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Waterloo building dataset: a city-scale vector
building dataset for mapping building footprints
using aerial orthoimagery1

Hongjie He, Zijian Jiang, Kyle Gao, Sarah Narges Fatholahi, Weikai Tan, Bingxu Hu,
Hongzhang Xu, Michael A. Chapman, and Jonathan Li

Abstract: Automated building footprint extraction is an important area of research in
remote sensing with numerous civil and environmental applications. In recent years, deep
learning methods have far surpassed classical algorithms when trained on appropriate
datasets. In this paper, we present the Waterloo building dataset for building footprint
extraction from very high spatial resolution aerial orthoimagery. Our dataset covers the
Kitchener–Waterloo area in Ontario, Canada, contains 117 000 manually labelled buildings,
and extends over an area of 205.8 km2. At a spatial resolution of 12 cm, it is the highest-
resolution publicly available building footprint extraction dataset in North America. We
provide extensive benchmarks for commonly used deep learning architectures trained on
our dataset, which can be used as a baseline for future models. We also identified a key
challenge in aerial orthoimagery building footprint extraction, which we hope can be
addressed in future research.

Key words: building footprint, urban mapping, aerial orthoimagery, building dataset, deep
learning.

Résumé : L’extraction automatisée de l’empreinte d’un bâtiment est un domaine
de recherche important dans la télédétection avec de nombreuses applications civiles
et environnementales. Au cours des dernières années, les méthodes d’apprentissage pro-
fond, lorsqu’elles sont concentrées sur les ensembles de données appropriés, ont largement
surpassé les algorithmes classiques. Dans la présente communication, nous présentons l’en-
semble de données des bâtiments de Waterloo pour l’extraction des empreintes des
bâtiments de l’ortho-imagerie à résolution spatiale très élevée. Nos ensembles de données
couvrent le secteur de Kitchener–Waterloo en Ontario, au Canada, contiennent
117 000 bâtiments étiquetés manuellement et s’étendent sur un secteur de 205.8 km2. À
une résolution spatiale de 12 cm, ce sont les ensembles de données de l’extraction des
empreintes des bâtiments à la résolution la plus élevée disponible pour le public en
Amérique du Nord. Nous offrons des repères approfondis d’architectures d’apprentissage
profond fréquemment utilisées et concentrés sur nos ensembles de données qui peuvent
être utilisés comme base pour de futurs modèles. Nous identifions également un
problème majeur dans l’extraction des empreintes des bâtiments de l’otho-imagerie
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aérienne qui, nous l’espérons, peut être réglé dans une recherche future. [Traduit par la
Rédaction]

Mots-clés : empreinte d’un bâtiment, cartographie urbaine, ortho-imagerie aérienne, ensemble de
données d’un bâtiment, apprentissage profond.

1. Introduction

As a key element in urban areas, buildings are an important indicator for urban change
detection (Chen et al. 2021). Building rooftops or footprints (outlines along the exterior
walls of buildings; there are few differences between them in orthoimageries) are also
essential for other urban applications such as urban planning and management, cadastral
management, urban geo-database updates, and smart city construction (Rastogi et al.
2020). In addition to these exclusive urban applications, building datasets are essential for
population estimation, natural hazards, and damage estimation. By combining building
footprints with other building information, such as the number of stories, population and
population densities can be estimated efficiently, which is necessary for epidemic or
pandemic control (Xie et al. 2015). Furthermore, building maps are of paramount impor-
tance for natural hazard management and damage estimation (Thomas et al. 2013; Shu
2014). Accurate building map data are required to estimate earthquake damage and assess
risks (Sahar et al. 2010). In addition, to assess the loss from typhoons, floods, and other geo-
logical disasters, building maps should be obtained effectively and efficiently post-disaster
(Wen et al. 2019). For these applications, remote sensing, especially aerial image-based
methods, has achieved significant results.

Automated extraction of building rooftops from aerial orthoimages is a challenging task
in remote sensing. Conventional pixel- and object-based image analysis methods are often
ineffective because they require expertise in feature engineering or feature collection. The
development of deep learning techniques has revolutionized automated building rooftop
extraction (Chen et al. 2021). However, deep learning techniques are known to be data
intensive. A large number of high-quality pixel-level labelled images are required for the
development of new algorithms.

