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A B S T R A C T   

Graph convolution networks (GCNs) have been proven powerful in describing unstructured data. Currently, most 
of existing GCNs aim on more accuracy by constructing deeper models. However, these methods show limited 
benefits, and they often suffer from the common drawbacks brought by deep networks, such as large model size, 
high memory consumption and slow training speed. In this paper, different from these methods, we widen GCNs 
to improve the descriptiveness by expanding the width of input to avoid the above drawbacks. Specifically, we 
present a wider GCNs based model, WGNet, for 3D point cloud classification. A local dilated connecting (LDC) 
module is designed to obtain the adjacency matrix, while a context information aware (CIA) module is proposed 
to generate initial node representation. These two modules provide a way to transform 3D point cloud into graph 
structure with larger receptive field and rich initial node features. These two properties widen the channels of 
input and provide more rich information to describe the samples precisely. Besides, we provide analysis to 
formulate the above idea as the sample precision description. Then, we adopt ChebyNet as our basic network, 
and present a skip-connection-based GCNs to improve efficiency of feature reuse. WGNet was evaluated on two 
datasets. One was acquired by a mobile laser scanning system under the real road environments, while the other 
was the well-known public artificial dataset, ModelNet40. Experimental results show that WGNet achieves better 
performance than the state-of-the-art in terms of descriptiveness, efficiency and robustness. Ablation studies also 
demonstrate the effectiveness of our designed LDC and CIA modules.   

1. Introduction 

With the advantage of capturing detail 3D point clouds to descript 
the around environments, LiDAR has been used in many applications, 
such as autonomous vehicles (AVs) (Chen et al., 2018), intelligent 
transportation systems (ITS) (Feng et al., 2021; Seo et al., 2015), and 
Simultaneous Localization and Mapping (SLAM) (Chen et al., 2021; 
Gong et al., 2019). As a cornerstone of 3D point clouds processing, object 
classification has important influence on several related tasks, such as 
sematic and instance segmentation (Hu et al., 2020; Thomas et al., 2019) 
and object detection (Yang et al., 2020; Qi et al., 2020; Xie et al., 2020). 

This paper mainly focuses on 3D object classification. 
Transitionally, 3D point clouds classification builds on hand-craft- 

feature descriptors, such as Spin Image (SI) (Johnson and Hebert, 
1999), 3D shape context (3DSC) (Frome et al., 2004), and Rotational 
Projection Statistics (RoPS) (Guo et al., 2013). Recently, deep learning 
(DL) has been proven as a most powerful technique in 3D point clouds 
processing. According to the representation, DL based methods can be 
divided into four classes: volumetric methods (Wu et al., 2014; Matur-
ana and Scherer, 2015), view-based methods (Su et al., 2015), point-set- 
based methods (Qi et al., 2017), and graph-based methods (Wang et al., 
2019). Among those methods, graph-based methods can usually obtain 

* Corresponding author. 
E-mail addresses: chenyiping@xmu.edu.cn (Y. Chen), zpluo@stu.xmu.edu.cn (Z. Luo), abdul.nurunnabi@uni.lu (A. Nurunnabi), yjlin@mnnu.edu.cn (Y. Lin), 

xzhang@ryerson.ca (X.-P. Zhang), junli@uwaterloo.ca (J. Li).  

Contents lists available at ScienceDirect 

International Journal of Applied Earth  
Observations and Geoinformation 

journal homepage: www.elsevier.com/locate/jag 

https://doi.org/10.1016/j.jag.2022.102786 
Received 25 November 2021; Received in revised form 21 February 2022; Accepted 12 April 2022   

mailto:chenyiping@xmu.edu.cn
mailto:zpluo@stu.xmu.edu.cn
mailto:abdul.nurunnabi@uni.lu
mailto:yjlin@mnnu.edu.cn
mailto:xzhang@ryerson.ca
mailto:junli@uwaterloo.ca
www.sciencedirect.com/science/journal/03032434
https://www.elsevier.com/locate/jag
https://doi.org/10.1016/j.jag.2022.102786
https://doi.org/10.1016/j.jag.2022.102786
https://doi.org/10.1016/j.jag.2022.102786
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


International Journal of Applied Earth Observation and Geoinformation 110 (2022) 102786

2

better results. The is because graph data structure is match more with 
the 3D point clouds, and the graph representation can better preserve 
the distribution pattern of point clouds (Guo et al., 2020). Graph-based 
methods transform point clouds into graph data, then use graph 
convolution networks (GCNs) to extract information from graph data, to 
classify the nodes or graphs. Generally, there are two main classes: 
methods in spectral domain and spatial domain. 

Methods in spectral domain are generally build on the well- 
developed graph theory. They can be considered as a spectral filtering 
method. As a pioneering work, ChebyNet (Defferrard et al., 2016) is 
proposed to approximate the spectral filtering by using the truncated 
Chebyshev polynomial method. ChebyNet tries to solve the challenges 
brought by the high dimension and irregular data. Besides, RGCNN (Te 
et al., 2018) presents a convolution operation oriented to regular graph 
structure. To solve the challenge brought by the difference of topological 
structure, Li et al., (2018) proposed AGCN based on SGC-LL module. It 
uses a learnable distance to measure the similarity between points in a 
graph. Besides, the spectral CNN model proposed by Bruna et al., (2014) 
extends the classical convolutional neural network architecture to the 
graph data processing neighborhood, so that the extended framework 
can be applied to spectrum processing. In view of the difficulty of 
spectral CNN model in obtaining better pooling effect, Yi et al., (2017) 
introduced the idea of hole convolution commonly used in the field of 
image processing into spectral data processing, and designed a Syn-
cSpecCNN model based on spectral transformation. Several methods are 
also proposed to extract features by operating on the local graph, such as 
LocalSpecGCN (Wang et al., 2018), PointGCN (Zhang et al., 2018) and 
3DTI-Net (Pan et al., 2019). 

Graph-based methods in spatial domain takes operations in spatial 
way. They can be considered as improved versions of PointNet (Qi et al., 
2017). ECCNet (Simonovsky and Komodakis, 2017) is the pioneering 
work that constructs each point as a vertex of the graph. Build on 
ECCNet, DGCNN (Wang et al., 2019) constructs a dynamic graph to 
extract local features at multiple levels. Furthermore, LDGCNN (Zhang 
et al., 2019a) removes the transformation network in DGCNN, and 
connects the multi-level features learned by different layers. Several 
DGCNN based methods have been proposed, such as the DPAM (Liu 
et al., 2019), KCNet (Shen et al., 2018), G3D (Dominguez et al., 2018), 
and A-CNN (Komarichev et al., 2019). Though these graph-based 
methods have achieved superior performance, they suffer from the 
common drawbacks brought by deep networks, such as the larger model 
size, higher memory consumption, and slower training speed (Rong 
et al., 2019; Li et al., 2019). Consequently, it is natural that that seeking 
the possibility of widening the neural networks to avoid these problems. 

