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Preface 
This report reviews the research activities of the Amorphous Silicon Devices 

and Integrated Circuits (α-SiDIC) group in the period 2002-2005.  

The group continues to enjoy significant growth in terms of personnel, 
number of projects, and laboratory infrastructure. The diversity of research 
projects has expanded, along with offerings of several new advanced level 
courses in large area electronics, ranging from electronic materials and processing 
to devices and integration. Major project areas include thin film transistor 
integration on rigid and flexible substrates, including fabrication of novel device 
structures, active matrix backplanes for organic light emitting diode (OLED) 
displays, biomedical x-ray imaging and photon counting, and photovoltaics, 
including flexible solar cells. Construction of the new device fabrication 
laboratory is now complete and installation of new state-of-the-art tools and 
relocation of existing equipment is currently underway. 

The group has worked extremely hard over the last 2-3 year period coping 
with construction of the new lab, equipment installation, and new projects. We are 
very pleased with the outcome in terms of quality of results and intellectual 
property generation in a number of areas related to large area electronics. Over 
this period we received two best paper awards: 2002/2003 IEE Institution 
Premium Award for Best Paper in Devices, Circuits, and Systems (for TFT 
integration on glass and plastic) and the Michael B. Merickel Award in Medical 
Imaging 2001 (for active pixel sensors in digital fluoroscopy). A. Nathan was 
awarded the NSERC E.W.R. Steacie Fellowship and the Canada Research Chair 
in 2001 and 2004, respectively. PhD students Karim S. Karim and Peyman 
Servati received NSERC Doctoral Prizes in 2003 and 2004, respectively, and Anil 
Kumar, Flora Li, and Kapil Sakariya were awarded the 2004 CITO Research 
Excellence Scholarship. Anil and Kapil also received the 2004 Martin Walmsley 
Fellowship for Technological Entrepreneurship. 

We gratefully acknowledge the support of our research sponsors and the 
commitment of the University towards this initiative, and look forward to the 
exciting times ahead! Special thanks goes to Dr. Peyman Servati and Jeff Chang 
who edited this Research Review. 
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1 Thin Film Transistors 
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1.1 TFT Compact Modeling and Parameter Extraction 
The growing demand for TFT backplanes with complex analog 

functions on rigid and flexible substrates necessitates compact, yet accurate, 
models for TFT operation. Such models not only facilitate computer-aided 
design (CAD) of pixel circuits but can also be used to examine process 
conditions for improving device performance. Here, parameter extraction 
methods that can relate device characteristics to physical material properties 
are critical. We have developed compact models and associated extraction 
techniques that include impact of non-idealities such as contact resistance 
and interface properties. For instance as seen in the figure below, contact 
resistance directly impacts the linear transfer I-V characteristics that are 
commonly used for extraction of field effect mobility μFE. We have 
systematically examined the influence of contact resistance on device 
parameters such as μFE, since it can vary by orders of magnitude due to 
process variations. The models are implemented in VerilogA hardware 
description language, which comes as a standard feature in most circuit 
simulation environments, and can be used for CAD of pixel circuits. 
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1.2 Highly Doped Microcrystalline Silicon for TFT 
Contact Layers 
Compared to its amorphous counterpart, highly doped micro-

crystalline silicon (n+μc-Si:H) is attractive due to its much higher 
conductivity and doping efficiency. As a result, n+μc-Si:H films provide 
better quality contacts in a-Si:H TFTs. In our laboratory, we prepared n+μc-
Si:H films using conventional RF 13.56 MHz PECVD in a multi-chamber 
deposition system. High conductivity (25 Ω-1cm-1) and high crystallinity (66 
%) for 50 nm n+μc-Si:H films were achieved  with  99.6 %  H2 dilution of  
SiH4 and 10 W RF power.  

The figures depict transfer 
and output current-voltage 
character-istics of a TFT with the 
n+μc-Si:H ohmic contact layer. 
The TFT shows a device mobility 
of 0.9 cm2/Vs, a threshold voltage 
of ∼3V, an ON/OFF current ratio 
of above 107, a subthreshold slope 
of 0.5 V/dec, and a leakage current 
of the order of 10-13 A. In addition, 
no evidence of current crowding at 
low drain-source voltages is 
observed, which implies that the 
n+μc-Si:H ohmic contact seems to 
be very effective, not only in 
blocking the hole leakage current 
at negative gate voltages, but also 
in reducing the source and drain 
contact resistances. Note that the 
ON current of TFTs is improved 
by a factor of ∼5 compared to 
TFTs with n+a-Si:H contacts. In 
addition, we believe that atomic H 
radicals and/or ions in our high H2 
dilution process conditions for 
n+μc-Si:H films serve to remove 
contaminants, including the native 
oxide and any other process 
residues from the a-Si:H surface. 
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1.3 Bottom-Gate Microcrystalline Silicon TFTs 
Microcrystalline silicon (μc-Si:H) has gained significant importance 

in large area electronics as an alternative to a-Si:H due to its higher carrier 
mobility and higher stability. Indeed, the μc-Si:H TFT is expected to deliver 
far better performance than its amorphous counterpart. However, the small 
grain size (a few tens of nm), and poor quality at grain boundaries at low 
thicknesses, are obstacles in achieving device grade μc-Si:H films for high 
performance TFTs. In our laboratory, undoped μc-Si:H films were prepared 
using conventional RF 13.56 MHz PECVD in a commercial multi-chamber 
system. A 80 nm undoped μc-Si:H film for use as a channel layer in TFTs 
showed a dark conductivity of 107 S/cm and a crystalline volume fraction of 
80%.  Here, we have used bottom-gate inverted structure because it is widely 
used in pixelated arrays. 

Figures show the 
transfer and output current-
voltage (I-V) character-
istics, respectively, of a μc-
Si:H TFT. The μc-Si:H 
TFT shows a field effect 
mobility of 2.5 cm2/Vs and 
a threshold voltage of 1.6 
V. Interestingly, the field 
effect mobility is a factor of 
2-3 higher than that of a-
Si:H TFTs. However, the 
ON/OFF current ratio 
(~104) is low compared to a 
typical a-Si:H TFT. The 
reasons for the high OFF 
current are believed to be 
due to the defect states at 
the grain boundaries in the 
channel material. But, the 
μc-Si:H TFT has a high ON 
current of around 40 μA (at 
VDS = VGS = 20 V), comp-
ared to that of the a-Si:H 
TFT (~10 μA), with no 
visible signs of current 
crowding.  
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1.4 Top-Gate TFTs 
Top-gate μc-Si:H TFTs have been demonstrated to have high mobility 

and more importantly, CMOS capability. However, most research results 
published to date have been obtained using non-standard deposition 
techniques. Fabrication of top-gate μc-Si:H TFTs is still a challenging task 
using a standard PECVD technique. Here, we show preliminary results of 
top-gate μc-Si:H TFTs fabricated at 250ºC using standard 13.56 MHz 
PECVD system.  