In this study, we constructed theWaterloo building dataset, which covers the Kitchener–
Waterloo area in Ontario, Canada. The main contributions of this study are two-fold. First,
we released a city-scale vector building dataset, with the building footprints manually
labelled on the 12 cm resolution aerial orthoimagery. To the best of our knowledge, this is
the first open-access city-scale dataset with such a high spatial resolution in North
America. Second, an extensive comparative study was performed to benchmark existing
deep learning methods, which can be used to benchmark future methods trained on our
dataset.

2. Related work

2.1. Existing datasets
With the development of imaging technologies, an increasing number of high-

spatial-resolution satellite and aerial images are being released. Several open-access build-
ing datasets based on these images have been developed in recent years.

• The ISPRS Vaihingen and Potsdam datasets (Rottensteiner et al. 2013) are two relatively small
building datasets. In the datasets, six classes, including building and background, were
provided. The Vaihingen part has 33 image patches with a spatial resolution of 9 cm; spectral
bands of red, green, blue, and near-infrared; and a size of approximately 2500 × 2500 pixels.
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The Potsdam part has 38 image patches with a spatial resolution of 5 cm, the same spectral
resolution as the Vaihingen part, and a size of approximately 6000 × 6000 pixels. The corre-
sponding digital surface model (DSM) data are also provided with the image data for each
part. These datasets have the highest spatial resolution among the existing datasets, while
they cover only a 5 km2 area.

• The Massachusetts building dataset (Mnih 2013) classifies images only into building and
non-building. It contains 151 aerial images with a spatial resolution of 1 m; spectral bands of
red, green, and blue; and 1500 × 1500 pixels, covering approximately 340 km2 of the Boston
area. A total of 151 aerial orthoimages were further divided into training, validation, and
testing sets of 137, 4, and 10 images, respectively. As illustrated by the author, the dataset
possesses high accuracy, with less than 5% average omission of building classification.

• The Inria dataset (Maggiori et al. 2017) also includes building and non-building classes. It
contains aerial images covering 810 km2 of 10 cities in the United States and Austria. The
training and testing sets captured 360 images with a spatial resolution of 30 cm and spectral
bands of red, green, and blue. The dataset aims to explore the generalizability of CNNs;
therefore, adjacent images are split into training and testing sets.

• The WHU (Wuhan University) building dataset (Ji et al. 2018) includes an aerial image dataset
and a satellite image dataset for building extraction. The aerial image dataset has 8189 tiles
with a spatial resolution of 30 cm; spectral bands of red, green, and blue; and a size of
512 × 512 pixels. The dataset was manually edited and converted from aerial images covering
450 km2 in Christchurch, New Zealand. The satellite image dataset is composed of two
separate datasets. One has 204 images from six cities worldwide with a spatial resolution
varying from 30 cm to 2.5 m and a size of 512 × 512. The other has 17 388 tiles of six adjacent
images, with a spatial resolution of 45 cm and a size of 512 × 512 pixels, covering 860 km2 of
East Asia. These two satellite image datasets, with different sensors, also have different
spectral resolutions.

• The SpaceNet building dataset (Van Etten et al. 2018) was released using two SpaceNet
challenges for building detection. Five cities worldwide were considered areas of interest.
The WorldView-2 and WorldView-3 images have a size of 650 × 650 pixels and pixel-wise
building labels covering 5555 km2 on different continents.

• The AIRS (Aerial Imagery for Roof Segmentation) dataset (Q. Chen et al. 2018) was created
using the same aerial images as the WHU aerial building dataset, where the original spatial
resolution of the images (7.5 cm) was preserved.

• The Semcity Toulouse dataset (Roscher et al. 2020) was created based on WorldView-2 images
for building instance segmentation, which covers an 50 km2 area of Toulouse, France. Images
in the dataset are classified into eight classes, including building and background. These
images have a spatial resolution of 0.5 m for the panchromatic band and 2 m for the other
bands. Each image is split into 16 tiles. Eventually, the panchromatic band has a size of
3504 × 3452, and the other bands have a size of 876 × 863.