As pointing out in Lu et al., (2017), a wide network can have a 
positive impact on the performance of the model in some cases. In 
addition, in Zhang et al., (2019b), the authors observe that directly 
stacking deeper networks cannot bring significant improvements. Be-
sides, Shang et al., (2016) widens the networks by proposing an effective 
activation scheme, called CReLU, to improve the utilization efficiency of 
feature maps in each layer. In DenseNet (Huang et al., 2017), it has been 
proved to be very useful to compensate the characteristics of the current 
channel by the information of other channels. However, these methods 
mainly focus on image field, and applying this basic idea on 3D point 
cloud processing is rarely paid attention to. 

In this paper, we widen GCNs by expanding the width of input, rather 
than stacking deeper networks, for 3D point clouds classification. We 
propose our model, named WGNet, by designing two modules, the local 
dilated connecting (LDC) and context information aware (CIA) modules. 
More specifically, motivated by dilated convolution in image processing, 
the LDC module is presented to construct the edges of graph with 
expanding the receptive field. For node signal, we propose the CIA 
module based on context information, including the distribution char-
acteristics of neighborhood points and local dimension features. Finally, 
built on the above modules, we adopt ChebyNet (Defferrard et al., 2016) 
as our basic network, and present a skip-connection-based GCNs to 

improve efficiency of feature reuse. 
Expensive experiments on the public simulated ModelNet40 (Wu 

et al., 2014) and a real dataset acquired by an MLS system in real road 
environments, demonstrate the effectiveness of the proposed method. 
Furthermore, we investigate the efficiency and robustness of WGNet. 
Additionally, several ablation studies demonstrate the effectiveness of 
the design wider networks. There are three main contributions. 

1) We present a local dilated connecting (LDC) module to generate 
the adjacency matrix for a graph, which would expand the receptive 
field of graph convolution to encode more information. 

2) We design a context information aware (CIA) module to extract 
the node features as the initial input of GCNs. Different from normal 
initial input with just only coordinates, for each point, CIA module 
embeds the distribution characteristics of its neighborhood points and 
its local dimension features, resulting in rich distribution pattern 
awareness. 

3) We construct skip-connection-based GCNs to maximize the reuse 
of features learned by each level. Combined with LDC and CIA modules, 
a wider and efficient GCNs is proposed to mine richer features to 
compensate the insufficiency on the depth of GCNs. 

This paper is organized as follows. Section 2 describes the proposed 
WGNet. Section 3 and Section 4 presented and discussed the experi-
mental results, respectively. Section 5 concludes the paper. 

2. The proposed method: WGNet 

2.1. Over view 

We develop a wider GCNs based method for 3D point clouds classi-
fication, named WGNet. As presented in Fig. 1, the architecture of 
WGNet consists of three main parts: an edge structure building module 
based on local dilated connecting (LDC), a node feature generation 
module based on context information aware (CIA), and a GCNs based 
framework with skip-connection. Several symbols are shown in Table 1. 

In the following subsections, we will first formulate our model as a 
model regularization task from the view of loss function. Then, we 
present the details for the LDC and CIA modules. Finally, built on LDC 
and CIA modules, we develop our model with a skip-connection GCN. 

2.2. Preliminaries 

In this paper, we adopt the ChebyNet as our basic network. Since the 
original graph generated from 3D point cloud is a directed graph and the 
adjacency matrix A is asymmetric, which cannot meet the requirement, 
we take a simple way to transform A as a symmetric matrix: Asym =

1
2 (A+ AT). This transformation can be interpreted that the average 
values of the in- and out- degrees of the graph nodes are regarded as new 
adjacency relations, that is, the original adjacency matrix A only reflects 
the out-degree, while in Asym, the in- and out- degrees are all considered. 
This can be regarded as “erasing” the direction of the edge to be an 
undirected one. Therefore, the above transformation does not change 
the graph structure. 

In GCN, the generalized formulation of convolved result, Z(l+1) in l-th 
layer, can be written as: 

Z(l+1) = D̃
− 1

2ÃD̃
− 1

2ZlΘl (1)  

where Zl is the convolved result in (l-1)-th layer, Ã = Asym +In means 
adding self-connections to the adjacency matrix,In is n × n identity 
matrix,D̃ is degree matrix with D̃i,j =

∑
jÃi,j, and Θl is the matrix of filter 

parameters in l-th layer. We denote the final output of convolution layers 
as ZL. Then the loss function for graph classification is: 

L = −
∑Ccat

j=1
Yjln(softmax(Z(L))j) (2) 
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where Ccat is the number of categories. Y = {Y1,⋯,YCcat}
T is the ground 

truth with one-hot form. We investigate the loss function. It can be 
further written as. 

L = − YT Z(L) + ln(
∑Ccat

j=1
eZ(L)

j )YT I) (3)  

where I is a column vector with I(k,1) = 1, ∀k ∈ {1,⋯, Ccat}. Now we 
take an insight in Z(L). Firstly, we denote Nknn as the number of neighbor 
points, and each point has the same number of neighbor points. 
Therefore, D̃ = (Nknn +1) • In. Then, according to (1), we have. 

Z(l+1) =
Ã

2

(Nknn + 1)2Z(l− 1)Θ(l− 1)Θl (4) 

With Z(0) = X,Z(L) is: 

Z(L) =
Ã

L

(Nknn + 1)L XΘ (5)  

where Θ≜Θ(L− 1)Θ(L− 2)⋯Θ(0). Combining (3) and (5), the loss function is: 

L = − YT Ã
L

(Nknn + 1)L XΘ+ ln(
∑Ccat

j=1
e
( Ã

L

(Nknn+1)L
XΘ)j

)YT I) (6) 

As shown in (6), L is determined by three parts: the adjacency 
matrix Ã, the node features X and the weights Θ learned from networks. 
Since a graph data is represented by Ã and X, we can mine the spatial 
distribution and geometric structure between neighbor points to 
describe the input samples more precisely. Following this idea, in this 

work, we design two modules, the LDC and CIA, to impose constraint on 
adjacency matrix and node features, respectively. We will introduce the 
details for the LDC and CIA module in following subsections. 

2.3. Local dilated connecting (LDC) module 

As the common way to build the adjacency relation, standard kNN 
method still suffers from two main issues, the sensitivity to noise and 
imbalance between receptive field and efficiency. Therefore, to convert 
discrete 3D point cloud into graph data, it is worth to consider an edge 
construction method with better robustness and wider receptive field. 
Inspired by dilated convolution (Yu and Koltun, 2016; Chen et al., 
2017), which is widely used in image processing, we adopt a similar idea 
and design a local expansion connection strategy. 

