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A B S T R A C T

Despite its success, deep learning in land cover mapping requires a massive amount of pixel-wise labeled
images. It typically assumes that the training and test scenes are similar in data distribution. The performance
of models trained on any particular dataset could degrade significantly on a new dataset due to the domain
shift or domain gap across datasets, resulting in new training data requiring labor-intensive manual pixel-wise
labeling. This paper proposes a land cover mapping framework combining Feature Pyramid Network (FPN)
and self-training. In the FPN, we integrate ConvNeXt with a Pyramid Pooling Module (PPM). Combining the
FPN and the PPM improves the segmentation performance, which benefits from the multiscale aggregation of
pyramid features. To fully exploit pseudo-labels, we design an Unsupervised Domain Adaptation (UDA) land
cover mapping scheme with self-training using weighted pseudo-labels of the target samples. The proposed
land cover mapping framework could benefit from multiscale aggregation of pyramid features and the full use
of the pseudo-labels. Comparison results on the LoveDA dataset, the latest large-scale unsupervised domain
adaptation dataset for land cover mapping, empirically demonstrated that our land cover mapping approach
significantly outperforms the baselines in both UDA scenarios, i.e., Urban → Rural and Rural → Urban. The
models of this paper are now publicly available on GitHub.1
1. Introduction

The advances in remote sensing and computer techniques promote
the widespread acquisition and use of timely High Spatial Resolution
(HSR) remote sensing data across the globe (Han et al., 2018). The
unprecedentedly fast-growing volume of timely HSR data available
offers new opportunities for various applications, such as monitoring
of forests, cities, natural disasters, and agriculture. HSR remote sens-
ing technology can provide essential earth observation information to
monitor geographical and ecological environments, such as climate and
wetland. Specifically, land cover mapping in remote sensing aims to
determine land cover types (e.g., highland, forest, and water) at every
image pixel. It is considered more complex than scene classification and
retrieval and is one of the most challenging remote data parsing tasks.

Due to the deep learning technology, the research and application of
land cover mapping have made remarkable progress in the past decade.
Deep learning in land cover mapping tends to rely heavily on large
numbers of high-quality pixel-wise labeled images despite its success.
Moreover, an underlying assumption of most deep learning models for
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land cover mapping is that the training and the test scenes are similar
in data distributions. However, in the practical application of HSR land
cover mapping, the distribution of training data and test data is quite
different. Especially in urban and rural scenes, the representation of
land cover often differs greatly in object scales, class distributions, and
pixel spectrum (Wang et al., 2021b). In terms of class distribution,
there are many more buildings in urban scenes as opposed to rural
scenes since urban scenes have large populations. By contrast, the rural
scenes have more areas of agricultural land and forests. Objects of the
same class collected from different scenes typically have various scales.
Since rural images usually contain large homogeneous geographical
areas, such as farmland and forest, the standard variance of spectral
statistics is smaller. The significant domain gap between the rural and
urban scenes reduces the generalization of the land cover mapping
model. The performance of models trained on one dataset could de-
grade significantly on a new dataset because of the distribution gap or
shift across datasets (Liu et al., 2021). Relatively few studies of land
cover mapping focus on model transferability between datasets with
significant differences.
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We focus on unsupervised domain adaptation (UDA) to avoid mas-
sive manual pixel-wise labeling on target datasets for land cover map-
ping in this paper. UDA aims at training a land cover mapping model
in one dataset (source domain) and then applying the model to make
accurate predictions in a different dataset (target domain). Self-training
is a straightforward yet competitive method in UDA tasks, exploiting
unlabeled target data by training with pseudo-labels generated with
the model trained using the labeled source dataset. Because of the
domain discrepancy and limitation of model precision, the generated
labels of the target data very likely contain incorrect predictions, es-
sentially compromising the domain adaptation (DA) process. A typical
strategy (Zou et al., 2018, 2019; Wang et al., 2021a, 2020a) to mitigate
the effects of noisy labels is setting a threshold to neglect pseudo labels
with low-confidence scores. However, for different target domains,
it is hard to determine such a threshold, which depends on various
factors such as the similarity between domains, pixel location, and pixel
category. Therefore, every pseudo-labels should be treated separately.
It is typically not suitable to adopt a fixed threshold.

Combining a Feature Pyramid Network (FPN) and self-training, we
devise a UDA scheme to bridge the gap between different domains. The
proposed UDA scheme consists of two training stages, which share the
same land cover mapping network. We train the land cover mapping
network employing the labeled scenes from the source dataset and
then generate pseudo-labels for the unlabeled target samples during
the first stage. The source ground-truths and the target pseudo-labels
are utilized during the second stage to fine-tune the network. In the
FPN, we integrate ConvNeXt (Liu et al., 2022) with a Pyramid Pooling
Module (PPM) (Zhao et al., 2017; Xiao et al., 2018).

The FPN is a generic feature extractor that exploits the inherent
multi-scale, pyramidal hierarchy of deep convolutional networks to
construct feature pyramids with marginal extra cost. The PPM is an
effective global contextual prior for semantic segmentation, and is
highly compatible with the FPN. Combining the FPN and the PPM
improves the segmentation performance in the source domain, which
benefits from the multiscale aggregation of pyramid features. To fully
exploit pseudo-labels, we design a UDA scheme with self-training us-
ing weighted pseudo-labels of the target data. More specifically, the
Jensen–Shannon divergence of the outputs of the main and the auxil-
iary branches of the FPN is utilized to re-weight the losses of pseudo-
labels. The more inconsistent the outputs of the two branches are, the
smaller the weight of the corresponding pseudo-label is. The proposed
land cover mapping framework benefits from the multiscale aggrega-
tion of pyramid features and full utilization of the pseudo-labels.