In addition to the datasets described above (as summarized in Table 1), there are other
building datasets, such as datasets released for the DeepGlobe Building Extraction
Challenge (Demir et al. 2018), Open Cities AI Challenge (https://www.drivendata.org/
competitions/60/building-segmentation-disaster-resilience/), and the Crowd-AI Mapping
Challenge (https://www.crowdai.org/challenges/mapping-challenge). The DeepGlobe
building dataset is based on the SpaceNet dataset, in which building footprints, instead of
rooftops, were annotated. The dataset for the Open Cities AI Challenge is a building foot-
print dataset across 10 cities in Africa and is known for its inconsistent annotation accuracy.
The dataset for the Crowd-AI Mapping Challenge has more than 40 000 tiles of RGB images
with a size of 300 × 300 pixels; however, the buildings are homogeneous, making it easier

He et al. 101

Published by Canadian Science Publishing

G
eo

m
at

ic
a 

D
ow

nl
oa

de
d 

fr
om

 c
dn

sc
ie

nc
ep

ub
.c

om
 b

y 
U

ni
ve

rs
ity

 o
f 

W
at

er
lo

o 
on

 0
5/

10
/2

2
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 

https://www.drivendata.org/competitions/60/building-segmentation-disaster-resilience/
https://www.drivendata.org/competitions/60/building-segmentation-disaster-resilience/
https://www.crowdai.org/challenges/mapping-challenge


for them to be segmented from the background compared to other datasets (Roscher
et al. 2020).

Compared to these existing datasets, our dataset has both a higher spatial resolution and a
larger-scale covering, except for the AIRS dataset. However, the AIRS dataset was constructed
using images covering the Southern Hemisphere. Both illumination conditions and building
styles are limited; models trained on this dataset may struggle with building extraction in
the Northern Hemisphere, particularly in Canada and the United States. We provide the high-
est spatial resolution large-scale building extraction dataset in North America; models trained
on our dataset should perform better in Canada and the United States.

2.2. Building detection methods
Building detection from remote sensing imagery was studied prior to the popularization

of deep learning; classification strategy-based methods, active contour-based methods, and
graph-based methods are the mainstream methods for this task (Ok 2013). Although deep
learning methods (Mnih 2013; Shu 2014) were used for building detection before the
proposal of fully convolutional networks (FCNs) (Long et al. 2015), deep learning-based
image segmentation has become state-of-the-art soon after the invention of FCNs, despite
recent work on semi-automated methods (Brooks et al. 2015). Recent classical machine
learning methods that combine LiDAR and hyperspectral data have achieved good results
(Parsian and Amani 2017). However, when only RGB orthoimages are available, deep learn-
ing methods significantly outperform classical methods.

With the development of deep learning methods, powerful semantic segmentation
methods have been introduced. SegNet was applied with an active contour model to extract
buildings from the ISPRS Potsdam dataset (Sun et al. 2018). Using the same dataset, Xu et al.
(2018) and Yang et al. (2018) proposed new networks based on Res-U-Net and an attention
mechanism, respectively. Through comparative studies by S. Wang et al. (2020) and
Kemker et al. (2018), RefineNet and DeepLab v3 were introduced in this area. In addition
to these methods, there are many other deep learning-based semantic segmentation

Table 1. Existing building datasets.

Dataset Location Spectral bands Classes
Coverage
(km2)

Spatial
resolution
(cm)

ISPRS Vaihingen/
Postdam

Vaihingen /
Potsdam,
Germany

NIR, R, G, B,
DSM

Six land-cover
classes

1.40/3.40 5.00/9.00

Massachusetts Massachusetts, USA R, G, B Building and
non-building

340.00 100.00

WHU (aerial) Christchurch,
New Zealand

R, G, B Building and
non-building

457.00 30.00

Inria 10 regions in the
United States and
Austria

R, G, B Building and
non-building

810.00 30.00

SpaceNet Four cities around
the world

WorldView-3 8
bands

Building, road,
and
background

5555.00 30.00/50.00

AIRS Christchurch,
New Zealand

R, G, B Building and
non-building

457.00 7.50

ISPRS Semcity
Toulouse

Toulouse, France WorldView-2 8
bands

Eight land-cover
classes

50.00 50.00

Waterloo building
dataset

Kitchener–
Waterloo,
Canada

R, G, B Building and
non-building

205.83 12.00
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methods, such as multiple feature reuse network (MFRN) (Li et al. 2018), Deep Encoding
Network (DE-Net) (H. Liu et al. 2019), Spatial Residual Inception Convolutional Neural
Network (SRI-Net) (P. Liu et al. 2019), ENRU-Net (Kemker et al. 2018), and Capsule Feature
Pyramid Network (CapsFPN) (Yu et al. 2020).