Specifically, as shown in Fig. 1,∀pi ∈ P, standard kNN is firstly used 
to obtain the k-nearest neighbor candidate set with 2Nknn points: 

Scand
pi

= {p1,⋯,p2Nknn
} (7) 

Then, the nearest neighbor points are selected from the candidate 
set. Generally, the selection methods can be divided into random se-
lection and fixed position selection. To improve the robustness, we 
adopt random selection to obtain the neighbor set with Nknn points: 

Spi =
{

p1,⋯,pNknn
|pk ∈ Scand

pi
, k = 1,⋯,Nknn

}
(8) 

Repeating the above operation for each point, we can construct the 
new adjacency matrix Adila. 

We now analyze LDC module from the view of sample description. 
Firstly, Adila can be represented as: 

Adila = A − A− +A+ (9)  

where A−
i,j = 1 if the edge E i,j is erased (i.e.,pj ∈ Scand

pi
and pj ∕∈ Spi ), else 

A−
i,j = 0, and A+

i,j = 1 if E i,j is added (i.e.,pj ∈ Scand
pi

and pj ∈ Spi ), else A+
i,j =

0. Then, 

Ã
dila

=

(
Adila + (Adila)

T

2

)

+ In = Ã+ΔA (10)  

where ΔA =
A++(A+)

T
− A− − (A− )

T

2 . Then, 

Fig. 1. Architecture of WGNet, which consists of three main parts: edge structure building, node feature generation and GCNs with skip-connection.  

Table 1 
Several important symbols used in this paper.  

Symbols Description 

P = {pi ∈ R3|i = 1,⋯,n} 3D point clouds with n 
points 

pi = (xpi ,ypi , zpi ) 3D coordinates of pi 

V = {vi}
n
i=1, vi = (pi,Other properties) Node set of the graph 

Xn×3, X(i, :) = pi Matrix form of node set 
E = {E i,j |i, j = 1,⋯,n}, E i,j=1 if vi and vj are 

connected 
Edge set of the graph 

A, Ai,j = E i,j Adjacency matrix 
D = diag(d1 ,⋯, dn), di =

∑
jAi,j) Degree matrix 

G = (V ,E ) A graph data representation  
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(Ã
dila

)
L
= (Ã + ΔA)

L
=

(
L
0

)

Ã
L
+

(
L
1

)

Ã
L− 1

ΔA +⋯+

(
L
L

)

(ΔA)
L≜Ã

L
+ΦA

(11)  

where ΦA =
( L

1
)
Ã

L− 1
ΔA + ⋯ + (ΔA)

L. Then, according to (5), the new 
result is. 

Z(L)
new =

(Ã
dila

)
L

(Nknn + 1)L XΘ =
Ã

L
+ ΦA

(Nknn + 1)L XΘ≜Z(L) +U (12)  

where U = ΦA
(Nknn+1)L

XΘ. Now we take an insight in U , which can be 

rewritten as. 

U =
ΦAXΘ

(Nknn + 1)L =
InΦAXΘ

(Nknn + 1)L =
In•(ΦAX) • Θ
(Nknn + 1)L =

(In)
L

(Nknn + 1)L•(ΦAX) • Θ

(13) 

We can view U as the result of a new input. More specifically, the 
adjacency matrix of this new input is In, which means nodes on this 
graph are all isolated. Besides, the node set of this new input is the same 
as that of the raw input, however, the signal for each node has new 
representation. From (13), we can observe that the matrix form of the 
new graph is ΦAX. Combing (12) and (13), the function of LDC module 
can be considered as adding an extra sample as input. This extra sample 
shares the same model parameters Θ and the result is fused into Z(L) to 
obtain the final output. 

2.4. Context information aware (CIA) module 

Node information is an important part of graph data. 3D coordinates 
are usually selected as the node signal (Qi et al., 2017; Wang et al., 
2019). However, 3D point clouds are not isolated. Instead, its geometric 
structure and spatial information are determined by the local neigh-
borhood point-distribution pattern. Therefore, only considering the co-
ordinate will reduce the representation ability. Built on this 
consideration, we design a context information aware (CIA) module to 
generate the node representation. As shown in Fig. 1, it consists of two 
kinds of features, the distribution characteristics of neighborhood points 
and local dimension features. 

2.4.1. Distribution characteristics 
Distribution characteristics are described with three important sta-

tistical characteristics of local neighborhood points. Firstly, as shown in 
Fig. 1,∀pi ∈ P, the distance metric set is formed by the distance between 
pi and each k-nearest neighbor point: 

Sd
pi
= {di|di =

⃒
⃒pj − pi

⃒
⃒, pj ∈ Spi} (14)  

where k-nearest neighbor set, Spi , is obtained by (9). Then, several 
special statistical measures are selected to form the distribution char-
acteristics. The simplest way is to take the above all distances as the 
distribution characteristics directly. However, in real environments, the 
robustness will be greatly affected due to the unavoidable presence of 
outliers and uneven density. To balance the descriptiveness and 
robustness, three statistical measures are utilized: the maximum, mean 
and variance of the distance set. Therefore, the distribution character-
istics, is defined as follows: 

f pat
pi

= {max
(

Sd
pi

)
,mean

(
Sd

pi

)
, var(Sd

pi
)} (15) 

Note that, f pat
pi 

can not only maintain robustness, but also describe the 
distribution information. The maximum value describes the radius of the 
neighborhood. More specifically, when the number of neighborhood 
points is fixed, the larger the maximum value, the larger the neighbor-
hood radius, which means the point may be in a position with lower 
density. Besides, average value shows the average distance between 

point pi and its local neighbors. It reflects the contribution of each 
neighborhood point to pi, as well as the point density in the local space. 
In addition, the variance describes the degree of uniformity of among 
the neighboring points. When the maximum and average values are 
fixed, a greater variance means that the distribution of neighborhood 
points relative to pi is more discrete. Therefore, the point may be in the 
position where the shape changes greatly, such as the edge and the 
corner of space. 

2.4.2. Local dimension feature 
To further enhance the points information, we introduce dimen-

sional features (Gressin et al., 2013; Lin et al., 2014) to describe the local 
geometric shape. For an arbitrary point pi, we first obtain the set of 
adjacent points, Spi , from (8). Then, using the principal component 
analysis (PCA), we can calculate three eigenvalues, λ1, λ2, and λ3 
(λ1 ≥ λ2 ≥ λ3). Finally, the local dimension feature can be calculated as 
follows: 

f loc− dim
pi

= {a1D, a2D, a3D} (16)  

where, a1D = λ1 − λ2
λ1

, a2D = λ2 − λ3
λ1

, a3D = λ3
λ1

. Note that, f loc− dim
pi 

describes the 
basic local geometric structure. As shown in Fig. 2(a), when λ1 is far 
greater than λ2 and λ3, a1D is far greater than both a2D and a3D, and the 
local point clouds present an approximate linear structure. In Fig. 2(b), 
when λ1 and λ2 are close, and far greater than λ3, a2D is much larger than 
a1D and a3D, and the local point cloud enjoys an approximate planar 
structure. When three eigenvalues are approximately equal, a3D is 
greater than a1D and a2D, the local point cloud tends to be discrete, as 
shown in Fig. 2(c). 