The cross section of a 
fabricated top-gate TFT is shown on 
the right. Here, we used a 80 nm μc-
Si:H as a channel layer and a 300 
nm a-SiNx:H as a gate dielectric. 
The transfer I-V characteristics of a 
top-gate staggered μc-Si:H TFT is 
also illustrated. The field effect 
mobility is 0.6 cm2/Vs, which is 
similar to that of a-Si:H TFTs. The 
threshold voltage and subthreshold 
slope are around 4.4 V and 1.4 
V/decade, respectively. The ON-
current in the TFTs is generally 
determined by the channel layer (≤ 
20 nm) at the uppermost part of the 
μc-Si:H, near the a-SiNx:H interface. 
It is therefore assumed that this low 
mobility results from plasma 
damage to the interface between the 
μc-Si:H channel and a-SiNx:H gate 
dielectric during the initial a-SiNx:H 
deposition. On the other hand, the 
TFTs show a high ON/OFF current 
ratio of ∼106. In our TFTs, the OFF-
current is 1.3×10-13 A (3.25×1016 
A/μm) and 7.4×10-11 A (1.85×1013 
A/μm) at drain-source voltage of 0.1 
and 10 V, respectively. Such low 
OFF current values indicate low 
defect and impurity levels in the μc-
Si:H channel layer. 

Corning 1737 glass

a-SiNx:H

uc-Si:H

Al

n+ uc-Si:H

Cr

Schematic cross section of a 
fabricated top-gate staggered 

μc-Si:H  TFT. 
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1.5 Nanocrystalline Silicon TFTs 
The nanocrystalline silicon (nc-Si:H) TFT is a promising alternative 

to the amorphous silicon (a-Si:H) TFT as it offers increased mobility and 
improved stability. 

We fabricated bottom-gate TFTs using pulsed PECVD in 
collaboration with MVSystems Inc. Pulsed PECVD can produce material at a 
higher growth rate, and reduced powder particle formation. The bottom-gate 
process is a standard process and was used to provide a direct comparison 
with a-Si:H bottom-gate TFTs. 

The first trial of these TFTs shows performance on par with a-Si:H 
transistors as seen in the figure. Further optimization of this material and the 
fabrication process is necessary to improve the extracted parameters. 
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1.6 Vertical Thin Film Transistors 
The vertical thin film 

transistor (VTFT) is attractive 
for realization of short-channel 
TFTs since it is not constrained 
by lithography. Here, the 
channel length is defined by the 
drain-source insulator thickness. 
We have developed a 0.1-μm 
channel length a-Si:H VTFT 
process using standard 5- to 10-
μm lithography. This is the 
shortest channel TFT ever 
reported. The device has an ON/OFF current ratio of more than 108 which 
compares with lateral TFTs. However, its parasitic overlap capacitance is 
orders of magnitude smaller and is less than 50 fF. 
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1.7 Bias-Induced Long Term Transient in 
Amorphous Silicon TFTs 
In this work, we investigate and model the anomalous transient 

increase of the TFT drain current in a time scale (of the order of hundreds of 
seconds) where the threshold voltage shift is not prominent. Such a long term 
transient in the terminal characteristics can be critical for analog applications 
of the TFT. We believe the mechanism responsible for such behaviour is a 
configurational relaxation of Si dangling bond defects following change in 
their charge states. Based on the defect relaxation mechanism, we have 
proposed a time dependent drain current model to predict the transient 
response of the TFT in the forward above threshold regime of operation. The 
parameters associated with the model are physically based and have strong 
dependence on the TFT geometry. The measurement data are in good 
agreement (see Fig. below) with simulation results with a discrepancy of less 
than 5%.    

According to the model, the drain current increase can be written as, 
 

( ) ( )( )[ ] cmdeepTiGSiFEDS xtQVV
L

WCtI βαα τζμ /exp1)0()( 12
−−−=Δ −−  

 

where VTi is the initial threshold voltage, Qdeep(0) is the initial trapped charge 
per unit area, τ is the relaxation time, β is a constant such that β < 1, and 
other parameters bear their usual meaning. 
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1.8 Constant Current Stress Metastability of 
Amorphous Silicon TFTs 
Amorphous silicon (a-Si:H) active matrix organic light emitting diode 

(AMOLED) pixel circuits use the current mirror topology to compensate for 
threshold voltage shift (ΔVT). In these circuits, the driver TFTs are subjected 
to constant current stress. In order to predict the performance and lifetime of 
these pixel circuits, ΔVT of the driver TFT under constant current stress needs 
to be modeled. In this work, we have investigated the ΔVT of inverted 
staggered a-Si:H TFTs under various levels of current stress (2 μA to 20 μA) 
for 50 hours, at both room and elevated (75˚C) temperatures. We have 
proposed a model for the ΔVT under constant current stress where the shift in 
VT  follows a power law with time: 
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Here, IDS is the stress current, K a constant for a given TFT size and 
fabrication process, α the power parameter in the drain current equation of a-
Si:H TFT, to the characteristic trapping time of carriers and β the power 
parameter.  

The model shows good agreement with the measurement data. 
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1.9 TFT Dynamic Modeling 
The intrinsically low carrier mobility and the high overlap capacitance 

of TFTs lead to slow transients in these devices. We have developed accurate 
capacitive models for TFTs that include different charge components such as 
trapped carriers in tail and deep states, trapped carriers at interfacial states, 
and free carriers. The model is capable of predicting the switching behaviour 
of device capacitance (see figure below) when the gate voltage increases 
from negative to positive voltages. Due to the presence of deep and 
interfacial states, the increase in capacitance precedes the current rise. In 
addition, the change in channel charge with drain bias in linear and saturation 
regimes must be taken into account. Capacitance-voltage characteristics are 
measured at different frequencies to investigate the device frequency 
response and the role of different charge components on the transient 
behaviour. 
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2 Flexible Electronics 
 

 

 



2.1 Low Temperature Amorphous Silicon Nitride 
Fabrication of TFTs on flexible plastic substrates for large-area 

imagers and displays has been made possible by lowering the deposition 
temperature, which reduces the thermal deformation of plastic substrate; and 
greatly facilitates substrate preparation and device patterning. Furthermore, 
at extremely low deposition temperatures, a much wider variety of low-cost 
substrates, plastics or otherwise, are available for integration. 

Low-temperature amorphous silicon nitride (a-SiNx) films have been 
optimized for low current leakage, with the application of TFTs on plastics in 
mind. The optimal film had a resistivity of ~1016 cm, breakdown strength of 
~10 MV/cm, low hydrogen content (17 at.%), and was N-rich ([N]/[Si] ~ 
1.56).  

TFTs were fabricated, and the desired low leakage through the a-SiNx 
gate dielectric was observed. A W/L=100/25 TFT has an Ioff current below 
10-11 A for a source-drain voltage as high as 10 V. 
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2.2 Low Temperature Amorphous Silicon Oxide 
The aim of this research is to develop low temperature gate 

dielectric/passivation dielectric for μc-Si and poly-Si based devices and 
circuits compatible with plastic substrates. 

 PECVD amorphous silicon oxide (SiOx) films were fabricated by 
conventional 13.56 MHz glow discharge decomposition of silane and nitrous 
oxide mixture at 75ºC, 120ºC and 250ºC using an industrial parallel plate 
reactor (Plasma Therm 790 series). Helium, nitrogen and argon were used as 
diluent gases.  