Apart from the methods mentioned above, instance segmentation and semi-automatic
annotation methods can also be used in this task. Mask R-CNN, the most representative in-
stance segmentation method, and its derivatives are widely used to extract buildings from
remote sensing images (Zhao et al. 2018; Wen et al. 2019). In recent years, semi-automatic
annotation methods have been introduced for this purpose. In 2019, Li et al. (2019) proposed
PolyMapper, which can map buildings from images in an end-to-end manner. An improved
PolyMapper was proposed in 2020 by Zhao et al. (2020).

Large-scale building extraction datasets are required for the application of deep learning
techniques in building footprint extraction. This work is intended to further support the
research and benchmark of new methods for automated building extraction, especially
those that are deep learning based. Extensive comparative studies can also provide a refer-
ence for algorithm selection in practice and act as a benchmark for future algorithms
trained on the Waterloo building dataset.

3. Waterloo building dataset

3.1. Study site
As shown in Fig. 1, the Kitchener–Waterloo area is in southeastern Ontario, Canada. The

dataset covers 205.83 km2 and includes both urban and rural areas with buildings of differ-
ent shapes, heights, and colors.

3.2. Images
We first collected aerial images covering the study site in 2014 from the Geospatial

Centre at the University of Waterloo and obtained permission from the Regional
Municipality of Waterloo. As documented, these images were collected using a Vexcel
UltraCam-D camera with a standard deviation of 3.5 mm for all image points. The North
American Datum of 1983 (NAD 83) was used as the geographic system, and the Universal
Transverse Mercator (UTM) Zone 17°N was used as the projection system.

Duplicate images across the boundary between Kitchener and Waterloo were removed
from the entire set of images. Images without buildings at the boundary were also removed
from the dataset. As a result, 242 images were acquired for building mask labelling from
the total of 307. These images had a spatial resolution of 12 cm; spectral bands of red, green,
and blue; and a size of 8350 × 8350.

3.3. Dataset generation
The entire dataset generation process is illustrated in Fig. 2. For building annotation,

we used a triple-check scheme to ensure annotation accuracy. The three steps were self-
checking after labeling, followed by partner and supervisor checking. In each step, the
accuracy was controlled to within three pixels, which means that the distance between
the boundaries of the polygons to the building boundaries was within three pixels. After
several iterations of checking and revising, the manually edited building polygons were
converted to masks. Approximately 117 000 independent buildings were extracted and
labeled from these images.

Considering the computational resources and aiming to match most of the existing data-
sets, such as the WHU building dataset and Inria building dataset, we further tiled these
images and masks into paired patches with a size of 512 × 512 pixels. In total, 69 938 patches
were generated after tiling 242 images. They were randomly split into training, validation,
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Figure 1. Map of the Kitchener–Waterloo area (Tool: ArcGIS; Data source: administrative areas shapefiles from
Hijmans et al. (2004) (http://www.diva-gis.org/gdata) and basemap from ArcGIS Online). [Colour online.]

Figure 2. Flowchart of dataset generation.
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and testing sets at a ratio of 7:1:3. The number of independent buildings (or parts of build-
ings at the boundaries) in each set was 66 289, 12 464, and 40 490. We removed the patches
affected by geometric distortions, where the boundaries of the rooftops could not be recog-
nized accurately by a human, as shown in Fig. 3. Finally, we obtained 42 147, 6887, and 18
945 patches for training, validation, and testing, respectively.

3.4. Dataset description
With permission from the municipality of Waterloo, we released the original large

images with our shapefiles and masks (as shown in Fig. 4) and close-ups of tiled patches
and matched masks (as shown in Fig. 5). Both the raw and georeferenced imagery are freely

Figure 3. Examples of geometric distortion in aerial images (Tool: Microsoft Word; Data source: Waterloo
building dataset (He et al. 2021)). [Colour online.]
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Figure 4. Example of an annotated image. Top: original image, bottom left: mask, and bottom right: shapefile
(Tool: Microsoft Word and ArcGIS; Data source: Waterloo building dataset (He et al. 2021)). [Colour online.]
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accessible to the public. The removed patches with geometric distortion and fishnet files
used for clipping images to patches were also released to recover the full images.

