Hydrothermal Conversion of Lignocellulosic Biomass to Biofuels and Valuable Chemicals

Hydrothermal Conversion

- At 200- 400 °C, 4-20MPa. water is still liquid.
 - At this state, water can catalyze both acidic and basic reactions because self-dissociation of water to H+ and OH- is enhanced.
- When the temperature of water is close to supercritical point (374 °C), the phase boundary between liquid and gas disappears, and then all reactions are enhanced by the homogenous media.
- Due to these special catalytic properties of hot water, biomass HTC to bio-oil calls a great interest, but still not well studied.

Phase Behavior of Water

- Critical Point at 374°C
- In the subcritical region, ionic reactions are enhanced, while in the supercritical region free radical reactions are enhanced.

Advantages of Hydrothermal Conversion of Lignocellulosic Biomass to biofuel

Lignocellulosic biomass

- Most abundant feedstock
- Low cost feedstock compared, can be zero for waste biomass like wood residue, manure, etc.
- High yield crops (e.g. energy crops) identified
- □ Wet feedstock without predrying
- A thermochemical process that does not need to separate cellulose from lignin
- □ Can produces biogas and biooil depending on conditions

Comparison of HTC with other technologies

Technologies	Conditions	Time	Main Products	Notes
Aerobic treatment	Ambient T and P	> 20 days	CO ₂ , Nitrate, N ₂ O	No bioenergy
Anaerobic treatment	Ambient T and P	~15 days	CH ₄ , CO ₂	Slowly
Gasification/pyrolyis	400~600 °C	Several minutes	CH4, H ₂ , CO, CO ₂	Predrying required
HTC	250 to 350 °C	0 to 60 min	Bio-oil and CH ₄ & H ₂	Without predrying

Hydrothermal Conversion of Cattle Manure to Biofuels

Much cattle manure in Canada

- In Canada, cattle manure production: 0.5 million tons per day [1].
- Meanwhile, more cattle manure is produced in per hectare land.

Air Pollution from Cattle Manure

- Toxic gas---Ammonia
- Greenhouse gases--- CH₄ & N₂O

Ammonia emission sources in Canada, 2005 (Environment Canada, Ammonia, 2009).

CH4 and N2O emission from cattle manure in Canada .

National Inventory Report, 1990-2005: Greenhouse Gas Sources and Sinks in Canada. Environment Canada, 2007.

Water pollution from cattle manure

Eutrophication

- Pollutants---- Ammonia, Nitrate, and Phosphorus
- Water pollution---- Eutrophication ^[5]

Daniel, T. C.; Sharpley, A. N.; Lemunyon, J. L., Agriculture Phosphorus and Eutrophication: A Symposium Overview. Journal of Environmental Quality 1998, 27: 251-257

Soil pollution from cattle manure

Soil pollution--- Acidification

Overall Objectives of the Research Program

- Literatures have shown that swine manure, wood and grass can be converted to bio-oil by hydrothermal conversion (HTC) ^[7-8].
- NO report on cattle manure in public literature

Overall Experimental Procedures

Hydrothermal <u>Gasification</u> of Cellulose and Cattle Manure Effects of Alkalinity and Phase Behaviour

Cellulose

 Cellulose (a polymer of glucose) is the most abundant biopolymer globally, accounting for 1.5 x 10¹² tonnes of annually available biomass. (Klemm et al, 2005)

Hydrothermal Gasification

Cellulose Decomposition

All Intermediates Not Equal

Results by Knezivic et al (2009) show not all intermediates gasified as easily...

Research Objectives and Overview

- Determine effects of alkali salt (Na₂CO₃) concentration on the gasification of cellulose in the presence of a Platinum group metal
- Determine effect of headspace fraction on the hydrothermal gasification of cellulose in the presence of a Platinum group metal
- Effect of alkali and a Pt group metal on the hydrothermal gasification of a mixed biomass, cattle manure.

Experimental Setup I

- Two batch reactors were constructed from SS 316 tubing. The reactor volume was 69mL.
- Reactors heated by Muffle Furnace

- Gas composition determined by micro gas chromatography (micro-GC)
- Liquid phase composition determined by gas chromatography with a flame ionization detector (GC-FID)

Effects of Alkalinity with 5% Pt/Al₂O₃ catalyst

Effects of Residence Time

•Sodium Carbonate (alkaline pH) increase both carbon dioxide and hydrogen production

Acetic Acid and Methane

- As more acetic acid was produced, increasing amounts of methane were found in the solution.
- Highest yields of acetic acid (and methane) were found in 0.1M sodium carbonate solution.

Liquid Phase Analysis

500 mM Na₂CO₃ – More Dihydroxyacetone and Lactic Acid

Alkalinity Effects with 5% Pt/SiO₂

Similar but more variable results were obtained using a 5% Pt/SiO2 catalyst.

Alkalinity Effects with 1% Pt/Al₂O₃

With a higher loading of 1% Pt/Al2O3, carbon monoxide became an important product under low alkalinity.