Therefore, fpat
pi and f loc− dim

pi 
provide additional and useful information 

to describe the structure of point clouds. Combined with coordinates, 
they constitute more richer node information. That is, for each point pi 
on graph G , the node information is given as follows: 

f G
pi

= {xpi , ypi , zpi , f pat
pi

, f loc− dim
pi

} (17) 

We now analyze the effect of CIA module. Obviously, the adjacency 
matrix A and diagonal matrix D remain unchanged, while X′ has new 
representation, i.e., 

X′

= X • [I3,O3×6] + [On×6,Δpat
X ,Δloc− dim

X ] (18)  

where I3 is an identity matrix, O3×6 and On×6 are zero matrices. Δpat
X and 

Δloc− dim
X are 3 × 3 matrices, determined by fpat

pi and f loc− dim
pi

, respectively, 

i.e., Δpat
X (i, : ) = fpat

pi and Δloc− dim
X = f loc− dim

pi
, ∀i = 1,⋯,n. Hence, according 

to (5), the new result is. 

Z(L)
new =

Ã
L

(Nknn + 1)LX′Θ = Ã
LX • [I3,O3×6]

(Nknn + 1)L Θ+ Ã
L[On×6,Δpat

X ,Δloc− dim
X ]

(Nknn + 1)L Θ

(19) 

Since the result of Ã
LX•[I3 ,O3×6 ]

(Nknn+1)L
Θ is equivalent to that of Z(L) in (5), we 

just need to analyze the second item, which is denoted as V , i.e., 

V =
Ã

L

(Nknn + 1)L [On×6,Δpat
X ,Δloc− dim

X ]Θ (20) 

Similarly, V can be considered as an extra new input, and its ad-
jacency matrix is Ã, which means it has the same graph structure as the 
raw input. Besides, from (20) we can observe that the new input has new 
representation. Its matrix form is [On×6, Δpat

X , Δloc− dim
X ], which is deter-

mined by fpat
pi 

and f loc− dim
pi

. Therefore, the function of CIA module can be 
viewed as adding an extra sample as input, which considers rich local 
context information. This extra sample shares the same graph structure 
and model parameters, and the result is fused into Z(L) to obtain the final 
output. 
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2.5. Wider GCNs with skip-connection 

As shown in Fig. 3, WGNet takes ChebyNet (Defferrard et al., 2016) 
as the basic network. After operating LDC and CIA modules, we can 
obtain a wider graph data, G

′

= (V
′

,E
′

), where the adjacency matrix 

Ã
dila 

and node initial feature matrix X′ are given by (11) and (19) 
respectively. Therefore, the input signal is a tensor with shape of N× 9. 

The framework consists of two branches. The upper branch takes the 
initial graph data as input, and utilizes a multi-layer perceptron (MLP). 
The parameter, {a1,a2,..., an}, is the number of neurons in MLP and ai is 
the number of neurons in ith layer. The output of MLP,fup, is then sent to 
each ChebyNet layer to concatenate the output of convolution. Note 
that, the output of MLP tends to contain richer shallow features, which is 
of great benefit to make up for the features produced by networks with 
the lack of depth. 

The lower branch consists of several basic ChebyNet modules, 
following by batch normalization (BN) and ReLU activation function. A 
global max pooling layer and fully connected layer are attached with the 
graph convolution layer. The output of full connection layer is a Ccat × 1 
tensor, denoted as Z′ , which is taken as the final probability score vector. 
Then, the loss function for WGNet is: 

L = −
∑Ccat

k=1
Ykln(softmax(Z′

)k) (21) 

Note that, since LDC and CIA are pluggable modules, it can be 
applied in another basic network. In experiments, we apply other 
backbones to validate the generalization and effectiveness of them. 

3. Experiments 

This section evaluates the performance of WGNet. Section 3.1 in-
troduces the dataset and experimental platform. Section 3.2 obtains the 
optimal combination of parameters. Section 3.3 evaluates the perfor-
mance of WGNet on the classification task. Section 3.4 and 3.5 analyze 
the efficiency and robustness, respectively. In Section 3.6, ablation ex-
periments are conducted to verify the effectiveness of LDC and CIA. 

3.1. Dataset description and implementation 

Two datasets, Sub-RObject10 and ModelNet40, are used to evaluate 
WGNet. Sub-RObject10 were collected by a mobile laser scanning sys-
tem in real road environments. It consists of 1676/401 3D common road 
objects from 10 categories in train/test samples. ModelNet40 (Wu et al., 
2014) is a well-known public dataset with 40 kinds of 3D shapes. Note 
that, since in training stage, the Laplacian matrices of the graphs of 
training samples would be read into memory, there is strict restriction 
on the number of graphs and nodes, and large-scale datasets are difficult 
to be used in this work. Therefore, we randomly divided ModleNet40 
into four sub-sets, named Subset1, 2, 3 and 4, respectively. Table 2 and 3 
list the details. 

WGNet was implemented on a desktop computer with Ubuntu 16.04 
system, Inter (R) Xeon(R) E5-2678 v3 2.50 GHz, GeForce RTX 3090. We 
trained our method with Pytorch 1.4.0. The initial learning rate is 0.001, 
and was reduced by half every 20 epochs. The number of epochs is 120, 
and the batch size is 8. The maximum number of graph nodes of each 
sample is 256. 

Approximate linear structure

(c)(b)(a)

2

3

3

2

1
1

2

3

1>> 2, 3 1 ~ 2 >> 3

Approximate planar structure

1 ~ 2 ~ 3

Discrete structure

1

Fig. 2. The diagram of local dimension features. The relationship between three eigenvalues reflects the spatial distribution of local point clouds: (a) when λ1 is far 
greater than λ2 and λ3, it presents an approximate linear structure; (b) when λ1 and λ2 are closer and far greater than λ3, it presents an approximate planar structure; 
and (c) when the three eigenvalues are almost similar, it presents a discrete/volumetric structure. 