The contributions of our paper are summarized as follows:

(1) We design a land cover mapping network based on an FPN
using ConvNeXt with a PPM to improve the land cover mapping
performance. The land cover mapping task can benefit from
multiscale aggregation of pyramid features.

(2) To tackle the domain shift problem and improve the network
generalization ability, we design a UDA scheme with self-training
using weighted pseudo-labels. The weights are calculated by
the consistency of the two outputs of the land cover mapping
network for the corresponding target samples.

(3) We evaluated our land cover mapping method and the base-
lines on the LoveDA dataset, the latest unsupervised domain
adaptation dataset for land cover mapping. Comparison results
empirically indicate that our scheme is significantly superior to
the baselines on both UDA scenarios: Urban → Rural and Rural
→ Urban.

2. Related research

2.1. Unsupervised domain adaptation

Domain adaptation (DA) is a kind of weakly-supervised learning
that aims to mitigate the distribution discrepancy between different do-
mains. This paper focuses on unsupervised domain adaptation (UDA).
2

In the training phase of UDA for land cover mapping, the source data
has labels available, while the target data has no labels available. In
the last decade, a wide range of UDA methods have been devised to im-
prove the generalization ability of models across different datasets (Wei
et al., 2021; Liu et al., 2021). These UDA schemes mitigate the domain
discrepancy through three different levels (Liu et al., 2021; Toldo et al.,
2020), including input-level (Li et al., 2019), output-level (Vu et al.,
2019; Pan et al., 2020), and feature-level (Ye et al., 2019). Specifically,
a line of UDA works (Deng et al., 2019; Ye et al., 2019; Kang et al.,
2020; Yan et al., 2021; Zhang et al., 2021a; Cai et al., 2022) have been
proposed to tackle the domain shift problem for semantic segmentation,
the task of which, like land cover mapping, is to determine the category
of each pixel in an image.

Most of the recent UDA methods align source data with target data
on distribution via adversarial training (Ye et al., 2019; Zhang et al.,
2021a; Benjdira et al., 2019) or pseudo-label learning (Zou et al., 2018,
2019; Sohn et al., 2020; Zhang et al., 2021a,b; Zheng and Yang, 2021;
Gu et al., 2022). These methods focused on aligning source and target
domains to transfer shared knowledge across two significant different
domains. When only a small number of labeled samples are used, the
performance of UDA algorithms is still obviously behind that of the
supervised or semi-supervised learning methods.

2.2. Unsupervised domain adaptation via adversarial training

The adversarial UDA methods in recent years used Generative Ad-
versarial Networks (GANs) to approach global cross-domain alignment
main through two different levels, i.e. feature-level and output-level. Ye
et al. (2019) improved the adaptation capacity of the GAN by using
clustering on the training set of SAR images to extract useful class infor-
mation. RoadDA (Zhang et al., 2021a) aligned the features of the source
scenes with the target scenes via GNAs, modeling the interclass and
the intraclass discrepancies between the labeled source scenes and the
unlabeled target scenes. Benjdira et al. (2019) utilized a GAN to attain
image-level alignment from the source dataset to the target dataset. A
cross mean teacher (CMT) UDA method (Yan et al., 2021) was devel-
oped to make full use of very pixel in the target dataset. CMT contained
two teacher networks and two student networks for cross-consistency
constraints. CaGAN (Xu et al., 2020) designed a class-aware GAN,
which modeled the intraclass and the interclass discrepancies between
the two domains, using adaptive category selection and alignment. To
avoid the complexity of high-dimensional feature space adaptation, a
series of works (Tsai et al., 2018; Chen et al., 2019; Luo et al., 2019)
approach adversarial domain adaptation on the low-dimensional output
space. In these framework, a domain discriminator is provided with
prediction maps from source and target samples and it is optimized to
infer which domain the samples come from.

2.3. Pseudo-label learning for domain adaptation

Pseudo-label learning for UDA can be classified as: (1) entropy mini-
mization (Chen et al., 2019; Saito et al., 2019; Yang and Soatto, 2020),
(2) curriculum learning (Bengio et al., 2009; Cascante-Bonilla et al.,
2021), and (3) self-training (Choi et al., 2019b; Zheng and Yang, 2021).
Entropy minimization (Vu et al., 2019; Chen et al., 2019; Saito et al.,
2019; Yang and Soatto, 2020) aims to minimize the entropy of the
predicted probability maps of the target data to generate the outputs for
the input samples with higher confidence scores. In order to ensure the
high predictive certainty of target prediction, Vu et al. (2019) proposed
two entropy minimization methods: direct entropy minimization (DEM)
utilizing an entropy loss and indirect entropy minimization (IEM) based
on an adversarial loss. MME (Saito et al., 2019) alternately maximized
the conditional entropy of target data for a domain classifier and
minimized it for a feature encoding network. In order to balance the
effects of the gradient of the simple samples and the gradient of the
hard samples, Chen et al. (2019) proposed a max-square loss to prevent



International Journal of Applied Earth Observation and Geoinformation 112 (2022) 102931W. Liu et al.

o
t
n
l
b
c



w
w
𝐅
t
a
s



s
p
e

3

f
f
s
g
p

easily transferable categories from dominating the training in the tar-
get dataset, thereby minimizing entropy. Curriculum learning (Bengio
et al., 2009; Dai et al., 2020; Cascante-Bonilla et al., 2021; Shu et al.,
2019) is a kind of machine learning technique that aims at gradually
training models from easy to difficult in sample selection (Dai et al.,
2020). To obtain some necessary properties of the target dataset, Zhang
et al. (2017) designed a progressive learning approach for land cover
mapping of urban scenes, which tackled easy tasks first. To alleviate
the problem of false pseudo-labels for DA, PCDA (Choi et al., 2019a)
combined curriculum learning with density-based clustering.