Effect of Headspace Fraction

- As headspace fraction increased, hydrogen increased.
- Magnitude of increase was dampened when sodium carbonate was added.

Liquid Phase Analysis

- HMF suppressed as the headspace fraction increased
- At highest headspace fraction, butyric acid most abundant

Experimental Setup II

- 1.8 L batch reactor (SS316), Parr Instrument Company
- Gas composition was analyzed by micro-GC

Cattle Manure Test Results

Experiments with Cattle Manure show synergy between the $RuCl_3$ and the basic NaOH catalysts

Discussion – Effects of Alkalinity

- Three Distinct Regions of Alkalinity
 - 1. Region I HMF suppression
 - 2. Region II Change to Basic Solution pH
 - 3. Region III Formation of Bicarbonates from Carbon Dioxide
- Peak in Hydrogen when using Pt/SiO₂ catalyst occurred at higher alkalinity (200 mM as opposed to 75mM)
- Liquid Phase changes from HMF (0M Na₂CO₃), to lactic acid and dihydroxyacetone
- Methane likely to be related to the decarboxylation of acetic acid
- Significant interaction between RuCl₃ and NaOH catalysts

Discussion – Effects of Headspace Fraction

- Higher headspace fractions (vapour fractions) enhanced gas production, the effect was most significant without the addition of sodium carbonate
- In general, decreasing headspace fraction resulted in a decreased concentration of detected chemicals.
- Under the most successful conditions (92.8% headspace fraction, no Na₂CO₃), butyric acid relatively significant chemical in the liquid phase.

Conclusions

- More facile pathways for gasification available under high headspace fraction, without the addition of alkali salt sodium carbonate.
- Acetic Acid appears to be a likely source for produced Methane
- Decomposition of Cellulose through HMF produces little gas
- Decomposition pathway has large impact on gasification yield and composition

Hydrothermal Conversion of Cattle Manure to Biooil

Effects of solvents on bio-oil yields

Effects of solvents on elemental compositions of bio-oil

(Conditions: 125g of cattle manure, 500g of water, 0.5 mol of NaOH, residence time of 15 min, and 0 psig initial pressure of CO)

Effects of solvents on heating values of bio-oil

Bio-oil	Heating value (MJ/kg)	Standard derivation
Bio-oil (extracted by CH ₂ Cl ₂)	36.08	2.06
Bio-oil (extracted by CHCl ₃)	35.55	0.99
Bio-oil (extracted by C ₄ H ₁₀ O)	36.56	0.18
Cattle manure	15.2	0.73

Effects of solvents on structures of bio-oil

UV-VIS analysis spectra of bio-oil extracted by different solvents (Conditions: 125g of cattle manure, 500mL of water, 6g of NaOH, process gas of 0 psig of CO, and residence time of 15 min)

Effects of temperatures on bio-oil/bio-gas yields

(Conditions: 125g of cattle manure, 500g of water, 0.5 mol of NaOH, residence time of 15 min, and 0 psig initial pressure of N₂)

Effects of pressures on bio-oil yields

Figure 5. Effect of initial conversion pressure on biooil yield (Conditions: 125 g of cattle manure, 500 g of water, 0.5 mol of NaOH, temperature of 310 °C, residence time of 15 min, and process gas of N2)

Effects of processing gases on bio-oil yields

(Conditions: 125g of cattle manure, 500g of water, 0.5 mol of NaOH,

temperature of 310 °C, and 0 psig process gas)

Figure 7. Effect of cattle manure to water mass ratios on bio-oil yields (Conditions: T= 310 °C, 0.5 mol of NaOH, residence time of 15 min, and 0 psig initial pressure of CO)

Effects of processing gas

High heating values of bio-oils

Energy types	Heating value(MJ/kg)	
Bio-oil from HTC		
290 °C	35.07	
300 °C	36.10	
310 °C	35.74	
325 °C	34.28	
Bio-ethanol	29.8	
Coal	32.5	
Gasohol E85	33.1	
Bio-diesel	41	

Bio-oil from cattle manure: Comparison with petro liquid fuels

- The main components of HTC bio-oil were carboxylic acids, aldehydes, and phenol derivatives.
- The main components of petroleum are alkanes.

Bio-oil from cattle manure: Stability

Fresh bio-oil

1 day

1 week

(It was stored at room temperature. HTC bio-oil was produced from cattle manure)

- The color of HTC bio-oil became darker with time.
- More residual solids were formed over time.
- During storage, the concentrations of aromatic chemicals and phenol derivatives decreased, while aldehydes and ketones increased.

