Chapter 4 Properties of aerosol particles

- Calculation of the properties of aerosol particles.
- Aerosol dynamics.
- Aerosol particle statistics

Most flow around a particle is in Stokes regime

Example: Particle diameter = 10 μ m, relative velocity = 1 m/s; air μ = 1.81 x10⁻⁵ Pa.s

$$\operatorname{Re}_{p} = \frac{\rho_{g} d_{p} (u - v)}{\mu} = \frac{1.2 \times 10^{-5} \times 1}{1.81 \times 10^{-5}} < 1$$

• In air pollution, we deal with particle with even smaller sizes and aerosol particle tends to follow air under normal condition

 $Re_p \propto d_p \text{ and } v \rightarrow u$

Shape factor (Optional)	$S_f = $	$\frac{F_D}{3\pi\mu\nu d_e}$	$F_D = 3$	$\pi\mu v d_e S_f$
	[Dynamic shap	be factor	
Shape			Axial ratio	C
		2	5	10
Geometric shapes				
Sphere	1.00			
Cube (e.g. Ocean salt)	1.08			
Cylinder				
Vertical axis		1.01	1.06	1.20
Horizontal axis		1.14	1.34	1.58
Orientation averaged		1.09	1.23	1.43
Straight chain	$S_{f} > 1$	1.10	1.35	1.68
Compact cluster	-)			
Three spheres	1.15			
Four spheres	1.17			
Dust particles				
Bituminous coal	1.05-1.1	.1		
Quartz	1.36			
Sand	1.57			
Talc	1.88			1

$$\left(\frac{mgC_c}{3\pi\mu d_p}\right) - v = \left(\frac{mC_c}{3\pi\mu d_p}\right) \frac{dv}{dt} \qquad \text{Initial condition:} \quad volume = \frac{1}{6}\pi d_p^3$$

$$\left(\frac{3\pi\mu d_p}{mC_c}\right) \int_0^t dt = -\int_0^{v(t)} \frac{dv(t)}{\left[v(t) - \left(\frac{mgC_c}{3\pi\mu d_p}\right)\right]}$$

$$\left(\frac{3\pi\mu d_p}{mC_c}\right) t = \ln\left(\frac{mgC_c}{3\pi\mu d_p}\right) - \ln\left[v(t) - \left(\frac{mgC_c}{3\pi\mu d_p}\right)\right]$$

$$\frac{t}{\left(\frac{\rho_p d_p^2 C_c}{18\mu}\right)} = \ln\left[\frac{\rho_p d^2 gC_c}{18\mu}\right] - \ln\left[\frac{\rho_p d^2 gC_c}{18\mu} - v(t)\right] = \ln\left(\frac{\frac{\rho_p d^2 gC_c}{18\mu}}{18\mu} - v(t)\right)$$

$$-\frac{t}{\left(\frac{\rho_{p}d_{p}^{2}C_{c}}{18\mu}\right)} = \ln\left(\frac{\frac{\rho_{p}d^{2}gC_{c}}{18\mu} - v(t)}{\frac{\rho_{p}d^{2}gC_{c}}{18\mu}}\right)$$

$$v(t) = \frac{\rho_{p}d_{p}^{2}gC_{c}}{18\mu}\left\{1 - \exp\left[-\frac{t}{\left(\frac{\rho_{p}d_{p}^{2}C_{c}}{18\mu}\right)}\right]\right\} \longrightarrow v(t \to \infty) = \frac{\rho_{p}d_{p}^{2}gC_{c}}{18\mu} = v_{TS}$$

$$\tau = \left(\frac{\rho_{p}d_{p}^{2}C_{c}}{18\mu}\right) \longrightarrow \frac{v(t)}{v_{TS}} = 1 - \exp\left(-\frac{t}{\tau}\right)$$