Chemical composition and bonding in the films were studied by FTIR 
spectroscopy. The absorption peak at 1075-1080 cm-1 observed in the 
spectrum of each film corresponds to SiO2 stretching mode. No presence of 
SiH stretching or NH-stretching vibrations was found in the FTIR spectra of 
the samples. 

Film uniformity was varied from 2% to 6% for 6”x6” area. The 
deposited films have compressive stress that varied from 0.063 GPa to 0.117 
GPa. The respective film density is in the range 1.35 g/cm3 to 1.69 g/cm3. 

The electronic properties were studied using MOS capacitors with 200 
nm thick SiOx. The dielectric permittivity was in the range 2.03 and 3.57. A 
dielectric breakdown at 9 MV/cm was observed for the films deposited at 
120ºC. The films deposited at higher temperatures were characterized by a 
lower leakage current density; 3.7x10-10 A/cm2 for the sample deposited at 
250ºC, 9x10-9 A/cm2 for 120ºC, and 2.2x10-8 A/cm2 for 75ºC at 5 MV/cm.  

a-Si:H based TFTs were fabricated using the low temperature oxide as 
gate dielectric. The TFTs demonstrate threshold voltage (3.02-4.12 V) and 
mobility (0.12-0.59 cm2/Vs). 

 
 
 

Parameters of 75ºC TFTs 
 

L (μm) Ion (nA) VT  (V) S  (V/dec) μ  (cm2/Vs) Ion/Ioff

25 87.6 3.36 2.28 0.120 8.99x102

75 61.4 4.12 1.31 0.487 5.47x102

100 87.3 3.95 1.27 0.589 1.43x103

200 36.2 3.02 1.03 0.593 4.62 
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2.3 75°C Nanocrystalline Silicon TFT 
Nanocrystalline silicon (nc-Si:H) films can be deposited on flexible, 

lightweight, unbreakable, and inexpensive plastic substrates at low 
temperatures (∼150oC) without degrading its intrinsic material properties. 
This enables realization of high mobility TFTs and possibly peripheral driver 
circuitry for fully flexible active-matrix organic light emitting displays 
(AMOLEDs). In this work, intrinsic and n+ nc-Si:H films were deposited 
using conventional RF 13.56 MHz PECVD in a single chamber system at 
very low temperature (75°C). Optimized films were achieved at a moderate 
RF power density regime (~100 mW/cm2) with a growth rate of 3–4 nm/min. 
The 80-100 nm intrinsic and n+ nc-Si:H films show a dark conductivity of 
about 10-7 S/cm and 0.3 
S/cm, respectively, and a 
corres-ponding 
crystallinity of around 
80% and 72%. Top-gate 
staggered TFTs fabricated 
using the optimized 
intrinsic and n+ nc-Si:H 
films as channel layers 
and ohmic contacts, show 
a field effect mob-ility of 
0.026 cm2/Vs, a threshold 
voltage of 3 V, and an 
ON/OFF current ratio of ∼ 
104 (see Figs.). The high 
subthreshold slope 
observed can be attributed 
to poor inter-face integrity 
between the nc-Si:H 
channel and a-SiN:H gate 
dielectric. Nevertheless, 
the results demonstrate 
the feasibility of very low 
temperature TFTs and the 
need for further research 
to improve material and 
device performance.  
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2.4 High Performance Amorphous Silicon TFTs on 
Plastic Substrates 
High ON-current capability for a-Si TFTs is important for 

applications such as AMOLED displays. It’s required for both high light 
output from the display and long-term stability of operation. In flexible 
displays with a-Si active matrix, good performance of transistors has to be 
achieved with a very limited thermal budget of the fabrication process. 

Deposition regimes for TFT layers have been optimized for the 
process temperature of 150ºC, which is compatible to a broad range of plastic 
substrate materials including, polyimide, PES, PEN and others. The a-Si 
TFTs shown here were fabricated on polyimide foils. The process dependent 
TFT performance parameters are listed in the table. As seen, the 
characteristics of devices on plastic are as good as high quality TFTs on glass 
fabricated at 300ºC. 
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Performance parameters of a-Si TFTs on glass and plastic substrates. 
 

Parameters 300ºC process 
(glass) 

150ºC process 
(plastic) 

Threshold voltageVT  (V) 2.3-2.5 2.5-3.5 
Field-effect mobility μeff  (cm2/Vs) 1.1-1.2 1.0-1.2 
Contact resistance RSD.W  
(MΩ·mm) 2-5 3-10 

Subthreshold slope S  (V/dec) ~0.3 ~0.3 
OFF current IOFF  (A) ~10-14 ≤10-13

ON/OFF ratio ~109 108-109
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2.5 Voltage- and Current-Programmed Pixel Driver 
Circuits on Plastic for AMOLED Displays 
Various TFT pixel circuits have been fabricated on plastic substrates 

using the new 150ºC a-Si TFT process. Schematic representation and 
characteristics of voltage-programmed 2T-circuit and current programmed 
4T circuit are shown below. High output current, broad dynamic range and 
good drive current control have been achieved for both voltage-programmed 
and current programmed pixel circuits. 
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Schematic photomicrograph, and input-output characteristics  
 of 2T OLED pixel circuit on plastic substrate. 
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2.6 Stability of Amorphous Silicon Pixel Driver 
Circuits on Polyimide Foils 
A comparison of the behaviour of drive current in a-Si 2T and 4T 

pixel circuits on polyimide foils demonstrates the advantage of 4T current-
driven circuit, which compensates for threshold voltage shift in the drive 
TFT. Long term operational stability of 4T circuit under higher current load 
shows that after 3000 hrs of operation, the input-node voltage is still quite 
low, which means the life-time of the circuit far exceeds 3000 hrs. 
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2.7 Mechanically Strained TFTs 
Aside from technological challenges associated with fabrication of 

TFTs on flexible substrates, stable electrical operation of TFT circuits under 
mechanical stress induced by substrate bending is imperative. The induced 
tensile or compressive stress modifies device parameters such as field effect 
mobility and thus leads to shifts in current. To examine the shifts in current 
we performed beam deflection experiments in both tensile and compressive 
configurations (see figure below) on a-Si:H TFTs and TFT circuits. In situ 
strain gauges were included in the sample for monitoring the strain 
longitudinal and transverse strain components. The shifts in current are 
observed to be dependent on the current orientation with respect to the 
direction of the applied strain. The longitudinal TFTs experience the highest 
shifts, while the transverse ones had the lowest. The 4T circuit included in 
the sample showed suppressed sensitivity to the applied strain due to its 
current mirror architecture. As a result, this circuit can provide immunity to 
bending induced stress in flexible AMOLED displays. 
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2.8 Patterning Techniques for Fabrication of Polymer 
Electronics 
Inkjet printing has been evaluated as a very viable patterning 

technique for the fabrication of low-cost organic thin-film electronics on 
flexible substrates. On the other hand, plotting, which is a very promising 
alternative for some application, has been demonstrated for the first time in 
our laboratory. The plotting technique is simple and convenient, and the 
desktop plotter hardware is able to handle a broad range of solvents for 
polymers. There are no issues with clogging of nozzles or other parts of the 
hardware. Polymeric thin films deposited/ patterned by the plotter are 
continuous and homogenous. Unlike inkjet printers, desktop plotters do not 
impose topological constraints on the substrate and thus can handle a variety 
of substrates, including glass and plastic. Polymer light emitting diodes 
(PLEDs) have been fabricated from inkjet printing and from plotting. 
Although inkjet printing offers relatively small feature sizes and currently 
meets the resolution requirements for high information content displays, the 
plotting technology is favourable in other application areas (e.g., electronic 
labelling) where resolution requirements are less stringent. 
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2.9 Organic TFT Materials and Interfaces 
Preliminary experiments on solution-processible organic thin film 