Fig. 3. The networks of WGNet. It consists of three main parts: edge structure building module, node feature generation module, and GCNs with skip-connection. 
ChebyNet is used as the basic framework. 
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3.2. WGNet generation parameter setting 

WGNet has three important parameters: the number of convolutional 
layers L, the number of neighborhood points Nknn, and the parameter 
Kcheby in Chebyshev polynomials. These three parameters have different 
effects on the model. Specifically, L affects the ability to capture the 
information distribution on graph, while Nknn and Kcheby affect the 
receptive field of the convolution. Generally, a larger Nknn will bring a 
larger receptive field of convolution, and the larger the Kcheby is, the 
higher the order of the adjacency relationship considered in feature 
extraction, which enhances the receptive field of the model. To obtain 
the best combination, we tested the influence of different parameters on 
Sub-RObject10. PR (precision-recall) curve is used as the metric. The 
ranges of L, Nknn, and Kcheby are set to {2, 3, 4, 5}, {10, 15, 20} and {1, 2, 
3} respectively. Grid search is used to obtain optimal combination. 
Additionally, the network structures and models’ names corresponding 
to different convolutional layers are shown in Table 4. 

3.2.1. The number of convolution layers lG 
Fig. 4 shows the PR (precision-recall) curves of WGNet with different 

parameter settings. Each row in the figure shows the PR curves of 
WGNet with different Kcheby and same Nknn. With the same Kcheby and 
Nknn, the PR curves of different network structures are different, which 
shows the network structure affects the performance of WGNet. From 
the first row of Fig. 4, it can be observed that the curves of WGNet(2) 
(read curves) and WGNet(3) (green curves) are located in the upper 
position, which shows these two networks achieve good results. In 
addition, it can be observed from the second row that WGNet(2) and 
WGNet(3) obtain better performance than other network structures 

under the same parameters. Moreover, the third row shows a similar 
performance. In summary, WGNet(2) and WGNet(3) perform well in 
most cases. Although WGNet(5_2) also achieves excellent results in some 
cases, it obtains relatively poor performance with other parameter set-
tings. The main reason for the above results is that in graph convolution 
network, as the number of model layers’ increases, the problem of 
gradient disappearance will get worse, resulting in over-smooth in the 
back propagation, which limits the model’s ability to describe features. 
Therefore, the structures of WGNet(2) and WGNet(3) are taken as the 
frameworks in the proposed method. 

3.2.2. The number of neighborhood points Nknn 
By comparing different columns, it can be observed that as the 

number of neighborhood points increases, the performance improves. 
For example, for the first column, as the number of neighborhood points 
increases, the overall recall significantly improves. Specially, the lowest 
recall in Fig. 4(g) is less than 97%, while the lowest recall in Fig. 4(d) is 
97% and that in Fig. 4(a) is 97.5%. The second and third columns of 
Fig. 4 show similar situations. To analyze the impact of the number of 
neighborhood points in detail, we fixed the network structure and set 
Kcheby = 2, and evaluated the performance of WGNet with different Nknn. 
Fig. 5 shows the PR curves. As shown in Fig. 5, as the number of 
neighborhood points increases from 10 to 20, the position of PR curve of 
each network structure model becomes higher. This result indicates that 
the performance of WGNet has improved. Specially, as shown in Fig. 5 
(a), as the number of neighborhood points increases, the PR curve of 
WGNet(2) rises significantly, which proves that the number of neigh-
borhood points has great impact on WGNet. The reason for these results 
is that a large Nknn can expand the receptive field of the model, so that 
the convolution kernel can obtain more neighborhood information, 
thereby effectively improving performance. However, the increase in 
the number of neighborhood points will rapidly increase the computa-
tional complexity, then affect the efficiency of the model. Therefore, to 
balance classification performance and calculation efficiency, we set 
NknnNknn = 20. 

3.2.3. Convolution kernel parameters Kcheby 
Each column in Fig. 4 shows the PR curves of the models corre-

sponding to different neighborhood points and network structures with 
the same Kcheby. By comparing with the different columns, it can be 
observed that most of the PR curves in the second column have a higher 
position, while that in the first and third columns are relatively low. This 
indicates that WGNet can obtain the best performance with Kcheby = 2. 
To analyze the effect of parameter Kcheby Kcheby on WGNet in detail, we 
fixed the network structure and the number of neighborhood points, and 
evaluated the performance of WGNet with different Kcheby. Fig. 6 shows 
the results. As shown in Fig. 6(a) and (b), it can be observed that WGNet 
(2) and WGNet(3) have the highest curve position with Kcheby = 2. These 
results show that these two network structures achieve the best perfor-
mance with Kcheby = 2. As shown in Fig. 6(c), WGNet(5_2) performs best 
with Kcheby = 3. In summary, the parameter Kcheby determines order of 
the node adjacency used in the graph convolution. The higher the value, 
the larger the adjacency order considered during convolution and the 
larger receptive field. However, a large receptive field may cause the 
model to be affected by noise greatly, and the accuracy of the local in-
formation depicted will also be reduced. Therefore, Kcheby is set to 2, 
which means the second- order neighborhood information of the node is 
considered during convolution. 

3.3. Descriptiveness analysis 

3.3.1. Experiments on sub-RObject10 
To evaluate the descriptiveness of WGNet under real environments, 

we conducted experiments on Sub-RObject10 and compared WGNet 
with two existing methods, JointNet (Luo, et. al., 2019) and RSSNet 

Table 2 
Details of Sub-RObject10.   

Bus 
station 

car Light- 
pole 

pedestrian Road 
sign 

Number of 
training 
samples 

112 184 232 126 128 

Number of testing 
samples 

28 42 56 24 34 

Category ID 1 2 3 4 5  
Station 
sign 

Traffic 
light 

Traffic 
sign 

Trashcan Tree 

Number of 
training 
samples 

105 120 234 144 291 

Number of testing 
samples 

24 24 59 38 72 

Category ID 6 7 8 9 10  

Table 3 
Details of four Sub-dataset of ModelNet40.  

Dataset The category ID in ModelNet40 

Subset1 1, 2, 3, 13, 14, 15, 25, 26, 27, 37 
Subset2 4, 5, 6, 16, 17, 18, 28, 29, 30, 38 
Subset3 7, 8, 9, 19, 20, 21, 31, 32, 33, 39 
Subset4 10, 11, 12, 22, 23, 24, 34, 35, 36, 40  

Table 4 
Configurations of different network structures.  

Number of convolution layer Kernels in each convolution Name 

2 (64)- (1024) WGNet(2) 
3 (64)- (64)- (1024) WGNet(3) 
4 (64)- (64)- (128)- (1024) WGNet(4) 
5 (64)- (64)- (64)- (128)- (1024) WGNet(5_1) 
5 (64)- (128)- (256)- (512)- (1024) WGNet(5_2)  
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Fig. 4. PR curves of WGNet with different parameter settings.  

Fig. 5. PR curves of WGNet with different values of Nknn (fixed the network structure and set Kcheby = 2).  
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(Luo, et. al., 2020). The metrics are mean accuracy (MA) and overall 
accuracy (OA). 

