

Example (Start with a simple case)

- A particle counter is used to measure the particle number concentration up- and down-stream of a particulate air cleaning device as a function of aerodynamic diameter.
- The up- and down-stream particle number concentrations are

$d_p(\mu m)$	Up- <i>N</i> _i	Down- N _o	
1	1000	10	
5	100	6	
10	5	0	
20	1	0	

- Calculated the fractional efficiency, and
- the total mass efficiency of this air cleaning device.

9

- Two identical filters, filtration efficiency is each 85%, what is the total efficiency if two of them working in serial
- Solution

P1=P2=0.15 P=0.0225 $\eta = 0.9775 = 97.75\%$

11

- Particles and air are completely mixed at any cross section perpendicular to the direction of airflow.
- In *dx*, the concentration of particles within it is assumed to be uniform and the particles settle down at V_{TS}.
- During *dt* the particles at the bottom of the chamber within a distance $\delta = V_{TS} dt$ above the lower collecting plate are considered collected

	Complete Mixing Model				
	$C_x UWH = CV_{TS}W(dx) + C_{x+dx}UWH$				
	$\frac{dC}{C} = -\frac{V_{TS}}{H}dt$				
	$\frac{dC}{C} = -\frac{V_{TS}}{HU}dx$				
	$\int_{C_i}^{C_o} \frac{dC}{C} = -\int_0^L \frac{V_{TS}}{HU} dx$				
•	$P = \exp\left(-\frac{V_{TS}L}{HU}\right)$ $= \exp\left(-\frac{V_{TS}LHW}{HQ}\right)$				
	$\eta = 1 - \exp\left(-\frac{V_{TS}LW}{Q}\right)$				

	$d_p(\mu m)$	$\eta(d_p)$
$\eta_L(d_p) = \frac{\rho_p g d_p^2 C_c L W}{18 \mu Q}$	10	0.03%
	100	3%
$C_c \approx 1$	150	7%
$\eta_L(d_p) = \frac{\rho_p g a_p L w}{18 \mu Q}$ $= \frac{(1000)(9.81)(1)(1)}{(18)(1.81 \times 10^{-5})(1)} d_p^2$	200	12%
	250	19%
	350	37%
$= 3.01 \times 10^7 d^2$	500	75%
	575	100%

Lapple (1951)	model	н	
	High efficiency	Conventional	High throughput	
Height of inlet H/D	0.5-0.44	0.5	0.75-0.8	D
Width of inlet W/D	0.2021	0.25	0.375- 0.35	
Diameter of gas exit De/D	0.4-0.5	0.5	0.75	
Length of vortex finder S/D	0.5	0.625-0.6	1.5-1.7	
Length of body, L _B /D	1.4	1.75	1.7	<u>[1</u>]
Cone length, L _c /D	2.5	2	2.5-2	
Diameter of dust outlet	0.375-0.4	0.25-0.4	0.375-0.4	

10/28/2014

17

Single Fiber Efficiency per unit length of fiber by Interception

$$\eta_{it} = \frac{1+R}{2Y} \left| 2\ln(1+R) - (1-\alpha) + \left(1 - \frac{\alpha}{2}\right)(1+R)^{-2} - \frac{\alpha}{2}(1+R)^2 \right|$$

- $\alpha = (1 porosity)$, is the solidity of filter;
- $R = d_p/d_f$, is the ratio of particle diameter to fiber diameter, and
- *Y* is the Kuwabara hydrodynamic factor defined below, with slip effect taken into consideration

$$Y = -\frac{\ln\alpha}{2} - \frac{3}{4} + \alpha - \frac{\alpha^2}{4}$$

Solution: In this equation, the following parameters are considered as constant $d_f = 5 \ \mu m, \alpha = 0.03, \ Kn_f = \frac{2\lambda}{d_f} = 0.0264$ $Y = \frac{\ln \alpha}{2} - \frac{3}{4} + \alpha - \frac{\alpha^2}{4} = 1.033054, \ \mu = 1.81 \times 10^{-5} \ Pa.s, \ U_0 = 0.05 \ m/s$ The following variables can be calculated in an Excel sheet for different particle diameters $R = \frac{d_p}{d_f}, \ Stk_f = \frac{\rho_p d_p^2 C_c U_0}{18 \mu d_f}, \ Stk_m = \frac{5tk}{2Y}$ $I = \begin{cases} (29.6 - 28\alpha^{0.62})R^2 - 27.5R^{2.8} \ for \ R < 0.4 \ for \ R \ge 0.4 \end{cases}$ $D_p = \frac{kTC_c}{3\pi \mu d_p}, \ Pe = \frac{U_0 d_f}{D_p}, \ Pe_m = \frac{Pe}{2Y}$ The the single fiber filtration efficiency by inertial interception, impaction and diffusion, per unit length of fiber is calculated using $\eta_{it} = \frac{1+R}{2Y} \Big[2\ln(1+R) - (1-\alpha) + (1-\frac{\alpha}{2})(1+R)^{-2} - \frac{\alpha}{2}(1+R)^2 \Big]$ $\eta_{ip} = \frac{1}{2Y} \ Stk_m$ $\eta_D = \frac{3.65(Pe_m)^{-\frac{2}{3}} + 0.624(Pe_m)^{-1}}{2Y}$

• The number concentration of particles lost per unit volume from the bulk air over the distance dx equals to that captured by the fiber with a single fiber efficiency η_{sf} corresponding to an approaching flow rate of $U_0 d_f \cdot d_{sf}$, where $d_f \cdot d_{sf}$ defines the cross section area of the fiber with the length of ds_f and the diameter of d_f

$$Q \cdot dC_N(x) = -\eta_{sf}C_N(x)U_0d_f \cdot ds_f$$

• all these particles passed through a single fiber with a cross section area of $(d_f \cdot ds_f)$ with an approaching speed of U_0 and a single fiber efficiency of η_{sf}

$$A_{c}U_{\infty} \cdot dC_{N}(x) = -C_{N}(x)\eta_{sf}U_{0}d_{f} \cdot \frac{4\alpha A_{c} \cdot dx}{\pi d_{f}^{2}}$$
$$\frac{dC_{N}(x)}{C_{N}(x)} = -\left(\frac{U_{0}}{U_{\infty}}\frac{\eta_{sf}4\alpha}{\pi d_{f}}\right)dx$$
48