transistors (OTFTs) considered polythiophene as the active semiconducting 
layer (see cross-sectional structure below). Octadecyltrichlorosilane (OTS, 
CH3-(CH2)17-SiCl3) self-assembly monolayer (SAM) is used as the surface 
treatment agent for the gate dielectric (SiO2) prior to polymer deposition. 
Optimization of the deposition parameters reveals that good-quality uniform 
OTS layer on SiO2 can be obtained at ambient (non-vacuum) conditions by 
immersion under sonication. Regioregular and regiorandom polythiophene in 
chloroform are spin-coated on OTS-treated oxidized silicon substrate and on 
glass substrate. The film properties are evaluated using SEM and with 
electrical measurements. Regiorandom polythiophene on OTS-treated SiO2 
surface exhibits conductivities in the range of 1.13 x 10-3 Ω-1 cm-1. However, 
the Au-polythiophene contact shows Schottky barrier characteristics (see 
characteristics below). 

Top-contact OTFT structures on oxidized and nitrided silicon, glass 
and plastic wafers are currently being investigated along with other surface 
treatment agents (e.g., TX-100, HDMS, high molecular weight silanes) in 
combination with different solution-deposited organic semiconductors.  
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2.10 Organic TFT Architectures 
Research in organic thin film transistors (OTFTs) is gaining 

momentum in recent years because of the numerous features that are 
attractive for potentially low-cost applications in large-area displays, flexible 
electronics, smart cards, and sensors. To properly characterize the properties 
of organic semiconductor materials and develop functional organic devices, 
different OTFT structures and circuits are being designed and fabricated in 
our laboratory. OTFT architectures that are currently under investigation 
include the top-gate, bottom-gate, and dual-gate configurations. 
Polythiophene is used as the organic semiconductor layer, and different 
material systems are examined. We consider, for example, SiO2, SiNx, and 
organic dielectric materials for the gate dielectric; Au, Al, Cr, ITO, and Mo 
for the electrodes/contacts; and glass, plastic, Si and oxidized-Si wafers for 
the substrate. Fabrication and measurements are performed in atmospheric 
conditions. A customized lithography process has been developed to 
fabricate high resolution OTFT test structures, and preliminary devices 
demonstrate promising results.  

The systematic evaluation of OTFTs with various architectures and 
geometries provide an effective means to study the organic material 
properties, gain insight into the transport mechanism, characterize the density 
of states at the interfaces, so as to comprehend the physics and operation of 
OTFTs. Present design challenges for high performance OTFTs include 
optimization of the organic-dielectric interface using proper interface 
treatment techniques, development of highly-doped contact layers to reduce 
contact resistance, and examination of passivation and encapsulation 
strategies to address issues related 
to material degradation.   
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SiNx

Dielectric
Bottom-Gate

p+ Contact  

Our research concentrates 
on the fabrication of simple OTFT 
circuits, including inverter, 
oscillator, current mirror/source, 
amplifier, and driver circuit. The 
underlying objective is to develop 
functional OTFT devices that are 
suitable for circuit integration 
applications in active-matrix 
displays and imagers, and in other 
low-cost, flexible, and large area 
organic electronics.  
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Dual-gate OTFT. 
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3 Process Integration 
 

 



3.1  Low-k Dielectrics 
For improved image quality with active matrix TFT-based imaging 

arrays, it is important to maintain a high fill factor i.e., the fraction of the 
pixel occupied by the image sensor. A high fill factor can be achieved using a 
vertical pixel architecture, where the sensor element is placed on the top of 
TFT backplane and is separated by a dielectric film. We have studied the 
properties of polymeric photosensitive benzocyclobutene (PBCB) dielectrics. 
It is an attractive spin-on material for applications as an inter-layer dielectric 
between transistor and sensor. This material can be patterned by simple 
photolithographic process, where it acts as a negative resist. Other 
advantages of PBCB films include: low curing temperature (<250°C), high 
degree of planarization (60-90%), and low stress (~25 MPa) compared to 
PECVD dielectric films. The processing of PBCB has been fine tuned to 
achieve a reliable via opening with proper sidewall angle for via hole 
metallization for good metal contact. Electrical measurements on test 
Me/PBCB/Me-structures showed low leakage current (~10-10-10-9 A/cm2), 
high dielectric strength (>2 MV/cm), and small via resistance (~2-3 Ω/via).  
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Top view of Al/low-k/Al array-like test structure 
fabricated on glass substrate. 
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3.2 Residue Removal in CF4/H2 Plasma Etching 
The formation of a sidewall-

blocking layer in CF4/H2 plasma 
etching can secure a vertical etch 
profile, but this layer must be removed 
after etching. X-ray photoelectron 
spectroscopy (XPS) studies of this 
protective layer indicate that it consists 
of metallic fluoropolymer composites.  
The C 1s photoelectron emission line 
shows multiple peaks, which are 
identified to be CFx bonding 
structures.  After removal of the 
protective layer by an organic solvent, 
the C 1s line is shifted back to its 
elemental location. Cleaned 
n+/nitride/n+ structures have been 
demonstrated by sectioning. This 
cleaning step after dry etching is very 
critical for high performance devices, 
e.g., vertical thin film transistors. 

protective layer

Sidewall protective layer formed 
after CF4/H2 plasma etching. 
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3.3 High Aspect-Ratio (AR) Photolithography 
We have developed an optimized 

thick film photoresist process to com-
pensate for issues such as step coverage, 
linewidth variations, and high dry etch 
resistance for a-Si:H devices, such as 
vertical thin film transistors (VTFTs) 
that have significant substrate 
topography (1 μm or higher).  Using an 
e-beam chrome photomask, coupled 
with contact printing and precise 
process control, we were able to achieve 
2 μm lines-and-spaces from a 6.6 μm 
resist (AR = 3.55) or 1 μm lines-and-
spaces from a 3-μm resist (AR = 4.17) 
with profile angles larger than 84°.  The 
critical steps in lithography are analyzed 
along with process models to describe 
their effects on the resist characteristics 
for reproducibility. 

2 μm lines-and-spaces. 