Self-training is a competitive yet straightforward approach to the
UDA task and typically includes three main stages: (1) The model
is trained in the labeled source dataset. (2) Pseudo-labels are gener-
ated for the target samples with the trained model. (3) The model
is retrained or fine-tuned using the ground truths and the pseudo-
labels. Zhang et al. (2020) proposed a layer alignment method and
the feature covariance loss function to alleviate the cross-domain shift.
TPLD (Shin et al., 2020) performed a easy-hard classification scheme
based on confidence scores to partition the target samples into easy and
hard splits. It used full pseudo-labels for the easy samples. It adopted
adversarial learning to align the features of hard samples with the fea-
tures of the easy ones. Similarly, RoadDA (Zhang et al., 2021a) trained
the model with source scenes and labeled the target scenes utilizing the
trained model. In order to partition the target data into a labeled easy
split and an unlabeled hard split,it devised a classifier based on the road
confidence scores. Then, it aligned the easy and hard splits features
using adversarial learning to improve the segmentation performance
progressively. To make full use of the target samples, Zheng and Yang
(2021) modeled uncertainty of the pseudo-labels using the prediction
variance and optimized the objective utilizing the uncertainty of the
pseudo-labels. DistributionNet (Yu et al., 2019) modeled models each
feature as a Gaussian distribution with its variance representing the un-
certainty of the extracted features. TGCF-DA (Choi et al., 2019b) used
student–teacher self-ensembling adaptation techniques, where an extra
network provide self-supervised information for the unlabeled data.
The teacher model provided pseudo-labels to share reliable knowledge
with the student model by supervised training on target samples.

As mentioned above, quite a few pseudo-label learning methods
have been proposed for UDA. However, there is still a significant gap
between the performance of the UDA and supervised approaches. Due
to the domain discrepancy and the limitation of model accuracy, the
pseudo-labels are inevitably noisy. Thus, the generated labels provided
to the final adapted model could significantly compromise the training
process. This paper explores how to effectively improve the model’s
performance in the source domain and make full use of pseudo-labels
to bridge the domain gap.

3. The proposed land cover mapping method

3.1. Overview

To reduce the labeling cost and fully exploit pseudo-labels, we
design a UDA scheme with self-training using weighted pseudo-labels
of the target images. As illustrated in Fig. 1, the proposed land cover
mapping network is a Feature Pyramid Network (FPN) utilizing UPer-
Net (Xiao et al., 2018) with ConvNeXt (Liu et al., 2022) as the back-
bone. The UperNet enlarges the receptive field of deep CNNs and
improves the segmentation performance, which benefits from the mul-
tiscale aggregation of pyramid features. The proposed land cover map-
ping network has two branches. The main takes as input the fused
feature, while the auxiliary branch takes as input the output of the
third downsampling layer. Both branches perform two convolution
operations on their respective input features and then are resized to
the image size through upsampling.

The UDA scheme consists of two training stages, sharing the same
land cover mapping network. We train the land cover mapping network
3
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utilizing the labeled source images and generate pseudo-labels for
the target scenes during the first stage. During the second stage, the
Jensen–Shannon divergence (JSD) of the outputs of the main and the
auxiliary branches of the FPN is utilized to re-weight the losses of
pseudo-labels. The more inconsistent the outputs of the two branches
are, the lower the confidence of the pseudo-label. The smaller the value
of JSD, the greater the weight of the pseudo-label during training.
The source ground truths and the target pseudo-labels are utilized to
fine-tune the land cover mapping network. The proposed land cover
mapping framework can benefit from the multiscale aggregation of
pyramid features and the full utilization of pseudo-labels.

3.2. Land cover mapping based on feature pyramid network

As shown in Fig. 1, the proposed land cover mapping network
combines ConvNeXt (Liu et al., 2022) with UPerNet. ConvNeXt is a
family of pure ConvNet models, constructed entirely from standard
ConvNet modules, inspired by the design of Vision Transformers. It
is accurate, efficient, scalable, and very simple in design. It obtained
state-of-the-art semantic segmentation scores on the large-scale bench-
mark ADE20K (Zhou et al., 2019), while retaining the simplicity and
efficiency of standard ConvNets. We use ConvNeXt as the backbone
of the UPerNet, applying a Pyramid Pooling Module (PPM) from PSP-
Net (Zhao et al., 2017) on the last layer of ConvNeXt before feeding
the feature extracted from ConvNeXt into the upsampling stage in the
FPN.

The land cover mapping network has two mapping branches: the
main and auxiliary branches, which take the fused feature and the
output of the third downsampling layer as inputs, respectively. Both
branches perform two convolution operations on the input features and
then are resized to the image size through upsampling. Before the last
upsampling operation, the main and auxiliary branches are at 1/4 and
1/16 scales, respectively. Let 𝐅𝑚(𝑥𝑠𝑖 |𝜃) and 𝐅𝑎(𝑥𝑠𝑖 |𝜃) denote the outputs
f the main and the auxiliary branches for the source sample 𝑥𝑠𝑖 under
he model parameter 𝜃, respectively. For land cover mapping with the
umber of predefined categories 𝐶, the total supervised cross-entropy
oss 𝑠 for a source sample 𝑥𝑠𝑖 with label one-hot encoded label 𝑦𝑖 can
e represented as the weighted sum of the main and auxiliary branches’
ross-entropy losses:

𝑠(𝑥𝑠𝑖 ) = −
𝐶
∑

𝑗=1
𝑦𝑗𝑖 log𝐅

𝑗
𝑚(𝑥

𝑠
𝑖 |𝜃) − 𝜆1

𝐶
∑

𝑗=1
𝑦𝑗𝑖 log𝐅

𝑗
𝑎(𝑥

𝑠
𝑖 |𝜃), (1)

here 𝑦𝑗𝑖 denotes the component of 𝑦𝑖 corresponding to class 𝑗. Like-
ise 𝐅𝑗

𝑚(𝑥𝑡𝑖|𝜃) and 𝐅𝑗
𝑎(𝑥𝑡𝑖|𝜃) denote the components of 𝐅𝑚(𝑥𝑡𝑖|𝜃) and

𝑎(𝑥𝑡𝑖|𝜃) corresponding to class 𝑗. 𝜆1 is the weight corresponding to
he supervised cross-entropy loss of the auxiliary branch. Thus, the
verage cross-entropy loss for the pixel-wise labeled images in the
ource dataset 𝑆 can be expressed as:

𝑠(𝑆) = − 1
|𝑆|

∑

𝑥𝑠𝑖∈𝑆

𝐶
∑

𝑗=1
𝑦𝑗𝑖 log𝐅

𝑗
𝑚(𝑥

𝑠
𝑖 |𝜃) −

𝜆1
|𝑆|

∑

𝑥𝑠𝑖∈𝑆

𝐶
∑

𝑗=1
𝑦𝑗𝑖 log𝐅

𝑗
𝑎(𝑥

𝑠
𝑖 |𝜃), (2)

in which |𝑆| represents the size of the source dataset 𝑆. Using the
upervised cross-entropy loss 𝑠(𝑆), we can train the land cover map-
ing network utilizing the labeled source scenes, which will then be
mployed to generate pseudo-labels for the unlabeled target scenes.

.3. Self-training with loss re-weighting for pseudo-labels

Standard self-training aims to produce pseudo-labels for images
rom target scenes with a trained source network and then retrain or
inetune the network using the labeled source samples and the target
amples with pseudo-labels. Because of the domain discrepancy, the
enerated labels on the target domain very likely contain incorrect
redictions, which could compromise the training process. An intu-

tive way to overcome the problem is to set a fixed threshold to
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Fig. 1. The proposed land cover mapping network, which is based on a feature pyramid network using UPerNet with ConvNeXt as the backbone network. It has two branches,
the main and auxiliary branches.
filter the pseudo-labels with low-confidence scores. However, it is hard
to determine such a suitable threshold for different target domains,
which depends on various factors such as the similarity between do-
mains, pixel location, and pixel category. To treat every pseudo-label
separately, we approach UDA using self-training with weighted pseudo-
labels in this paper (see Fig. 2). The more inconsistent the outputs
of the two branches are, the smaller the weight of the corresponding
pseudo-label is.

We use the Jensen–Shannon divergence (JSD) to measure the mu-
tual consistency of the outputs of the main and the auxiliary branches.
The smaller the JSD of the two outputs, the more they are consistent. In
the self-training stage, the JSD is utilized to re-weight losses for pseudo-
labels. Formally, the JSD for the target sample 𝑥𝑡𝑖 between the outputs
from the main and the auxiliary branches can be represented as:

𝐷𝐽𝑆
(

𝑥𝑡𝑖
)

= 1
2
𝐾𝐿(𝐅𝑚(𝑥𝑡𝑖|𝜃)‖𝐌) + 1

2
𝐾𝐿(𝐅𝑎(𝑥𝑡𝑖|𝜃)‖𝐌)

= −1
2

𝐶
∑

𝑗=1
𝐅𝑗
𝑚(𝑥

𝑡
𝑖|𝜃) log

𝐌𝑗

𝐅𝑗
𝑎(𝑥𝑡𝑖|𝜃)

− 1
2

𝐶
∑

𝑗=1
𝐅𝑗
𝑎(𝑥

𝑡
𝑖|𝜃) log

𝐌𝑗

𝐅𝑗
𝑚(𝑥𝑡𝑖|𝜃)

,

(3)

where 𝐌 =
𝐅𝑎(𝑥𝑡𝑖|𝜃)+𝐅𝑚(𝑥

𝑡
𝑖|𝜃)

2 . 𝐌𝑗 denotes the component of 𝐌 correspond-
ing to class 𝑗, likewise 𝐅𝑗

𝑚(𝑥𝑡𝑖|𝜃) and 𝐅𝑗
𝑎(𝑥𝑡𝑖|𝜃).

The cross-entropy loss for the target sample 𝑥𝑡𝑖 with a pseudo-label
𝐲𝑖 is :

𝐿𝑐𝑒
(

𝑥𝑡𝑖
)

= −
𝐶
∑

𝑗=1
�̂�𝑗𝑖 log𝐅

𝑗
𝑚(𝑥

𝑡
𝑖|𝜃) − 𝜆2

𝐶
∑

𝑗=1
�̂�𝑗𝑖 log𝐅

𝑗
𝑎(𝑥

𝑡
𝑖|𝜃), (4)

in which �̂�𝑗𝑖 is the component of the pseudo-label �̂�𝑖 corresponding
to class 𝑗. 𝜆2 is the weight corresponding to the loss of the auxiliary
branch.