Figure 6 shows the distribution of the building footprint area for the training, validation,
and test subsets. Most building footprint areas fall within the range of 0–1000 m2, and each
subset shares the same distribution. The distribution of the building footprint area is in line
with common sense: most buildings are small and medium-sized, and only a few buildings
for public infrastructure, such as schools, hospitals, shopping malls, and factories, have
footprint areas larger than a few hundred square meters.

Figure 5. Close-ups of tiled patches (left) and matched masks (right) in our dataset (Tool: Microsoft Word; Data
source: Waterloo building dataset (He et al. 2021)). [Colour online.]
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4. Methods and metrics
An extensive comparative study was performed to benchmark the existing methods for

the development of new methods. Both semantic segmentation and instance segmentation
methods were tested. We leave PolyMapper and its derivation to future work.

4.1. Methods
Semantic segmentation methods

In this study, five semantic segmentation networks, namely, Fully Convolutional
Networks-8s (FCN-8s) (Long et al. 2015), U-Net (Ronneberger et al. 2015), DeepLab
v3+ (L.C. Chen et al. 2018), Fast Segmentation Convolutional Neural Network (Fast SCNN)
(Poudel et al. 2019), and High-Resolution Network (HRNet) v2 (J. Wang et al. 2020) were
selected as benchmarks. For method selection, we considered three criteria: first, the meth-
ods are commonly used according to the number of citations reported by Google Scholar;
second, the models are easy to reimplement; and third, the methods outperform others in
terms of accuracy or speed. For example, although CapsFPN exhibits a high performance in
semantic segmentation tasks, it relies on a sophisticatedly designed architecture with more
parameters and better hardware environments. Methods such as RefineNet, DeepLab v3,
and SRI-Net have rarely been used in recent publications, especially in the remote sensing
field. In contrast, our selected methods, such as FCN-8s and U-Net, are the most representa-
tive simple semantic segmentation methods that are widely used in different fields and for
benchmarking existing building datasets. DeepLab v3+ and HRNet v2 were selected because
of their high number of citations and high performance in published semantic segmenta-
tion studies. Fast SCNN was selected as a simple and fast semantic segmentation method
that can be easily implemented onmost computers. Herein, we briefly review their architec-
tures. Readers are referred to the corresponding literature for detailed information.

FCN-8s is the first fully convolutional network for semantic segmentation, in which the
final fully connected layer is replaced by convolutional layers. Deconvolutional layers were

Figure 6. Distribution of building footprint area for training subset, validation subset, and test subset. [Colour
online.]
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introduced to up-sample the feature maps. Skip architecture is applied to preserve low-level
and high-resolution features for final pixel-wise classification via feature-wise addition. In
our study, we adopted VGG16 as the backbone of FCN-8s.

U-Net is an architecture that was developed at almost the same time as FCN-8s. For the
first time, it employs a U-shaped architecture for semantic segmentation. The symmetric
architecture preserves low-level and high-resolution features at the down-sampling part.
The persevered features are further concatenated with up-sampled high-level features to
achieve high accuracy in the segmentation results.

DeepLab v3+ is based on DeepLabv3. A decoder part is added based on DeepLab v3 for
feature map up-sampling. Dilated convolutional layers were applied following the former
version of the DeepLab algorithm. In DeepLab v3+, depth-wise separable convolution is
applied in the atrous spatial pyramid pooling (ASPP) and decoder parts. In our study, the
Xception network was used as the backbone.

A fast SCNN has been developed for real-time semantic segmentation. The entire archi-
tecture is divided into four parts: down-sampling, global feature extractor, feature fusion,
and classification. Depthwise separable convolution and improvements in architecture
allow Fast SCNN to reach the above real-time inference speed.

HRNet v2 can be used for different tasks with different heads. The four stages with multi-
resolution convolution and repeated multi-scale feature fusion are the same as the main
body in HRNet v1. The proposed head makes HRNet v2 different from the former version
and adapts pose estimation to semantic segmentation and other computer vision tasks.