1 μm lines-and-spaces. 
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3.4 Thin Film Deposition on Non-Planar 
Topographical Surfaces 
Substrate surfaces are 

rarely flat during most fabrication 
processes, but contain significant 
non-planarity in topography that is 
formed by various material 
patterns. Physical sputtering and 
PECVD techniques for thin film 
deposition are particularly 
sensitive to the substrate 
topography. Etched material 
profiles that are not well 
controlled can have a negative 
impact on the process reliability. It 
can be demonstrated that the 
thicknesses of thin films on a 90° 
vertical surface deposited by these 
techniques are approximately half 
that on the horizontal surface. The 
conformality of thin film step 
coverage is governed by the 
plasma-surface kinetics. The 
device fabrication process must be 
designed in accordance with the 
physical nature of these plasma 
processes to ensure process 
reliability. 
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4 OLED Displays 
 

 

 



4.1 Aacene-Anthracene Copolymers for Full Color 
OLED Displays  
Solution processible copolymers based on acene-anthracene 

comonomeric units were synthesized for color organic light emitting diode 
(OLED) displays. All copolymers showed high processability and resistance 
to aerial oxidation. The color tuning in these polymers is achieved by 
controlling the molar ratios of reactants to oxidant during synthesis. 
Structural evaluation was done by SEM. Diffraction studies reveal the 
presence of 40% crystalline and 60% amorphous volume fracture within the 
copolymeric matrix. The electroluminescence (EL) efficiency varies with the 
anthracene concentration present along acene structure units. 
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Various physical properties of synthesized copolymers. 
 

Copolymers MZ 
(g/mol) 

MW 
(g/mol) 

Mn 
(g/mol) P.D. Thermal 

Stability 
A1 820 540 405 1.3 206ºC 
A2 895 415 235 1.77 210ºC 
A3 1150 640 390 1.64 210ºC 
A4 1985 655 325 2.01 392ºC 
A5 1005 505 300 1.68 375ºC 
A6 1335 505 225 2.24 210ºC 

EL - spectral response of copolymers 
at an excitation wavelength of 418 nm. 

UV-visible spectra of A3, A4, A5 and 
A6 copolymers in chloroform solvent. 
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4.2 Synthesis of Anthracene-Naphthalene 
Copolymers for Green OLEDs  
A well-defined alternative technique based on statistical combination 

of anthracene-naphthalene (AN) monomers for synthesis of highly soluble 
light emissive green copolymer was developed.  

The copolymer is thermally stable 
up to 335ºC with complete absence of 
the glass transition phase. Both SEM and 
XRD reveal a complete amorphous 
nature with globular morphology. The 
highly processible nature eludes to the 
suitability of this copolymer for the 
fabrication of double and multilayered 
OLED device structures by using 
solution-casting techniques. A change in 
light emission characteristics was 
observed with increase in potential. The 
device provides green emission at 10 V, 
which switches to bright yellow-white 
emission at 13 V. 
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4.3 Anthracene Short Chain Copolymers for Blue 
OLEDs  

Cathode 

Electron Injection Layer 

Electron Transport Layer 

Emissive Layer-Blue 
Synthesized Copolymer 

Hole Transport Layer 

Hole Injection Layer 

Anode – ITO/ glass (150nm) 

Short-chain anthracene-polyacene based copolymer, that acts as a 
blue emitter for light emitting devices has been developed by using a 
modified Kovacic synthesis. Structurally, the copolymer exhibits an 
amorphous character, followed by its thermal stability up to 208ºC. An 
increase in electrolumin-
escence efficiency was 
observed due to resistance over 
aerial oxidation. The statistical 
arrangement of monomeric 
units within the copolymeric 
matrix provides a keto-free 
defect structure. A well-
defined solvatochromic 
behavior was observed for the 
copolymer.  

Preliminary e
considered anthracene copoly-
mer as an emissive layer for 
blue OLEDs. The device 
operates at 6 volts. Evaluation 
of the electrical characteristics 
and device parameters are in 
progress.   
 

xperiments 

Multilayer device structure for 
blue OLED. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EL-spectral response of blue 
gth 

Solvatochromic behaviour of blue 
copolymer at an excitation wavelen

of 430, 480, and 560 nm. 
copolymer in the presence of 

different solvents. 
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4.4 Integration of Amorphous Silicon TFT and OLED 

(AMOLED) displays, 
each p

ED layers are very thin (~10 nm), smoothness of the 
substra

 

for Active-Matrix OLED Displays 
In active-matrix organic light emitting diode 
ixel is controlled by a driver circuit made of thin-film transistors 

(TFTs). Pixel architectures for the AMOLED  can be divided into bottom- or 
top-emitting (see below). In the former, the TFT circuitry and OLED are 
placed side-to-side, and the pixel aperture ratio is rather low (15-40 %), and 
decreases as pixel size is scaled down. With the latter, since the OLED can 
be integrated on top of TFT circuitry, the aperture ratio is much greater (70-
80%) and is less sensitive to pixel size scaling. Top-emitting vertically 
integrated architectures are preferred, given the area usage of TFT circuitry 
in a-Si technology.  

Since the OL
te and bottom electrode is critical for high OLED efficiency and high 

device/pixel yield. Proper surface quality can be achieved with the help of a 
planarization layer, which is deposited on top of TFTs and serves as the 
substrate for OLED bottom electrode. Here, a low-permittivity polymer 
dielectric is employed by spin-coating a photosensitive precursor followed by 
photolithographic patterning and thermal polymerzation. The planarization 
dielectric provided a smooth substrate profile with low surface roughness 
~1nm. Since the interconnection between TFT and OLED has to be made 
through the planarization layer, polymer processing was optimized for 
desirable pattern profile and low contact resistance of through-vias. A 
reliable via opening down to 10-20 μm in size and with contact resistance of 
~2-3 Ω/via has been achieved. A photograph of an operating TFT-OLED 
pixel is shown below. A bright emission and good brightness control have 
been obtained at supply voltage below 10 V, which implies that good quality 
OLEDs can be integrated on top of a planarized TFT backplane. 

 a

b

substrate

substrate

TFT circuit

TFT circuit

planarization

bottom electrode

OLED layers

top electrode

dielectric

bottom electrode

OLED layers

top electrode

 
 
 
 
 
 
 
 
 Bottom-emitting (left-a) and top-em ing (left-b) pixel architectures and 

© Ignis Innovation Inc. 

itt

 
 

microscope image of top emitting 4T AMOLED pixel (right – courtesy of 
Ignis Innovation Inc.). 
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4.5 Amorphous Silicon De er 
odes (OLEDs), there 

is con

nvariant demux is 
shown

multiplex
With the development of organic light emitting di

siderable interest in both active and passive matrix flat-panel OLED 
displays. As is well known, gate-drivers are needed for selectively addressing 
different pixels of an array. The typical gate-drivers consist of demultiplexer 
(demux) and buffers. In conventional displays gate-drivers are implemented 
in crystalline-Si CMOS technology, which necessitates a large number of 
output pads in the pixel-array consequently increasing its cost. Amorphous 
silicon gate-drivers pave way for the integration of gate-driver with the a-Si 
backplane array and thus obviate the need for high pin-count external drivers. 
More specifically integrating the demux onto the display board reduces the 
pin-count of the backplane from 2N (the number of gate-lines in the array) to 
N (number of select signals of demux). The reduced pin-count not only 
reduces the system cost significantly but also enhances the reliability of the 
system by minimizing the number of leads and bonding.  

The schematic of a pass-transistor based ΔVT i
 below. Here, the holistic R-C load of a QVGA array is considered for 

realistic loading at the output node. The dynamic performance characteristics 
for the demux is also illustrated. We use a bipolar pulse for attaining the ΔVT 
invariance of the demux-characteristics. 