Table 5 shows the comparison results. It can be observed that WGNet 
(3) obtains the best results on both MA and OA. More specifically, 
WGNet(3) outperforms JointNet and RSSNet with improvements of 
7.39% and 0.9% in terms of MA, and about 8% and 1% in terms of OA, 
respectively. WGNet(2) also yields competitive results. However, 
compared to the WGNet with two graph convolutional layers, i.e., 
WGNet(2), the advantage of WGNet(3) is not obvious. In addition, Fig. 7 
presents the visualization results learned by different models using t- 
SNE. 

3.3.2. Experiments on ModelNet40 
We tested the performance of WGNet on the four subsets of Mod-

elNet40. Two representative models, PointNet (Qi et. al., 2017) and 
DGCNN (Wang et. al., 2019), were selected as comparison methods. 
Table 6 gives the results. Observely, WGNet achieves the best results on 
four subsets. WGNet(3) outperforms other methods in both of MA and 
OA on subset 1, 2 and 4, while WGNet(2) achieves the best performance 
in both two metrics on subset 3. Specially, on subset 4, the MA of WGNet 
(3) is 6.9% and 8.2% higher than that of PointNet and DGCNN, 
respectively. Fig. 8 presents the visualization results on subset1. 

In summary, WGNet has stronger descriptiveness than other 
methods. More specifically, compared with DGCNN, the advantage of 
our method mainly comes from the larger receptive fields and the richer 
information of nodes. Firstly, for DGCNN, the receptive field of each 
node is determined by the standard kNN method, while WGNet adopts 
the designed LDC strategy, which would expand the size of receptive 
fields. Secondly, in DGCNN, 3D coordinates are directly regarded as the 
information of nodes. Different from DGCNN, the node information of 
WGNet contains not only the coordinate values, but also the context 
information, including the distribution characteristics of neighborhood 
points and the local shape dimension features. Therefore, although 
WGNet does not update the graph in feature space, the two proposed 
modules can compensate the information loss caused by without 
updating the graph, and enhance the descriptiveness. Figuratively, 
WGNet uses the widen input information to compensate the deficiency 
of “shallow” model. 

3.4. Efficiency analysis 

3.4.1. Space and time complexity of the model 
Space complexity is usually evaluated by model size and GPU- 

memory consumption, and the time of forward-backward is used to 
evaluate the time complexity. The comparison methods include two 
graph-based methods: PointNet (Qi et. al., 2017) and DGCNN (Wang et. 
al., 2019). Table 7 reports the results. 

For space complexity, the model size of WGNet is smaller than that of 
DGCNN. The reason is that WGNet has a small number of convolution 
layers and so the number of model parameters is less than DGCNN. In 
addition, comparing with PointNet, WGNet(2) has obvious advantage 
over model size. Besides, we can observe that the size of WGNet in-
creases approximately linearly with the increase of parameter Kcheby. 
This is because the increase of Kcheby will enlarge the receptive field of 
graph convolution, thus increasing the number of training parameters. 
As to PointNet, because it uses point-based representation and the sizes 
of most of convolution kernels are 1 × 1, the memory consumption is the 
smallest. Compared with point-based representation, in a graph struc-
ture input, the neighborhood points need to consume additional mem-
ory. Therefore, the memory consumption for WGNet is slightly larger 
than PointNet. 

For time complexity, WGNet has efficient training and testing per-
formance. Especially, the backpropagation time of WGNet(2) with 
Kcheby = 2 is about 4 times quicker than that of DGCNN. This high time 
efficiency of the proposed method is mainly due to the shallow network 
structure and smaller convolution kernel size. These two properties 
reduce the computational burden of gradient and the number of pa-
rameters to be updated. In addition, since PointNet uses point-based 
representation and the small sizes of convolution kernels, it shows sig-
nificant advantage over other methods. 

3.4.2. Efficiency of LDC module 
As discussed in Section 2, the random selection is adopted to choose 

the neighbor points in LDC module, which may bring additional time 
consumption when comparing with the standard kNN strategy. To 
evaluate the effect of random selection on the efficiency of the LDC 
module, we conduct experiments for different neighbor point selection 
strategies. Fig. 9 shows the compared results. Obviously, the time con-
sumption of the LDC strategy is very close to that of the standard kNN 
strategy. More specifically, the maximum differences of time con-
sumption between these two strategies are 0.0047 s, 0.0524 s, and 
0.0826 s when the numbers of points are 1,000, 5,000 and 10,000, 
respectively. These results demonstrate that in LDC module, searching 
more neighbor points has very little effect on the efficiency of the LDC 
module. 

Fig. 6. PR curves of WGNet with different values of..Kcheby  

Table 5 
The recognition performance comparison on Sub-RObject10 (in %).  

Metric JointNet RSSNet WGNet(2) WGNet(3) 

MA  90.71  97.20  97.92  98.10 
OA  91.25  97.26  98.25  98.25  
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3.4.3. Efficiency of CIA module 
In CIA module, as one of the data preprocessing stages, the PCA 

related operations, including the eigen-decomposition, will affect the 
model’s computational complexity. We conduct experiments to evaluate 
the influence. Specifically, since the number of points (i.e., n) in a point 
cloud and the number of neighbor points (i.e., Nknn) for each point are 
two main factors in PCA operation, we report the time consumption with 
different values of these two factors. The value ranges of n and Nknn are 
set to {1000, 3000, 5000, 7000, 9000, 10000} and {10, 20, 30, 40, 50}, 
respectively. Fig. 10 shows the results. Obviously, the results of PCA 
operation with different values of Nknn are similar, which means that the 

number of neighbor points has little effect on the efficiency of PCA 
operation. In addition, when the number of neighbors is fixed, the time 
consumption of PCA operation increases linearly with the increase of the 
number of points. This result show that the time complexity of PCA 
operation in CIA module can be considered as O(n), where n is the 
number of points, which is acceptable in practice. 

3.5. Robustness analysis 

We conducted experiments to evaluate the robustness of WGNet to 
common disturbances under road environments, including the Gaussian 
noise, down-sampling, and outliers. δ, η, and λ are denoted the standard 
deviation of Gaussian noise, down-sampling ratio, and outliers’ rate, 
respectively. The ranges are {0.01, 0.02, 0.03, 0.04, 0.05}, {0.5, 0.25}, 
and {0.05, 0.10, 0.15, 0.20, 0.25}, respectively. PR curve is used to 
evaluate the performance. We investigate the robustness of WGNet(2). 