Instance segmentation methods
Among all instance segmentation methods in the computer vision field, we selected

Mask R-CNN because it and its derivations are widely used in building footprint extraction.
Specifically, we used a model trained on our own dataset and the model released by ESRI to
benchmark our dataset.

4.2. Evaluation metrics
The metrics derived from the confusion matrix are not suitable for evaluating

building rooftop/footprint extraction methods using high spatial and very high spatial
resolution images (Shu 2014). In previous studies, methods for building footprint or
rooftop extraction were evaluated using intersection over union (IoU), mean IoU
(mIoU), precision, recall, F1-score, accuracy, and frame per second (FPS). Specifically, IoU
represents the percentage of overlap between the ground truth and the prediction out-
put. mIoU represents the average of positive and negative objects IoU. Precision indicates
the extent to which the predicted positive objects are correct compared with all pre-
dicted positive objects. Recall shows how many positive objects are predicted accurately
compared to all positive objects from the ground truth. The F1-score or F1 measure is the
harmonic mean of the precision and recall. The accuracy or average accuracy calculates
the percentage of correctly classified pixels or other objects in the images. These metrics
are defined as follows:

IoU =
TP

TP + FP + FN
(1)

mIoU =

�
TP

TP + FP + FN
+

TN
TN + FP + FN

�

2
(2)

Precision =
TP

TP + FP
(3)
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Recall =
TP

TP + FN
(4)

F1 =
2TP

2TP + FP + FN
(5)

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

FPS =
TI
t

(7)

where TP indicates true positive, denoting a correct prediction of the positive class
(presence of building); FP refers to false positive, which occurs when the model predicts
the positive class as the negative class; FN stands for false negative, in which the model
classifies the positive class as the negative class; TN represents true negative, in which
the model predicts the negative class correctly in the output; TI is the number of images
that have been tested; and t is the total time cost for testing.

4.3. Implementations
Except for HRNet v2, we utilized Adam as the optimizer with a stable learning rate of

1e-4, a batch size of 5, and training for 100 epochs. Binary cross-entropy and accuracy were
used as the loss function and training metrics, respectively. For HRNet v2, we implemented
the Jaccard loss function following the original configuration. The training metrics
included Jaccard loss, binary cross entropy, joint loss including soft Jaccard loss, mean
square error, and accuracy. Considering the computational resources, we set the batch size
to four for HRNet v2. All algorithms were trained and tested on a single GeForce RTX 2080ti
GPU and CUDA 10.2.

ESRI recently released a pre-trained Mask R-CNN model2. The model file can be down-
loaded, and the building footprints can be directly extracted using ArcGIS Pro. In this study,
we tested the model on a laptop with a single GeForce GTX 1650 GPU and CUDA 11.0. All
parameters, except batch size (set as 1), were set to default. For comparison, we trained a
Mask R-CNN3 on our own dataset from scratch, following the initial parameter setting. To
successfully train the model, we changed the learning rate from 0.01 at epoch 65 to
0.00001 to avoid an Not a Number (NAN) loss error. In addition, to make full use of
the GPU resources, we set the batch size to 5 and 1 in the training and testing phases,
respectively. The model was trained and tested on a single Nvidia TITAN XP with CUDA 11.4.

5. Results and discussion
Both qualitative and quantitative evaluations of building rooftop extraction results are

provided and discussed in this section. A discussion of the open challenge in building an
extraction dataset is also included.

5.1. Qualitative evaluation
We randomly selected two patches from the testing set as examples and compared the

extraction results with the ground-truth images. We also colorized the ground truth,
predicted pixels, and wrongly classified pixels in one image to visualize the extraction
results (Ji et al. 2018), in which blue, green, and red represent the predicted results, ground
truth, and wrongly classified results, respectively. Examples and extraction results are pre-
sented in Table 2. For each example, the images in the first column are the original images

2https://www.arcgis.com/home/item.html?id=a6857359a1cd44839781a4f113cd5934.
3https://github.com/matterport/Mask_RCNN.
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and the colorized extraction results. The second column presents the ground truth and the
predicted masks.