 

 

Schematic (top) and transient performance (bottom) 
of a pass-transistor based a-Si:H demux. 
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4.6 Current Programmed Pixel Circuits 
A TFT circuit behind every pixel in an AMOLED display is needed to 

control the brightness of each pixel. Conventional 2-TFT circuits cannot 
compensate for VT shift in the TFTs, due to which the display brightness 
degrades by about 30% over a few hours of operation. We have developed 4-
TFT current programmed VT shift compensating pixel circuits that overcome 
this problem and provide long-term display brightness stability.  

The circuits work on the current mirror principle, therefore can be 
designed to attenuate or amplify the data current. They offer low power 
consumption, adequate programming times for 60 frames/second operation, 
and temperature/mechanical stress invariant operation.  
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4.7 Voltage-Programmed Feedback Pixel Circuit for 
OLED Displays 
An a-Si:H pixel circuit with voltage feedback for active-matrix 

organic light-emitting diode displays has been developed. It has been shown 
that by applying the feedback method, it is possible to provide very accurate 
current for the OLED despite shifts in TFT device parameters. As illustrated 
in the figure, the circuit comprises three TFTs, a storage capacitor, and a 
feedback resistor made of microcrystalline n+a-Si:H.  The control unit is 
common for each column and in the simplest form, it is a differential 
amplifier. DC measurements show that the output current of the circuit 
remains constant within 0.3% of its original value despite more than 2.5 V 
shift of the threshold voltage of the driving transistor. Fig. 2 shows the 
current stability of the pixel circuit for more than 40 hours in the presence of 
2.5 V shift of threshold voltage of T2. Measurements also show that the 
microcrystalline feedback resistor of the pixel is stable enough to be used as 
the feedback element.  
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(bottom) for feedback pixel circuit.
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4.8 Open Loop Voltage-Programmed Pixel Circuit 
Pixel drivers for AMOLED displays require a stable current output.  

Therefore we need to design a compensation circuit which can track the VT 
shift in the drive TFT and provide a constant current to the OLED.  

The compensation circuit shown below makes use of the fact that the 
threshold voltage shift of a TFT is a strong function of the applied gate 
voltage. The circuit reflects its input as the gate voltage of the drive TFT and 
uses the threshold voltage shift in the TFTs T1, T2, T3 and T4 to track the 
threshold voltage of the drive TFT, thereby providing a constant overdrive. 
The performance of this circuit is also illustrated below.  
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4.9 Acceleration Factor for Circuit Testing 
A lifetime of 20000 hours is generally considered as the minimum 

requirement before a commercial AMOLED display can be manufactured. 
However, is impractical to test any circuit for that duration, hence accelerated 
testing methods have to be used. Unlike the well characterized CMOS VLSI 
testing, there is no standard method to perform accelerated stress tests on a-
Si:H circuits.  

Since VT shift in TFTs is the main reason for pixel circuit failure, 
the temperature and dependence of the VT shift in TFTs under constant 
current stress was modeled. Error! Reference source not found.The model 
was used to calculate a time-dependent acceleration factor. Fig. 4.8.1 
demonstrates that acceleration factors of up to 5 can be obtained by operating 
pixel circuits at higher temperatures or higher current stresses. 
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Accelerated testing of AMOLED pixel circuits.  
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4.10 Lifetime Testing of a-Si Pixel Circuits 
The primary issue that must be addressed in a-Si backplane design is 

the compensation for VT shift.  The 4-TFT circuit architecture is such that the 
input data current is replicated at the OLED (see below).  Therefore any 
factors that change the performance of the TFT (including VT shift, 
temperature, and mechanical stress) will not affect the relationship between 
input and output currents.  In addition, judicious choice of biasing conditions 
of the current mirror allows for a controlled increase in OLED current to 
compensate for OLED degradation. 

TFT circuits were fabricated using a 300°C process.  The circuits 
were then diced and bonded into ceramic packages.  Testing the circuits in 
discrete form allows access to all nodes for diagnostic purposes.  Due to the 
large parasitic capacitances involved with packaging a discrete pixel circuit 
and using a current driver based on discrete ICs, the pixel was operated at 8.3 
Hz instead of the targeted 60 Hz, which would be easily achievable in an 
array due to lower parasitics.  The voltage at the IDATA node (i.e. VDATA) 
was also monitored and plotted on the same figure. 

Test data shows operation for nearly 10,000 h at high current levels, 
and the circuit continues to operate.  The current level is high to accelerate 
the test; the actual current levels for a similar pixel would be closer to 1.5 
µA.  Factoring in the accelerated aging due to high current, this test is 
equivalent to over 30,000 h at 1.5 µA. 
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Lifetime test of 4T pixel circuit and schematic (inset).  
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4.11 Mobility Considerations for a-Si TFT Based 
AMOLED Backplanes 
Recent advances in active matrix OLED (AMOLED) displays have 

shown increasing interest in amorphous silicon (a-Si) thin film transistor 
(TFT) backplanes. Several prototypes have been demonstrated that prove the 
viability of a-Si as an alternative to the relatively new and expensive low 
temperature polysilicon (LTPS). The a-Si backplane for AMOLEDs takes 
advantage of the vast installed infrastructure of the ubiquitous AMLCD 
technology, thus enabling much lower manufacturing costs and rapid 
commercial deployment.  

The low mobility limitation of the a-Si TFTs, (which places 
unfavourable limits on pixel size and aperture ratio (AR) particularly for 
bottom-emitting pixel architecture) has been dispelled by impressive 
advances in the OLED device efficiencies recently. Hence, the application 
space for a-Si based AMOLED now ranges from small full colour cell phone 
displays to HDTV screens. For a 4-TFT fully compensating bottom-emitting 
pixel circuit, the sensitivity of device mobility on pixel size is illustrated in 
the figure below. It is evident that for most applications, mobility is no longer 
the limiting factor for a-Si, because the interconnect area is the dominant 
factor. The maximum dot-per-inch (DPI) attainable for bottom emitting 
pixels with a reasonable aperture ratio of 40%-60% for a commercial process 
can be as high as ~200. Here the difference between the attainable aperture 
ratio for a-Si and poly-Si is less than 5%.  
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5 Optical and X-Ray Imaging 
 

Glass substrate

Photodiode Switching
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5.1 Novel n-i-δi-p Photodiode 
A novel n-i-δi-p photodiode, which combines the advantages of 

a-Si:H and a-SiC:H/a-Si:H p-i-n photodiodes in terms of reverse dark current  
and extrinsic quantum efficiency has been developed.  

It is found that introduction of a thin graded layer and an undoped 
a-SiC:H buffer (δi-layer) between the i(a-Si:H) and p(a-SiC:H) layers reduces 
the leakage current and decreases interface recombination. A δi-layer 
thickness of 4 nm is found to be optimal for the 2 eV bandgap a-SiC:H alloy. 
The observed dark current density of 8 pA/cm2 at reverse bias of 1V is close 
to the fundamental lower limit set by carrier emission from deep levels in the 
a-Si:H bulk as evaluated from the time-dependence of dark current. The 
n-i-δi-p photodiode with optimized δi-layer thickness has a good transient 
response, with low image lag at low light intensities, as well as enhanced 
short-wavelength responsivity, thus making it suitable for low-level light 
detection and imaging applications. 
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5.2 Two-Dimensional Photodiode Array 
A two-dimensional a-Si:H-based n-i-p photodiode array with single-

switching diode readout has been developed. Utilization of the a-Si:H 
switching diodes for signal readout makes it simpler than conventional 
active-matrix-arrays with TFT switches, and the number of masks required in 
lithography have been reduced to six. The device design and fabrication are 
optimized to minimize the level of the leakage current. The sensing diodes 
have a reverse dark current density of ~0.5 nA/cm2 at -5V bias, which is 
among the lowest ever reported. The ON/OFF current ratio for the 
200x200 μm2 switching diode is ~2×106. The external quantum efficiency of 
the photodiodes with 25nm a–SiC:H p-layer is up to 85 % in the range 560 to 
580 nm, and ~30% at 400 nm.   