1) Robustness to Gaussian noise. 
As shown in Fig. 11(a), WGNet(2) can achieve excellent performance 

as δ ≤ 0.02. However, as δ continues to increase, the performance of 
WGNet(2) decrease sharply. The main reason is that with the increase of 
δ, the damage of Gaussian noise on the shape of objects increases, which 
leads to the change of point distribution pattern, so reduces the accuracy 
of recognition. In addition, for the influence of parameter Kcheby, it can be 
found that WGNet with Kcheby = 3 has better robustness. This is mainly 

(a) JointNet                                          (b) RSSNet 

(c) WGNet(2)                                        (d) WGNet(3) 

Fig. 7. Visualization of representation learned by different methods on subset 1, where Ci is class i in the dataset.  

Table 6 
The recognition performance comparison results of different methods on four 
subsets of ModelNet40.  

Dataset Metric PointNet DGCNN WGNet(2) WGNet(3) 

Subset1 MA  88.91  92.24  91.24  92.73 
OA  89.62  92.42  92.17  93.29 

Subset2 MA  80.37  81.69  83.89  84.42 
OA  85.55  87.48  87.67  88.82 

Subset3 MA  88.46  88.13  92.32  91.28 
OA  91.92  91.11  92.61  92.20 

Subset4 MA  84.60  83.30  90.90  91.50 
OA  91.14  90.94  95.57  95.95  
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because when Kcheby increases, the local receptive field of the model will 
become large, which improves the robustness. 

2) Robustness to down sampling. 
As shown in Fig. 11(b), WGNet can have a good performance with 

down sampling. When the density is down sampled to 64 points, the 
recall is still above 96% with the maximum accuracy. These results 
demonstrate the strong robustness of WGNet to down sampling. It can 
also be found that WGNet with Kcheby = 3 is weaker than that with 
Kcheby = 2. This is because point clouds become sparse with the increase 

of sampling rate, and expanding the receptive field cannot bring more 
useful information. 

3) Robustness to outliers. 
As shown in Fig. 11(c) and (d), the position of each PR curve de-

creases with the increase of outlier rate. This evidences that the increase 
of outlier rate impairs the performance of WGNet. In addition, it can be 
found that WGNet(2) obtains better results with Kcheby = 3 than that 
with Kcheby = 2. These results show that enlarging the receptive field is 
helpful to improve the robustness to outliers of the proposed model. 

4) Improving robustness to outliers. 
As discussed in Section 2.4.1, the maximum value is proposed as one 

of the local distribution characteristics. Considering that if the 
maximum value is an outlier, the result may be affected. Therefore, we 
conduct experiments to evaluate the effect of maximum value on the 
robustness of model with respect to outliers. Fig. 12 shows the compared 
results. Obviously, for WGNet(2), the model without maximum value 
has better robustness than the one with maximum value. Especially, 
with the increase of outliers disturbance, WGNet(2) without maximum 
value shows more significant superior performance. This result means 
that if the maximum value is an outlier, the robustness of WGNet(2) will 
be significantly affected. For WGNet(3), when the outliers rate is less 
than 0.2, the model with the maximum value achieves better results. 
However, when the outliers rate reaches 0.25, the accuracy of WGNet(3) 

(a) PointNet                         (b) DGCNN 

(c) WGNet(2)                            (d) WGNet(3) 
Fig. 8. Visualization of representation learned by different methods on subset 1, where Ci is class i in the dataset.  

Table 7 
Efficiency comparison of different methods on Sub-RObject10. G-M denotes the 
GPU-memory consumption. BW and FW stand for the backward, forward, 
respectively. k is Kcheby.  

methods Model size (MB) G-M (MB) BW (ms) FW (ms) 

PointNet  2.68 919 7.2 2.02 
DGCNN  6.93 1513 45 20 
WGNet(2), k = 1  0.59 1377 10.5 3.3 
WGNet(2), k = 2  1.09 1395 11.7 3.4 
WGNet(2), k = 3  1.60 1413 12.2 3.9 
WGNet(3), k = 1  1.16 1415 11.7 4.7 
WGNet(3), k = 2  2.22 1431 12.8 4.9 
WGNet(3), k = 3  3.29 1449 13.2 5.4  
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without the maximum is higher than that with the maximum. This 
shows that when the outliers disturbance is serious, the maximum value 
will affect the robustness of WGNet(3). These results demonstrate that if 
the data is disturbed by outliers, the maximum value can be removed in 
the local distribution characteristics. 

3.6. Ablation study 

3.6.1. Effects of LDC 
In WGNet, the edge of graph is constructed using local dilated con-

necting, which is different from the common method, standard kNN 
search algorithm. We conducted comparison experiments for these two 
methods. The results are shown in Table 8. Obviously, LDC has signifi-
cant advantage over the standard kNN. Especially, WGNet(2) has the 
most obvious improvement in terms of MA. Compared with standard 
kNN, WGNet(2) with LDC improves by 3.67%. To better analyze the 
results, PR curve is used for comparison. As shown in Fig. 13, PR curves 
of WGNet with LDC are of higher accuracy, while that of using standard 
KNN are lower. This means LDC has better performance. All these results 
show the feasibility and necessity of LDC. 

3.6.2. Effects of CIA 
In WGNet, the node signals include 3D coordinates and the neigh-

borhood distribution features and local dimension features obtained by 
CIA module. To evaluate the effect of these additional node information, 
we conducted comparison experiments. As can be seen from Table 9, 
WGNet with CIA has significant advantage over that with only coordi-
nate values. Especially, the improvement of WGNet(2) is about 10% and 

9.57% in terms of MA and OA. PR curve is used to better compare the 
experimental results. As shown in Fig. 14, PR curves of WGNet with the 
node type of “coordinate value + context information” are higher than 
that of the coordinate values. These results demonstrate the effective-
ness and necessity of CIA module. 

It is also interesting to observe that WGNet with CIA has better 
performance than that with LDC. For example, as shown in Tables 8 and 
9, WGNet(2) with CIA can obtain a gain of 9.89%, while WGNet(2) with 
LDC achieves improvement of 3.67% in terms of MA. The main reason is 
that, the information gain from expanding the receptive field through 
LDC is less than the gain from capturing more node information through 
CIA. 

3.6.3. Effects of different edge connections and node representations 
For comprehensive comparison of the influence of two designed 

modules, we conducted a comparative experiment without using two 
modules at the same time. Specifically, we tested the basic model that 
only uses kNN to construct edge connection and coordinate values as 
node features, then compared it with WGNet. Table 10 presents the 
results. Obviously, the proposed WGNet has better performance than the 
basic model. Especially, the OA and MA of WGNet(2) have been 
significantly improved with the gain of more than 10%. In addition, 
Fig. 15 shows the PR curves of the comparison results. It can be observed 
that the PR curves of WGNet has the higher position. These results 
further demonstrate the effectiveness of the designed two modules. 