The more inconsistent the outputs of the two branches are, the
smaller the weight of the corresponding pseudo-label is. Using the JSD,
the weighted entropy-cross loss for 𝑥𝑡𝑖 can be formulated as:

𝐿𝑤
(

𝑥𝑡𝑖
)

= exp{−𝐷𝐽𝑆
(

𝑥𝑡𝑖
)

} ⋅ 𝐿𝑐𝑒
(

𝑥𝑡𝑖
)

+𝐷𝐽𝑆
(

𝑥𝑡𝑖
)

. (5)

The second term 𝐷𝐽𝑆
(

𝑥𝑡𝑖
)

in Eq. (5) is used to make the two branch’s
outputs for 𝑥𝑡𝑖 as consistent as possible. Using the JSD of the two
branch’s outputs enables the self-training scheme to stress importance
on high-confidence pseudo-labels. The average loss across the target
4

dataset can be expressed as:

𝑡(𝑇 ) =
1
|𝑇 |

∑

𝑥𝑡𝑖∈𝑇

𝐿𝑤
(

𝑥𝑡𝑖
)

. (6)

Substituting Eq. (5) into Eq. (6), the express of the average loss 𝑡(𝑇 )
can be reformulated as:

𝑡(𝑇 ) =
1
|𝑇 |

∑

𝑥𝑡𝑖∈𝑇

exp{−𝐷𝐽𝑆
(

𝑥𝑡𝑖
)

} ⋅ 𝐿𝑐𝑒
(

𝑥𝑡𝑖
)

+ 1
|𝑇 |

∑

𝑥𝑡𝑖∈𝑇

𝐷𝐽𝑆
(

𝑥𝑡𝑖
)

, (7)

where |𝑇 | is the number of images in the source dataset 𝑇 .
Utilizing the labeled source scenes and the target scenes with

pseudo-labels, we optimize the land cover mapping network with the
following total loss:

 = 𝑠(𝑆) + 𝜆3𝑡(𝑇 ), (8)

where 𝜆3 is the weight corresponding to the average loss across the
target dataset. It is important to note that the pseudo-labels are updated
every fixed number of batches in the fine-tuning phase of the network.

4. Experiments

To illustrate the superiority of our method, this section details the
experimental setups, comparison with recent land cover mapping UDA
baselines, and the ablation studies of the proposed land cover mapping
method.

4.1. Setups

4.1.1. Data sets and metrics
In order to illustrate the superiority of the proposed land cover map-

ping method, We compare the performance of our method with the re-
cent UDA semantic segmentation methods on the LoveDA dataset (Wang
et al., 2021b), a very recent and challenging dataset for both land
cover mapping and UDA tasks. The LoveDA dataset has 5,987 high
spatial resolution (HSR) samples comprising 166,768 annotated objects
collected from three cities and 18 complex scenes in China. It contains
two different domains, Urban and Rural.

The Urban areas always have more man-made objects like roads and
buildings than the rural areas. In addition, the buildings in the urban
scenes are densely distributed and of various shapes. The roads are
wide, and water is often present in rivers or lakes adjacent to coastal
urban areas. Compared with the urban scenes, the rural scenes typically
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Fig. 2. The proposed self-training scheme using weighted pseudo-labels. The land cover mapping network trained utilizing images of the source scenes is employed to generate
pseudo-labels for images of target scenes. The pseudo-labels are re-weighted using the Jensen–Shannon divergence between the land cover mapping network outputs during the
second training stage. The more inconsistent the outputs of the two branches are, the smaller the weight of the corresponding pseudo-label is.
Fig. 3. Statistics for the pixels in the LoveDA dataset. (a) Number of pixels in the train datasets. (b) Number of pixels in the validation datasets.
have large homogeneous geographic areas, such as agricultural land
and large water bodies, so the standard deviation of spectral statistics
is lower than that of the rural scenes. As shown in Fig. 3, the LoveDA
dataset has a very imbalanced class distribution. For both the Urban
and the Rural scenarios, the Road and the Barren categories account
for a very small proportion of the training and validation data.

There are two subtasks of cross-domain adaptation on the LoveDA
dataset: (1) Urban → Rural and (2) Rural → Urban. The details of these
two cross-domain subtasks can be summarized as follows.

• Urban → Rural: The source training set uses images collected
from four cities, including Gulou,Jianghan, Qinhuai, and Qixia.
The validation set used rural scene images from Huangpi and
Liuhe. The test set comprises images from three cities, including
Jiangning, Liyang and Xinbei. The training set, validation set and
test set contain 1,156, 992 and 976 samples, respectively.

• Rural→ Urban: The source training set uses images from the four
cities, including Lishui, Pukou, Jiangxia and Gaochun areas. The
validation set utilizes the images from Yuhuatai and Jintan areas.
The test set uses images from three cities, including Jiangye,
Wujin and Wuchang areas. The sizes of the training, validation
and test sets are 1,366, 677 and 820, respectively.

The ground truths for the test sets of both scenarios are not publicly
available. To obtain the test scores, we need to upload the land cover
mapping results to the server associated with the LoveDA dataset.2 To
evaluate the proposed land cover mapping approach and the baselines,
the server utilizes the per-class IoU and mean IoU (mIOU) for all object
categories as the land cover mapping evaluation metrics. In addition
to IoU, we also use other metrics to validate the effectiveness of each
key component of our scheme on the validation sets of the two UDA
scenarios. These metrics include producer’s accuracy, user’s accuracy,
overall accuracy (OA) and kappa.

2 https://codalab.lisn.upsaclay.fr/competitions/421
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4.1.2. Implementation details
The proposed land cover mapping method is implemented employ-

ing the most popular open-source deep learning framework PyTorch.
We train the land cover mapping network utilizing an NVIDIA Tesla
V100 32 Gbs GPU. The proposed method uses the backbone ConvNeXt
pre-trained on the ImageNet-22K dataset, which comprises 14.2 million
samples in 22 K categories. The values of 𝜆1, 𝜆2, and 𝜆3 are set to 0.4,
0.5, and 0.5, respectively. The model’s parameters are optimized using
the AdamW optimizer (Loshchilov and Hutter, 2018) and the weight
decay is set to 0.005 during the two training phases of the self-training
scheme. We train the framework with the input size of 512 × 512, using
a batch size of 8. We set the training iteration number to 10 K. For
the first and second training stages, the values of the initial learning
rates are set to 1e-4 and 8e-5, respectively. The predictions of the
main branches are utilized as the pseudo-labels for the target scenes.
The pseudo-labels are updated every 2000 batches during the second
training stage. The two-stage optimization process takes around 6.5 h
for either scenario. We only use the prediction from the main branch
of the proposed land cover mapping network during the testing stage.