A 3x4 pixel array prototype has been successfully tested using a 
specially designed readout system, where pre-amplification, double sampling 
and a final amplification are performed at each column. The detector shows 
good linearity over several voltage decades and the ability to detect 
extremely low light levels.  
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Cross section of sensing pixel. 
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Block diagram of single readout channel. 
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5.3 Deep-UV CCD Imaging: Degradation Mechanisms 
With an increasing number of industrial applications shifting to 

intense deep-UV laser sources, high performance deep-UV sensors for 
inspection and process control applications are in demand. The most notable 
example of deep-UV imaging is in photolithography and semiconductor 
inspection systems, where sensors are needed to image deep sub-micron 
features. Deep-UV sensitive CCD image sensors have been developed; 
however, their long-term stability is still a major concern. Experimental 
results suggest that careful control of the oxide thickness and the Si-SiO2 
interface quality are critical for realizing CCD sensors with high responsivity 
and stability for deep-UV imaging. When samples of thinned front-
illuminated linear CCD sensors are exposed to F2 (λ = 157 nm) excimer laser 
radiation, fluctuation in the extrinsic quantum efficiency (QE) and a 
substantial upsurge in the dark current density are observed as a function of 
exposure dose. The visible QE, dark current, and charge conversion 
efficiency (CCE) are also permanently altered by the deep-UV irradiation. 
These instabilities can be attributed to a variety of UV-induced effects that 
modify the optical and electrical properties of the SiO2 layer and Si-SiO2 
interface, resulting in reversible and permanent shifts in CCD performance. 
Optimization of the overlying oxide thickness and the Si-SiO2 interface 
quality are necessary in order to realize CCD image sensors with the desired 
performance, radiation tolerance, and stability at deep-UV wavelengths. 
Investigation of DUV enhancement and radiation hardening techniques (e.g., 
nitridation and fluorine doping of the SiO2) for CCD sensors is also critical in 
order to drive additional advancements in this area. 
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5.4 Process Integration of X-Ray Direct Detection 
Pixel 
We have previously developed a direct X-ray detection scheme based 

on a Mo/a-Si:H Schottky diode structure for low-energy X-rays. Here, an 
alternate strategy to reduce mechanical stress issues pertinent to the process 
integration of Mo/a-Si:H 
Schottky diodes and TFTs is 
presented. The previous 
approach was to minimize 
the intrinsic stress in the Mo 
layer through appropriate 
process conditions and film 
thickness. But this was over a 
narrow process latitude and 
with compromised X-ray 
sensitivity. Alternatively, the 
mechanical stress in the Mo 
can be reduced by reducing 
and/or avoiding the extrinsic 
stress exerted on the Mo by 
the underlying films through 
a different masking sequence 
in the fabrication. This 
modified process allows for a 
more flexible design of the 
Mo layer for enhanced X-ray 
sensitivity, while maintaining 
the mechanical integrity of 
the various layers. The 
fabricated pixel shows high 
detection efficiency at low 
X-ray tube voltages. 
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5.5 Active Pixel Sensor for X-Ray Detection 
Mammography or diagnostic breast x-ray imaging has the 

requirements of small pixel size (50 µm) and high-density large area arrays 
(3600 x 4800 pixels). The voltage mediated active pixel sensor (V-APS), 
which uses an active transistor within the pixel to drive the output column 
data bus may be suitable for this application due to its relative ease of 
integration with on-panel multiplexers. The figure below illustrates a V-APS 
pixel with an on-chip active load TFT in saturation. 

While the V-APS offers the advantage of direct integration with an 
on-panel multiplexer, its implementation in a-Si technology is unsuitable for 
real time performance medical imaging applications such as fluoroscopy. 
Hence, the current mediated active pixel sensor (C-APS) (see figure below) 
is employed to produce amplified current output to drive an external charge 
amplifier. Its signal linearity and gain demonstrate the feasibility for medical 
imaging modalities. 
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5.6 Vertically Integrated a-Si:H Active Pixels for X-
Ray Detection 
In large area flat panel x-ray imagers, it is important to ensure that the 

fill factor is high enough to provide sufficient charge collection. 
Conventional imagers are based on a co-planar architecture where the sensor 
and readout circuitry are placed adjacent to one another. Thus, increasing the 
on-pixel density of TFTs or scaling down pixel sizes reduces the fill factor. 
To avoid any degradation in fill factor, the pixel can be vertically integrated 
with the sensor, which follows from a fully overlapped electrode concept. 
However, the continuous back electrode can give rise to parasitic 
capacitances. One possible effect of the back electrode is to induce a parasitic 
channel in the a-Si layer of an overlapped TFT during its OFF state, giving 
rise to a larger leakage current IDS. To minimize or eliminate this leakage, a 
dual gate TFT architecture is employed, in which the voltage on the top gate 
(metal shield) can be chosen to minimize the charge induced in the (parasitic) 
top channel. 

The cross section of a fully overlapped architecture and its TFT 
transfer characteristics are shown in the figure below. The lowest values of 
leakage current are obtained when the TFT second gate bias VSHIELD is set to 
either 0 V or to the TFT bottom gate VGB. 
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5.7 ΔVT Compensated a-Si:H Pixel Amplifier for 
Fluoroscopy 
The current mediated amorphous silicon active pixel architecture (C-

APS) advances the state-of-the-art by offering a large area real time imaging 
solution for fluoroscopy. However, the threshold voltage shift ∆VT of the a-
Si:H TFT gives rise to new design challenge in order to maintain sufficient 
pixel transconductance gm, which varies over time. 

For the C-APS architecture, the characteristic ∆VT of the a-Si READ 
and RESET TFT switches is minimized by appropriate bipolar TFT bias 
voltages in the ON and OFF states. Due to intrinsic feedback, the READ TFT 
has a compensatory effect on the gm of the pixel readout circuit. As shown in 
the figure below, gm is expected to decrease only by less than 2% over the 
lifetime of the array. The figure illustrates how reduction in duty cycle will 
mitigate the ∆VT, thus low leakage currents can be coupled with small duty 
cycles to give a relatively small shift in C-APS gm, and consequently, the 
gain. 
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5.8 MTF Measurements of Gd2O2S:Tb Based 
Phosphor Films Coupled With Photodetectors 
The Gd2O2S:Tb based phosphor coupled with photodetectors has been 

widely used in digital x-ray imaging applications.  One of the key issues 
associated with the phosphor film is spatial resolution.  The spatial resolution 
of phosphor films can be characterized by measurement of the modulation 
transfer function (MTF).  