3.6.4. Applications with different backbones 
1) As analyzed in the above section, in this work, the backbone can 

be replaced by other frameworks. To evaluate the possibility of 
extending our method, especially the CIA and LDC modules, for seg-
mentation task, we take PointNet as backbone, and apply it on two 
public datasets, the ShapeNet (Wu et al., 2014) and S3DIS (Armeni et al., 
2016), for shape part segmentation and scene semantic segmentation, 
respectively. IoU and OA are used to measure the performance. The 
compared results are shown in Table 11. We can observe that the two 
proposed modules can be applied for segmentation. Moreover, 
compared with the baseline (i.e., PointNet), our method achieves better 
performance on both two metrics. This is because the two proposed 
modules can expand the size of receptive fields and providing more 
information to describe samples accurately. 

2) It is necessary and important to apply the proposed LDC and CIA 
modules to other backbones to validate the generalization. We replace 
the ChebyNet by DGCNN. Table 12 shows the compared results. Obvi-
ously, from Table 12 we can find that our method has significant ad-
vantages in terms of OA and MA. This is mainly because comparing with 
DGCNN, our method can not only enlarge the receptive field size via LDC 
module, but also provide more rich shape context information by CIA 
module. These results demonstrate the necessity and effectiveness of the 
LDC and CIA modules. 

(a) # of points = 1000            (b) # of points = 5000               (c) # of points = 10000  

Fig. 9. The compared results of different neighbor selection strategies with number of points = (a) 1,000, (b) 5,000 and (c) 10,000, respectively.  

Fig. 10. Time consumption of PCA operation with different settings.  
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Fig. 11. PR curves with different disturbances: (a) Gaussian noise, (b) down sampling, (c) and (d) outliers, respectively.  

(a) WGNet(2)                                   (b) WGNet(3)
Fig. 12. Compared results of with/without maximum values in (a) WGNet(2), (b) WGNet(3), respectively.  
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4. Discussion 

Comparison results demonstrate the superior performance of the 
proposed method in terms of descriptiveness, efficiency and robustness. 
This can be summarized as for the following reasons: (1) The designed 

LDC module constructs the adjacency matrix for the graph data. 
Compared with standard KNN search algorithm, LDC module can 
expand the receptive field of graph convolution to encode more infor-
mation. (2) CIA module used in our method generates the node features 
as the initial input of GCNs. Different from normal initial input with just 
only three coordinate values, for each point, CIA module embeds the 
distribution patterns of its neighborhood points and local dimension 
features, resulting in stronger descriptiveness. (3) Build on ChebyNet, 
the proposed method has lightweight networks and few parameters. In 
addition, skip-connection is used to maximize the reuse of features 
learned by each level. Combined with LDC and CIA modules, an effi-
cient, robust, and wider GCN, WGNet, is proposed to mine richer fea-
tures to compensate the insufficiency on the depth of GCN. 

Limitations. As discussed in section 3, in the training of WGNet, the 
Laplacian matrices of the graphs of training samples would be read into 
memory. Therefore, there are strict restrictions on the number of graphs 

Table 8 
Comparison of different edge connections on Sub-RObject10.  

Edge connection 
method 

WGNet(2) WGNet(3) 
MA (%) OA (%) MA (%) OA (%) 

Standard method 94.25 94.51 95.97 96.26 
Local dilated 

connecting 
97.92 
(↑3.67*) 

98.00 
(↑3.49) 

98.10 
(↑2.13) 

98.25 
(↑1.99) 

*:The number in bracket is the margin of accuracy between two kinds of edge 
connection, where “↑” indicates increase. 

Fig. 13. PR curves with different edge connections.  

Table 9 
Comparison of different node representations on Sub-RObject10.  

Node representation WGNet(2) WGNet(3) 

MA (%) OA (%) MA (%) OA (%) 

Coordinate value 88.03 88.43 95.05 95.26 
Coordinate value + context 

information 
97.92 
(↑9.89) 

98.00 
(↑9.57) 

98.10 
(↑3.05) 

98.25 
(↑2.99)  

Fig. 14. PR curves with different node representations.  

Table 10 
Comparison of different node representations on Sub-RObject10.   

WGNet(2) WGNet(3) 

MA (%) OA (%) MA (%) OA (%) 

Basic model 85.79 87.93 92.75 93.02 
Our 

methods 
97.92 
(↑12.13) 

98.00 
(↑10.07) 

98.10 
(↑5.35) 

98.25 
(↑5.23)  

Fig. 15. PR curves with different edge connections and node representations.  

Table 11 
Results of part/scene segmentation generated by PointNet and the proposed 
method.  

Method Backbone Part Segmentation Scene Segmentation 

IOU OA IOU OA 

PointNet –  83.72  93.60  47.60  78.50 
Our PointNet  84.56  94.09  54.90  83.16  

Table 12 
Results of part/scene segmentation generated by PointNet and the proposed 
method.  

Method Backbone # of points MA OA 

DGCNN – 1024  90.2  92.9 
2048  90.7  93.5 

Ours DGCNN 1024  91.54  93.53 
2048  92.31  93.79  
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and nodes, which would make it difficult to apply WGNet in large-scale 
datasets. This will weaken its generalization. Additionally, as presented 
in section 3.5, although WGNet is robust to several kinds of disturbance, 
such as down sampling and outliers, it is still somewhat sensitive to 
Gaussian noise. In addition, if the point density is inhomogeneous, the 
results of KNN operation will be affected. More specifically, when the 
point density is homogeneous, with fixed k, the local points generated by 
KNN operation will describe the local shape exactly. However, if the 
point density is low/high, the region with fixed k points would be a 
large/small one, and the corresponding local point clouds may not mine 
the local point distribution pattern accurately. Consequently, the LDC 
and CIA modules may not capture helpful context information, so the 
performance of model would be affected. In practice, inhomogeneous 
point density remains in some regions, such as the occlusion and self- 
occlusion. Several ways can be used to reduce the effect of this issue. 
For example, the uniform down-sampling, such as FPS (Farthest Point 
Sampling), can be applied to obtain a homogeneous point density. Our 
future work will focus on resolving these shortcomings. Besides, since 
these model and parameters combinations used in this paper might rely 
on the distribution of dataset, we suggest users should re-test the per-
formance of different parameter settings when applying the proposed 
method to other datasets, especially acquired by different scanners. 

5. Conclusions 

Aiming at the transformation from point clouds to graph structure, a 
graph building strategy based on local dilated connecting and context 
information awareness is proposed to construct the widen graph data. 
The feasibility and necessity of the proposed strategy are verified from 
the aspects of descriptiveness, efficiency, and robustness. In addition, 
the effects of LDC and CIA modules are analyzed by ablation experi-
ments, which further verifies the effectiveness of the proposed method. 
Comparison results indicate the superiority of our architecture. In 
conclusion, we believe that our method provides a perspective of using 
the wider networks to compensate for the shortcoming of depth in GCNs. 
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