4.1.3. Baselines
Following Wang et al. (2021b), we adopt a series of advanced

UDA algorithms to compare with the proposed UDA scheme for the
land cover mapping task. In addition to MCD (Tzeng et al., 2014) (a
domain confusion metric based approach), two types of UDA meth-
ods are evaluated: adversarial training (AdaptSeg (Tsai et al., 2018),
TransNorm (Wang et al., 2019), CLAN (Luo et al., 2019), FADA (Wang
et al., 2020b)) and self-training (CBST (Zou et al., 2018), PyCDA (Lian
et al., 2019), IAST (Mei et al., 2020)).

4.2. Comparison results

We adopt the same experimental setting as Wang et al. (2021b) and
directly report the results of these comparison algorithms from Wang
et al. (2021b). Table 1 presents the comparison results on the LoveDA

https://codalab.lisn.upsaclay.fr/competitions/421
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Table 1
The comparison results on the test set. The abbreviations AT and ST denote adversarial training and self-training methods, respectively.

Scenario Approach Type IoU (%) mIoU (%)

Background Building Road Water Barren Forest Agriculture

Rural → Urban

Oracle – 51.8 59.46 65.28 85.51 15.89 42.55 42.26 51.82

Source only – 43.3 25.36 12.7 76.22 12.52 23.34 25.14 31.27
MCD (Tzeng et al., 2014) – 43.6 15.37 11.98 79.07 14.13 33.08 23.47 31.53
AdaptSeg (Tsai et al., 2018) AT 42.35 23.73 15.61 81.95 13.62 28.7 22.05 32.68
FADA (Wang et al., 2020b) AT 43.89 12.62 12.76 80.37 12.7 32.76 24.79 31.41
CLAN (Luo et al., 2019) AT 43.41 25.42 13.75 79.25 13.71 30.44 25.8 33.11
TransNorm (Wang et al., 2019) AT 38.37 5.04 3.75 80.83 14.19 33.99 17.91 27.73
PyCDA (Lian et al., 2019) ST 38.04 35.86 45.51 74.87 7.71 40.39 11.39 36.25
CBST (Zou et al., 2018) ST 48.37 46.1 35.79 80.05 19.18 29.69 30.05 41.32
IAST (Mei et al., 2020) ST 48.57 31.51 28.73 86.01 20.29 31.77 36.5 40.48
Ours ST 50.2 49.5 43.86 86.9 15.0 42.67 42.51 47.23

Urban → Rural

Oracle – 34.06 59.44 41.6 71.55 19.84 50.12 65.97 48.94

Source only – 24.16 37.02 32.56 49.42 14 29.34 35.65 31.74
MCD (Tzeng et al., 2014) – 25.61 44.27 31.28 44.78 13.74 33.83 25.98 31.36
AdaptSeg (Tsai et al., 2018) AT 26.89 40.53 30.65 50.09 16.97 32.51 28.25 32.27
FADA (Wang et al., 2020b) AT 24.39 32.97 25.61 47.59 15.34 34.35 20.29 28.65
CLAN (Luo et al., 2019) AT 22.93 44.78 25.99 46.81 10.54 37.21 34.45 30.39
TransNorm (Wang et al., 2019) AT 19.39 36.3 22.04 36.68 14 40.62 3.3 24.62
PyCDA (Lian et al., 2019) ST 12.36 38.11 20.45 57.16 18.32 36.71 41.9 32.14
CBST (Zou et al., 2018) ST 25.06 44.02 23.79 50.48 8.33 39.16 49.65 34.36
IAST (Mei et al., 2020) ST 29.97 49.48 28.29 64.49 2.13 33.36 61.37 38.44
Ours ST 32.25 59.18 41.69 68.13 16.23 38.69 57.99 44.88
test split. DeepLab (Chen et al., 2017) trained with only the labeled
source scenes refers to the source-only setting. In terms of mIoU, the
proposed approach outperforms the comparison algorithms by a large
margin in both the Rural → Urban and the Urban → Rural experiments.
n the Rural → Urban scenario, the proposed method obtains 47.23%
IoU. Compared with the non-domain-adaptive comparison method

i.e., the scheme only trained using the labeled source samples), the
roposed method achieves a 15.96% mIoU improvement, outperform-
ng the second-best approach by 5.91%. On the Urban→ Rural scenario,

our land cover mapping approach obtains a highest mIoU of 44.88%.
Compared with the non-domain-adaptive comparison, our proposed
method improves the mIoU by 13.14%, surpassing the second-best
approach by 6.44%.

In terms of per-class IoU, our method also show an overall im-
provement over the other methods. On the Urban → Rural scenario,
among the seven classes, we get the best performance in five classes:
Background, Building, Water, Forest, and Agriculture. On the Rural →
Urban scenario, among the seven classes, we get the best performance
in four classes: Background, Building, Road, and Water. All algorithms
erform poorly for the Barren category because the Barren category

accounts for a very small proportion of the training data.
Moreover, we devise the Oracle setting to test the upper limit of

our method’s accuracy in a single domain. As presented in Table 1, on
the Urban → Urban scenario, the Oracle setting outperforms the UDA
methods for the Road and the Building categories by a wide margin.
Specifically, the Oracle setting achieves IoUs of 59.46% and 65.25%
for the Building and the Forest categories, respectively. For the Rural
scenes, the Road and the Barren categories account for a very tiny
proportion of the training data. In the Rural → Rural scenario, the Or-
acle setting obtains 50.12% IoU for the Forest category, outperforming
the best UDA approach by 11.43%. For the Urban scenes, the Forest
category accounts for a very small proportion of the training data.