Hydrothermal Conversion of <u>Cellulose</u> to Biooil

Bio-oil from cellulose

- No alkanes were detected in HTC bio-oil from cellulose.
- The compositions of HTC bio-oils varied with the initial pH levels of aqueous reaction media.
 - At pH<7: HMF and levulinic acid
 - At pH=7: HMF, acetic acid and lactic acid
 - At pH>7: Carboxylic acids

pH value changes vs. initial pH level

Reaction pathways of HTC changed during alkaline HTC

of alkaline HTC of cellulose to bio-oil

Hydrothermal Conversion of Cellulose, Glucose to <u>Alkanes</u>

Motivation: Previous bio-oil from cattle manure or cellulose is not "oil"

	HTC bio-oil	Catalytic HTC bio-oil
Compositions	Acids, aldehyes, aromatic chemicals	Alkanes (Petroleum)
Chemical stability	Unstable	Stable
Separation	Organic solvent extraction	Voluntary separation from aqueous solutions
Use as a liquid fuel	Upgrading needed	Directly used by car engine

• Need to improve the quality of HTC bio-oil by catalytic HTC

Alkanes from CHTC of glucose with hydrogen

- Alkane yields increased with increasing H₂ pressure.
- More heavy gaseous alkanes (C_3H_8 , C_4H_{10}) were produced with higher H_2 pressure.
- The chemical composition was the same as that of liquefied petroleum gas (LPG)

• C₅₋₉ liquid alkanes were detected in liquid products

But, much more C_{1-4} alkanes were formed than C_{5-9} alkanes.

Alkanes from CHTC of glucose (cont...)

- Problems with CHTC of glucose to alkanes
- Few liquid alkanes were formed from glucose.

• External H₂ was required for CHTC.

H₂ is required for hydrogenation reaction

Alkanes from CHTC of <u>cellulose</u> (cont.)

A new reaction process was proposed to produce liquid alkanes from cellulose with *in situ* H₂

In-situ-H₂-APR

Illustration of In-situ-H₂-APR process

Results: Alkanes from CHTC of cellulose

- Effects of volumetric ratios of input water to reactor
 - Too little or too much water inhibited alkane bio-oil formation.
 - The alkane bio-oil mainly consisted of nonane, octane and heptane.

Results: Alkanes from CHTC of cellulose

Effects of pH levels of aqueous reaction media

Alkane bio-oil yields were further increased by weak alkaline conditions.

> pH/reaction pathway changes mainly led to this improvement.

Possible explanation to petroleum formation

• In-situ-H₂-APR: a possible explanation for petroleum formation

Obs	servations	Petroleum formed in sea	Bio-oil formed by In-situ-H ₂ -APR
Oil	Main components	alkanes	alkanes
	Associated with natural gas?	Yes	Yes (syngas)
Environ- ment	Metals	Ni, Fe, V, Cu	Pt, Ni (catalysts)
	Inorganic chemicals	SiO ₂ /Al ₂ O ₃ (the main components of earth crust)	SiO ₂ /Al ₂ O ₃ (catalyst supports)
	рН	7.5-8.4 (sea)	7.5 (aqueous media)
	Steam	Geothermal heating	External heating
	Liquid water	Yes	Yes

Conclusions

- 1. HTC bio-oil was different from petroleum, in terms of chemical composition.
- 2. HTC bio-oil compositions were unstable and changed with time.
- But, by CHTC (especially, In-situ-H₂-APR), alkane bio-oils were produced from glucose and cellulose. Their compositions are quite same as liquefied petroleum gas and gasoline, respectively.
- 4. Via catalytic HTC, therefore, a quick production of petroleum from renewable/carbon-neutral biomass would become feasible.

Other Slides

Biomass is Biological Material Derived from Living Organisms Recently

Absorb CO₂ and solar energy Three types of biomass:

- Lignocellulosic and starch-based plants (e.g. Wood, grass, livestock manure)
- Triglyceride-producing plants: e.g. canola, soybeans, sunflower, safflower
- Algae are another source of triglycerides as well as carbonhydrates and lignin.

Transportation Energy Needs to Remain Liquid to Fit in Existing Tanks and Be Transportable

- World has ~ 800 million vehicles, and adds 50 million vehicles per year
- Biomass is the only renewable source for renewable transportation fuel.
- Biofuel is the solution before electrical car becomes affordable and reliable.
- Biofuel may remain important since other sectors demands electricity rather than fuel.

Henry Ford originally designed the Ford Model T to run completely on ethanol. But then crude oil became more cheaply available.

Platforms for Biofuel Production^[3]

• Syngas and Sugar platform : two actively researched field for the liquid fuel

Challenges to existing biofuels

□ Mostly from edible biomass

□ High cost: 90% of \$\$\$ goes to separation

□ Mixed with petroleum gasoline

Bio-oil	Feedstock	Pretreatment	Use as liquid fuel
Bio-ethanol	Food crops (e.g. Corn, wheat)	Not required	 Needing to be mixed with petroleum before use Not used in cold weather (low vapour pressure of ethanol)
Bio-diesel	Food crops (e.g. Canola oil)	Predrying biomass	 Not used in cold weather (gelling at low temperatures < -10 °C)

New Generation Biofuels: Cellulosic Feedstock...

Sustainable Production of Biofuels: An Integrated Biomass Production System