As shown in Table 2, among the semantic segmentation methods, more recent methods
show a higher performance, as expected. The boundaries of buildings are more accurate

Table 2. Two examples of extraction results. [Colour online.]

Model

Example 1 Example 2

Semantic
segmentation

FCN-8s

U-Net

DeepLab v3+

Fast SCNN

HRNet v2

Instance
segmentation

Mask R-CNN (ESRI)

Mask R-CNN (ours)
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with newer algorithms, except for Fast SCNN. The number of incorrectly classified pixels in
the background also decreased significantly. This result is reasonable because Fast SCNN
focuses on the speed of the extraction process at the cost of accuracy. With shared low-level
features and feature fusion using only high-level features, the architecture of Fast SCNN is
similar to that of FCN-8s. DeepLab v3+ is known for its atrous spatial pyramid pooling and
depth-wise separable convolution. The former enlarges the field-of-view of the network,
whereas the latter increases its efficiency. The combination of these two techniques renders
the algorithm accurate and efficient for semantic segmentation. Multi-resolution convolu-
tion and repeated multi-scale features fusion of HRNet v2 preserve high-resolution low-level
features and provide highly accurate extraction results. With the aid of soft Jaccord loss, the
imbalanced data distribution problem in the dataset is relieved, further benefiting building
footprint extraction.

Table 2 provides a visual comparison of the results obtained using the different methods.
In this table, the green and red pixels are false negatives and false positives, respectively. In
these two examples, the red pixels decreased sharply in the newer algorithms, except for
the Fast SCNN. DeepLab v3+ and HRNet v2 in particular achieved high accuracy in these
examples. In the first example, both methods omitted parts of the buildings and mistak-
enly detected a building on the top-right side of the patch. In the second example, they also
missed the building on the top-right of the patch. In the second example, Fast SCNN exhib-
ited a higher performance than FCN-8s. Visually, it achieves the same performance as
DeepLab v3+ and HRNet v2. However, in the first example, its performance degrades to
the level of FCN-8s.

For instance, the segmentation results show that the two Mask R-CNN also exhibit high
performance as DeepLab v3+ and HRNet v2. Multi-task learning of Mask R-CNN and the
nature of instance segmentation give it high performance and remove most of the back-
ground noise. Both Mask R-CNN models successfully detected the top right and left build-
ings and avoided the wrong classification of the top-right object in the first example
compared to DeepLab v3+ and HRNet v2. In addition, the ESRI-trained model outputs less
background noise compared to all the methods in the second example, whereas it shows
poor accuracy on the large building of the first example. Qualitative visual analysis cannot
properly compare the different models. Therefore, in the next section, we provide a quanti-
tative analysis using the metrics described in Section 4.2.

5.2. Quantitative evaluation
As mentioned in Section 4.2, we leveraged seven metrics to evaluate the performance of

all the algorithms employed in this study. Table 3 presents a quantitative comparison of the
benchmark models. Accuracy, or overall pixel accuracy, is the ratio of correctly classified
pixels to total pixels. As expected, DeepLab v3+ exhibits the highest accuracy. Here, IoU
refers to the intersection of the predicted building masks and ground truth building masks
with their union. mIoU is the average of the IoUs for building masks (foreground) and back-
ground. Because of the imbalance between pixels labeled as “building” and pixels labeled as
“background”, mIoU was higher than IoU for all algorithms. IoU and mIoU share the same
trend as accuracy. Precision and recall, or correctness and completeness (Shu 2014),
represent the ratio of correctly classified building masks to all predicted building masks,
and the ratio of correctly classified building masks to all ground-truth building masks,
respectively. Similar to IoU and mIoU, precision exhibited the same trend as accuracy. It is
worth noting that the recall fluctuates among the algorithms. U-Net had the highest recall,
which means that it generated the highest completeness. The precision-recall curve is
widely used to demonstrate the correctness and completeness of algorithms. F1-score is an
alternator for the curve, which is a harmonic mean of precision and recall (Shu 2014).
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From the F1-score, we can confirm that HRNet v2 is the best algorithm and Fast SCNN is the
worst algorithm in this study. The FPS evaluates the speed of the algorithms by
counting the number of patches predicted per second. Among all semantic segmentation
methods, Fast SCNN has the highest value, and U-Net has the lowest value. In other words,
Fast SCNN possesses the highest efficiency, and U-Net has the lowest efficiency. Because we
tested instance segmentation models using different machines, the FPS for the two models
is not comparable here. However, given their more complicated architectures and parame-
ters, these two models are expected to be slow.