We also evaluate the land cover mapping algorithms qualitatively.
Since the ground truths are hidden for the test set of the LoveDA
dataset, we implement the experiment on the validation split of the
scene Rural → Urban scenario. Fig. 4 presents some qualitative exam-
ples of adapted land cover mapping for images randomly selected from
the validation set. These results displayed are obtained from PyCDA,
CBST, AdaptSeg, CLAN and our method. Comparing the ground truths
with the predicted results, our proposed land cover mapping scheme
shows significantly better results. In particular, the proposed method is
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more successful than the baseline methods at identifying buildings and
forests.

From Table 1 and Fig. 4, we have three observations: (1) Com-
pared with the adversarial training methods, the self-training methods
achieve better performances on both scenarios. (2) Among the self-
training methods, our way of exploiting pseudo-labels seems more
effective. The proposed land mapping method achieves better mIoU
than PyCDA, CBST, and IAST. (3) Imbalanced training data can impair
the performance of UDA methods for rare categories.

4.3. Ablation study

This section presents ablation studies to validate the effectiveness
of each key component of our scheme.

4.3.1. The effectiveness of multiscale structure
We investigate the effect of different multiscale structures, including

DeepLabV2 (Chen et al., 2017) and UperNet. As opposed to DeepLabV2,
UperNet fuses features from different stages. In both multiscale frame-
works, we employ ConvNeXt (Liu et al., 2022) as the backbone and
only use the source samples during the training phase. Table 2 presents
the comparisons of land cover mapping on the test set of the LoveDA
dataset. On the Rural → Urban scenario, DeepLabV2 and UperNet
obtain 42.06% and 44.66% mIoU, respectively. On the Urban → Rural
scenario, DeepLabV2 and UperNet obtain 39.79% and 43.34% mIoU,
respectively. In terms of per-class IoU, UperNet also significantly out-
performs DeepLabV2 across most categories for both UDA scenarios.
Therefore, we conclude the proposed method based on UperNet can
more efficiently extract multiscale features than methods based on
DeepLabV2.

4.3.2. The effectiveness the auxiliary branch
We analyze the effect of the auxiliary branch, using only the source

samples for training. As shown in Table 3, the land cover mapping
models without and with the auxiliary branch obtains an mIoU of
43.66% and 44.66% on the Rural → Urban scenario, respectively.
The auxiliary branch increase mIoU by 1%. on the Urban → Rural
scenario, the land cover mapping model without and with the auxiliary
branch achieve an mIoU of 42.81% and 43.40% on the Rural → Urban
scenario, respectively. The auxiliary branch improves mIoU by 0.59%.
The results of the two UDA scenarios in Table 3 consistently show that
the auxiliary branch can effectively improve land cover mapping.
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Fig. 4. Example results of adapted land cover mapping for images from the Rural → Urban scenario validation set. We show results obtained from Source-only, PyCDA, CBST,
AdaptSeg, CLAN and our method for each image with ground truths from the validation set.
Table 2
Land cover mapping results achieved on the test split adopting various multiscale structures.

Scenario Approach IoU (%) mIoU (%)

Background Building Road Water Barren Forest Agriculture

Rural → Urban Deeplabv2 47.91 40.2 29.41 80.22 14.79 42.83 39.07 42.06
UperNet 48.65 45.03 40.57 84.31 14.49 38.20 41.4 44.66

Urban → Rural Deeplabv2 29.52 54.24 37.65 63.92 14.13 35.1 43.97 39.79
UperNet 29.14 60.12 39.69 66.14 17.26 39.59 51.84 43.40
Table 3
The effectiveness of the auxiliary branch. The first and second rows of each scenario correspond to results without and with the auxiliary branches.

Scenario Approach IoU (%) mIoU (%)

Background Building Road Water Barren Forest Agriculture

Rural → Urban w/o aux 48.26 42.02 31.39 84.64 17.68 42.41 39.23 43.66
w/ aux 48.65 45.03 40.57 84.31 14.49 38.20 41.4 44.66

Urban → Rural w/o aux 30.19 60.41 36.29 62.72 19.43 37.46 53.14 42.81
w/ aux 29.14 60.12 39.69 66.14 17.26 39.59 51.84 43.40
Table 4
The effectiveness of self-training. For each scenario, the first row corresponds to the results without adaptation. The second and third rows correspond
to the results with adaption using the fixed threshold and the proposed weighted pseudo-labels, respectively.

