (6–10) with an F1 of 95.42. Due to the 
use of the multi-task approach, the proposed method was able to detect 
six, seven, and ten fingerlings even when they are close. Another 
advantage of this study is that, in most cases, the proposed method can 
detect the overlap of two or more fingerlings, which is considered the 
main challenge in the detection and counting of fingerlings. For future 
works, we suggest applying the proposed approach in images with an 
even more dense number of fingerlings. Moreover, we suggest testing 
the developed method using images capture by a camera with less res
olution to verify its generalization ability to detect and count the fin
gerlings. Fingerling tracking is also a future work to assist the individual 
fingerling counts. 
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