Based on the accuracy, IoU, mIoU, and F1-score, HRNet v2 was the most accurate among
all methods. For efficiency, Fast SCNN is the best one, as it is designed for this purpose.
The ESRI-trained Mask R-CNN showed a higher performance than our own trained one,
but a lower recall value. This can be explained by the difference between the data volume
and data distribution. From this successful benchmark, we conclude that our dataset is
suitable for the training and evaluation of deep learning-based semantic segmentation
and instance segmentation models.

5.3. Some Challenges
The out-of-distribution performance of the deep learning model is often lower than that

indicated by its in-distribution test score; that is, a model trained and tested on a specific
dataset would perform worse than expected on a different dataset and, of course, during
practical use. Addressing this problem is key to the practical application of deep learning
models. Specific to building footprint extraction from VHSR aerial orthoimages, deep
learning models that generalize well across datasets must account for differences in resolu-
tion, image and label quality, image differences induced by different sensors, and other
difficult-to-detect differences between datasets. Each of these differences poses a unique
challenge for the out-of-distribution generalizability of deep learning models. To address
these problems, researchers can train on a mixed training set containing image patches
from a large variety of source datasets in the hope that models learn to ignore the peculiar-
ities of any individual dataset and learn building extraction features that are common
across all datasets. The Inria dataset (Maggiori et al. 2017) uses this approach and shows that
the out-of-distribution performance decreases. Touzani and Granderson (2021) also worked
in this direction and proposed a new framework for building footprint extraction by auto-
matically generating building datasets with more variability from openly available data in
the United States. Further research in this direction is necessary. Another solution is to
try a large variety of data augmentations during training to mimic the changes in
resolution, image and label quality, and any other differences across datasets. In addition
to the strategies used in the training phase, Nguyen et al. (2020) proposed a super-
resolution-based snake model for post-processing to overcome the generalization problem.
In their study, both LiDAR data and optical images were used for building footprint
extraction. Experiments on the ISPRS Vaihingen benchmark datasets and the City of

Table 3. Quantitative performance evaluation (%).

Model Accuracy IoU mIoU Precision Recall F1-score FPS

FCN-8s 77.13 24.99 50.12 26.10 85.50 39.99 19.61
U-Net 86.72 37.25 61.42 39.16 88.43 54.28 14.93
DeepLab v3+ 97.32 72.72 84.92 88.55 80.27 84.21 17.60
Fast SCNN 77.31 23.02 49.34 24.81 76.10 37.42 24.01
HRNet v2 97.78 76.63 87.12 92.48 81.72 86.77 18.19
Mask R-CNN (ESRI) 96.57 64.56 80.45 89.15 70.06 78.46 —

Mask R-CNN (ours) 95.27 59.39 77.15 71.73 77.53 74.52 —
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Quebec, Canada, solidify the success of the model to overcome this problem. It is also pos-
sible that each of these cross-dataset differences should be addressed individually. We hope
that future research will shed light on this problem.

We pose the following open questions to the remote sensing research community and
hope to address them in our future work. For common deep learning architectures applied
to remote sensing tasks, how well does out-of-distribution perform with the inclusion of
additional datasets in the training set? Does a set of image augmentations produce a near-
perfect model generalizability across datasets?

6. Conclusions

In this study, we introduced the Waterloo building dataset. A city-scale vector building
dataset for mapping building footprints using aerial orthoimagery. Our dataset covers the
Kitchener–Waterloo area and extends over 205.83 km2. Both the original 8350 × 8350 and
tiled 512 × 512 images are available. To ensure label quality, the labels were manually
generated by experts under multiple consistency checks. We conducted a comparative
study on popular semantic segmentation methods trained on our dataset and demon-
strated their applicability to the training and evaluation of deep learning algorithms. We
pose the question of out-of-distribution generalizability to the research community and
hope that our dataset can benefit future research towards high-performance and generaliz-
able deep learning building footprint extraction models.
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