Scenario Approach IoU (%) mIoU (%) Gain (%)

Background Building Road Water Barren Forest Agriculture

Rural → Urban
w/o adaptation 48.65 45.03 40.57 84.31 14.49 38.20 41.4 44.66 –
Self-training w/ Tr 49.39 49.14 47.14 86.05 12.44 41.69 40.5 46.62 +1.96
Ours 50.2 49.5 43.86 86.9 15.0 42.67 42.51 47.23 +2.57

Urban → Rural
w/o adaptation 29.14 60.12 39.69 66.14 17.26 39.59 51.84 43.40 –
Self-training w/ Tr 30.28 56.99 41.32 62.86 19.46 39.48 51.74 43.16 −0.24
Ours 32.25 59.18 41.69 68.13 16.23 38.69 57.99 44.88 +1.48
4.3.3. The effectiveness of self-training
We also analyze the usefulness of the proposed self-training using

weighted pseudo-labels. The baselines of this section are the proposed
land cover mapping network without domain adaptation and the pro-
posed scheme with a fixed threshold. As indicated in Table 4, the
proposed land cover mapping method with weighted pseudo-labels
performs best on both scenarios. On the Urban → Rural scenario,
the proposed land cover mapping network without domain adaptation
obtains 44.66% mIoU. The proposed scheme with the fixed threshold
achieves 46.62% mIoU, gaining 1.96% mIoU over the source-only
model. The proposed pseudo-label learning scheme achieves 47.23%
mIoU, improving the mIoU by 2.57% compared with the source-only
model. On the Rural → Urban scenario, the proposed land cover map-
ping network without domain adaptation obtains 43.40% mIoU. The
proposed scheme with the fixed threshold achieves 43.10% mIoU,
7

0.24% less than the source-only model. The proposed pseudo-label
learning scheme achieves 44.88% mIoU, improving the mIoU by 1.48%
compared with the source-only model. As can be seen from Table 4,
pseudo-learning using a fixed threshold may compromise model perfor-
mance. A fixed threshold will likely draw pseudo-labels corresponding
to hard samples while filtering out noise. The proposed UDA scheme
based on weighted pseudo-labels can effectively leverage pseudo-labels
to bridge domain gaps.

4.3.4. Evaluation using multiple metrics
In addition to IoU, we also validate the effectiveness of each key

component of our scheme on the validation sets, using other metrics
including producer’s accuracy, user’s accuracy, overall accuracy(OA)
and kappa. As presented in Table 5, in terms of OA and kappa, the aux-
iliary branch and the multiscale structure can effectively improve the
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Table 5
Summary of the producer’s accuracy, user’s accuracy, overall accuracy (OA) and kappa on the validation sets. For each scenario, the first row corresponds to the results with
DeeplabV2 as the backbone. The second and the third rows correspond to the results without and with the auxiliary branches, respectively. The fourth and the fifth rows corresponds
to the results with adaption using the fixed threshold and the proposed weighted pseudo-labels, respectively.

Scenario Method User’s accuracy (%) Producer’s accuracy (%) OA (%) Kappa (%)

Background Building Road Water Barren Forest Agriculture Background Building Road Water Barren Forest Agriculture

Rural → Urban

DeeplabV2 49.84 74.14 77.65 88.88 76.18 64.51 88.63 72.36 69.25 61.24 79.74 50.86 71.69 62.91 68.31 60.8
w/o aux 50.23 70.59 79.3 89.98 73.15 66.64 89.14 69.09 79.78 61.25 80.94 53.86 77.24 58.89 68.65 61.45
w/ aux 51.17 72.98 70.25 88.6 72.01 68.05 86.66 67.19 78 68.78 82.5 50.45 74.35 61.73 68.93 61.84
Self-training w/Tr 44.85 71.07 73.72 91.44 76.84 75.62 92.96 71.64 82.48 71 79.99 51 62.14 49.59 66.11 58.13
Ours 52.91 72.81 76.9 90.01 72.29 69.19 87.29 67.89 81.11 68.61 82.72 51.96 74.43 65.97 70.70 63.97

Urban → Rural

DeeplabV2 60.04 68.72 70.75 86.28 24.81 50.23 90.05 87.37 63.05 46.37 64.46 20.48 40.8 49.36 66.36 49.52
w/o aux 59.53 73.18 84.42 93.1 34.73 70.84 88.61 94.78 59.69 42.75 57.76 11.54 19.19 51.15 67.67 49.69
w/ aux 60.37 69.79 78.97 86.62 23.2 59.78 92.66 88.61 69.22 45.99 70.6 24.23 35.61 47.38 67.09 50.66
Self-training w/Tr 63.1 63.88 88.66 91.2 24.18 70.58 95.99 84.86 79.79 42.69 69.22 71.37 46.91 42.66 66.47 51.65
Ours 60.89 75.40 82.94 89.82 23.87 68.27 90.66 90.06 67.98 42.94 70.71 22.27 35.15 49.81 68.25 52.05
performance of our method. In terms of the producer’s and the user’s
accuracy, our method can achieve reliable results for most categories
except rare ones such as the Road and the Barren categories. Therefore,
how to effectively improve the performance of the UDA models for rare
categories is worthy of further study.

5. Conclusion

In order to facilitate domain adaptation and reduce potential la-
beling costs, we promote adaptivity in two ways: (1) by designing a
land cover mapping network with high performance and (2) by making
full use of pseudo-labels. This paper presents a UDA framework based
on an FPN and self-training for the land cover mapping task. We
integrate ConvNeXt with a PPM in the FPN. Combining the FPN and
PPM improves the segmentation performance, which benefits from the
multiscale aggregation of pyramid features. The UDA consists of two
training stages, which share the same land cover mapping network.
In the first training phase, we train the network utilizing the labeled
source scenes and generate pseudo labels for the target scenes. The
source ground-truths and the weighted target pseudo-labels are utilized
during the second stage to fine-tune the network. The proposed land
cover mapping framework benefits from the multiscale aggregation of
pyramid features and the full use of pseudo-labels. Comparison results
on the LoveDA dataset, the latest large-scale unsupervised domain
adaptation dataset for land cover mapping, empirically indicated that
our land cover mapping approach is significantly superior to the base-
lines in both UDA scenarios. In some practical applications, a small
number of samples in the target domain are available. How to make
full use of the labeled samples in the target domain is a problem worthy
of further studies. In the future, we will investigate semi-supervised
domain adaptation algorithms for land cover mapping.
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