The MTF describes the modulation in signal amplitude in the image 
of a sinusoidally varying object as a function of the object spatial frequency.  
The MTF, T(u) is given by the modulus of the Fourier transform of the line 
spread function (LSF), l(x), 

 

∫
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∞−

−= dxexluT iuxπ2)()( , 

where u is the spatial frequency of the image.  The results depicted in the 
figure show a degradation of spatial resolution as the phosphor film thickness 
increases.  In thicker films, the optical photons generated inside the phosphor 
film need to travel larger distances to the detector. Here, they get scattered in 
the process to increase the isotropy in propagation path thereby reducing the 
spatial resolution. 
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5.9 Digital Radiology Using Active Matrix Readout 
With High Voltage Protection 
Direct radiographic detection employs a layer of X-ray sensitive 

photoconductor such as amorphous selenium (a-Se) to directly convert the 
incident X-rays to charge. A positive high voltage of several thousand volts 
is applied to the top surface of a-Se in order to establish an electric field for 
electron-hole separation. The electric field in the Se layer can be 1-10 V/μm. 
Holes created by X-rays are driven by the electric field to the bottom 
electrode, where the detection of charge is done through a-Si:H active matrix 
readout array. Hence, the bottom electrode is susceptible to damage during 
prolong suspended detector scan or accidental over-exposure. A high voltage 
build up at the pixel electrode can lead to dielectric breakdown in the a-Si:H 
readout circuits, rendering the detector unusable. 

The use of dual-gate thin-film transistor (TFT) in the pixel readout 
circuits has been proposed for protecting the active matrix from high voltage 
damage (see figure below). Under normal operating conditions, the bottom 
gate performs as an ordinary single gate TFT, and the top gate is not turned 
ON. However under undesirable detection conditions, the top gate acts as a 
protection gate that automatically turns ON the TFT before the electrode 
reaches a damaging value and overrides the bottom gate control. The 
threshold voltage VT of top and bottom gates are controlled by their 
corresponding gate dielectric thickness (dti and dbi) to minimize leakage 
current at the TFT OFF state. 
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6 Photovoltaics 
 

 
 

 



6.1 Low Temperature Amorphous and 
Nanocrystalline Silicon Solar Cells 
We have developed a-Si:H and nc-Si deposition process at 75ºC for 

flexible solar cells on low-cost plastic foils. The aim of this work is to 
fabricate thin film solar cells on large area by roll-to-roll technology for 
portable applications as well as light-weight and cost-effective solar power 
generation arrays. The a-Si:H layer absorbs the high-energy part of the solar 
spectrum whereas the nc-Si acts as the red- and infrared absorber. All films 
were deposited using conventional RF 13.56 MHz PECVD in a single 
chamber system.  

The a-Si:H deposited at 75ºC has an optical bandgap between 1.68 eV 
and 1.90 eV, hydrogen concentration ranging between 8 at.% to 9.5 at.% that 
is predominantly bonded in monohydride form. The microstructure 
parameter R varies between 0 and 4.6. These parameters can be adjusted by 
deposition conditions. The dark- and photoconductivity values are 3.2x10-9 
S/cm and 3.8x10-5 S/cm, respectively. Post-deposition thermal annealing at 
temperatures above the deposition temperature but below 150ºC appear to 
strongly improve the electronic properties. 

Optimal electronic properties in a-Si:H deposited at 75ºC is often 
accompanied by high compressive stress (0.2 to 0.5 GPa), which frequently 
results in peeling the films off the substrates.  

Undoped nc-Si deposited at 75ºC has a crystallinity above 60% in 20 
nm thick film, and above 80% in 100 nm thick film with a crystallite grain 
size of about 10 nm. The dark conductivity is about 3x10-7 S/cm. Thermal 
annealing at 150ºC increases this value by approximately one order of 
magnitude. This effect is attributed to hydrogen rearrangement at the grain 
boundaries, which reduces the energy barrier there. 
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 Photograph of solar cell on plastic and schematic cross section. 
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6.2 Amorphous Silicon/Multicrystalline Silicon 
Heterojunction Solar Cells 
Cost reduction is an important issue in the fabrication of silicon (Si) 

photovoltaic (PV) cells, where the material cost accounts for nearly half of 
the overall cost. Materials like multicrystalline silicon (mc-Si), silicon 
ribbons, etc., offer a cost effective option for Si PV cells compared to single 
crystalline Si. In most of those materials, however, the presence of a large 
number of grains (mm to cm scale), grain boundaries, and crystallographic 
defects necessitates defect passivation. Defect passivation by atomic 
hydrogen is a very efficient method. However, this imposes a temperature 
(T) limit for any post-passivation processes such as p-n junction diffusion at 
high-T. Implementation of amorphous Si (a-Si)/crystalline Si heterojunctions 
in place of diffused homojunctions in defective Si can keep the process 
temperature low thereby preserving the defect passivation.  In this project we 
target two main goals: (i) developing appropriate gettering and 
hydrogenation techniques to improve minority carrier life time in low cost 
mc-Si substrates (ii) developing a robust low temperature a-Si/mc-Si 
heterojunction technology for photovoltaic applications. 

Plasma hydrogenation is employed to passivate crystallographic 
defects close to the heterojunction. This process is expected to improve fill 
factor of the solar cells. Passivation of defects deep inside the mc-Si substrate 
is performed by the plasma immersion ion implantation technique to improve 
minority carrier lifetime in bulk mc-Si. This process is expected to improve 
the spectral response of solar cells in infrared regime.  
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6.3 Low Temperature Solar Cells 
This project addresses fabrication of a-Si:H based solar cells on 

flexible plastic foils for  wearable electronics. 
A p-i-n structure was deposited on glass substrate covered with ITO. 

The thicknesses of the p-, i- and n-layers were 30 nm, 300 nm and 30 nm, 
respectively. Aluminum contacts were deposited on top, then an ITO contact 
was opened using RIE. The maximum processing temperature was 75°C. 

The spectral quantum efficiency, and dark and illuminated I-V 
characteristics were measured. 

The spectral quantum efficiency (QE) demonstrates a maximum at a 
wavelength of 450-500 nm. It should be noted that the maximum QE shifts to 
higher wavelength with increase in the annealing temperature. The annealing 
at 150°C improves QE from 0.25 to 0.45 at 0 V bias, and from 0.30 to 0.60 at 
1 V bias. The improvement in QE can be explained by the dangling bonds 
annealing in the bulk i-layer. 

The wavelength of the QE maximum is lower than it was observed for 
an amorphous silicon solar cell (with an i-layer of about 600 nm), and can be 
attributed to its smaller i-layer thickness (300 nm). 

The illuminated I-V characteristics were used for determining the 
solar cell parameters, which are the short circuit current Isc, open circuit 
voltage Voc, and fill factor FF =  Pmax/IscVoc. The performance of the 75°C 
solar cell is presented in the following table. As can be seen, annealing 
improves Isc and Pmax, while no improvement in Voc is observed.  

 
Normalized solar cell parameters. 

 
Tannealing (oC) Isc (mA/cm2) Voc (V) Pmax (mA/cm2) FF 
No annealing 2.26 0.65 0.36 0.25 
120 3.28 0.8 0.65 0.25 
150, 1hr 3.7 0.75 0.72 0.26 
150, 6hrs 5.16 0.78 0.96 0.24 
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