$$z_{0}$$

Example 4.1
 Consider a spherical glass bead with a diameter of 30 μm and density of 2500 ka/m³ is released from rest in still air.
1 How long it will take to reach its terminal velocity?
 What is its terminal velocity
Solution: Given $d_p = 30 \ \mu m$, $\rho_p = 2500 \ \text{kg/m}^3$, and $\mu = 1.81 \ \text{x} 10^{-5} \ \text{Pa.s}$
$Kn = 2\lambda/d_p = 2 \times \frac{0.066 \mu m}{30 \mu m} = 0.0044$
$C_c = 1 + Kn \left[1.142 + 0.558 \exp\left(-\frac{0.999}{Kn}\right) \right]$
$= 1 + 0.0044 \left[1.142 + 0.558 exp\left(-\frac{0.999}{0.044} \right) \right] = 1.0055$
$\tau = \frac{\rho_p d_p^2 C_c}{18\mu} = \frac{2500 \times (30 \times 10^{-6})^2 \times 1.055}{18 \times 1.81 \times 10^{-5}} = 0.0073 s$
$t = 3\tau = 3 \times 0.0073 \ s = 0.0219 \ s$ $v_{TS} = \tau g = 0.0715 \ m / s$

Aerodynamic Diameter, d_a

- The aerodynamic diameter, *d_a* is an equivalent diameter that finds wide applications in aerosol studies.
- It is defined as the diameter of the spherical particle with a standard density of 1,000 kg/m³ that has the same gravitational settling velocity as the particle when they are both present in the same gravitational field.

$$v_{TS} = \frac{\rho_p d_e^2 g C_c}{18 \mu S_f} = \frac{\rho_0 d_a^2 g C_c}{18 \mu} \qquad \rho_0 = 1000 \text{ kg/m}^3$$

NOTE: Cc in both sides of the equations shall be based on d_e rather than d_a , because the slipping effect is a geometric factor

Example

• Estimate the aerodynamic diameter for a steel particle with geometric equivalent diameter $d_e = 10$ μm and a density of $\rho_p = 8000 \text{ kg/m}^3$.

Solution

Assume particle is spherical so that shape factor, $S_f=1$

$$d_a = d_e \left(\frac{\rho_p}{\rho_0 S_f}\right)^{\frac{1}{2}} = 10 \times 10^{-6} \left(\frac{8000}{1000 \times 1}\right)^{\frac{1}{2}} = 2.83 \times 10^{-5} \, m = 28.3 \, \mu m$$

Comment: For a particle with this great density, its aerodynamic particle diameter is much greater than its geometric equivalent diameter.

ExampleEstimate the Stokes number of a 1-µm particle with the
density of 8000 kg/m³ in an air flowing at 1 m/s
perpendicular to a cylinder of diameter 10 cm, assuming
standard conditions.Given $d_e = 1 \ \mu m$, $U_o = 1m/s$, $d_c = 10 \ cm$, $\rho_p = 8000 \ kg/m³$ $Kn = 2\lambda/d_p = 2\lambda/d_e = 2 \times 0.066/1 = 0.132$ $Kn = 2\lambda/d_p = 2\lambda/d_e = 2 \times 0.066/1 = 0.132$ $C_c = 1 + Kn \left[1.257 + 0.40 \ exp \left(-\frac{1.10}{Kn} \right) \right] = 0.001 < Kn < 100$ $C_c = 1 + 0.132 \left[1.257 + 0.40 \ exp \left(-\frac{1.10}{0.132} \right) \right] = 1.166$ $Stk = \frac{\rho_p d_p^2 C_c u_0}{18 \mu d_c} = \frac{8000 \times (1 \times 10^{-6})^2 \times 1.166 \times 1}{18 \times 1.81 \times 10^{-5} \times 0.1} = 2.86 \times 10^{-4}$ The geometric diameter is used in determining the Knudsen
number because Kn is a geometric ratio rather than an
aerodynamic property.

Unlike gas molecules, most		Fad	
erosol particles, a o surfaces they co ontact with.	attach firmly ome in	♥mg	
	Force (N)		
Aerodynamic	Forc	e (N)	
Aerodynamic diameter (µm)	Forc Adhesion	e (N) Gravity	
Aerodynamic diameter (μm) 0.1	Forc Adhesion 10 ⁻⁸	e (N) Gravity 5 x 10 ⁻¹⁸	
Aerodynamic diameter (μm) 0.1 1	ForcAdhesion10-810-7	e (N) Gravity 5 x 10 ⁻¹⁸ 5 x 10 ⁻¹⁵	
Aerodynamic diameter (μm) 0.1 1 10	Force Adhesion 10 ⁻⁸ 10 ⁻⁷ 10 ⁻⁶	e (N) Gravity 5 x 10 ⁻¹⁸ 5 x 10 ⁻¹⁵ 5 x 10 ⁻¹²	

45

• Do particles of different sizes from the same materials have the same density?