

Biodegradable Nanofibrous Filters for Air Filtration

Raheleh Givehchi Chenping Ni Patrick Bardo Zhongchao Tan

Department of Mechanical & Mechatronics Engineering University of Waterloo Ontario, Canada

65th Canadian Chemical Engineering Conference Oct 4-7, 2015, Calgary, Canada

Introduction > Objective

Methodology

> Conclusion

Results

Introduction > Objective

Methodology

Results > Conclusion

Solution...

Introduction

Wear a respiratory mask to protect the respiratory system from inhalation of airborne PM.

Objective

Knowledge gap:

Performance of nanofibrous filters in respiratory mask

Methodology

Results

The **objectives** of this study are:

Objective

Introduction

✓ Determine the filtration efficiency of nanofibrous filter media for capturing PM10.

Methodology

Results

- ✓ Determine the filtration efficiency of nanofibrous filter media in respiratory mask for protection
- ✓ Comparing the filtration efficiency of nanofibrous filter respiratory mask with commercial ones

Commercial Respiratory Masks

Nanofibrous Filter mounted in mask 1

Replace the filter of the commercial mask with the fabricate nanofibrous filter

Employing two circular filter media with a diameter of 25 mm

Electrospinning Setup for Filter Fabrication

Objective

Polyvinyl alcohol (PVA), 10% w/w V=15 kV d=10 , 15 cm Deposition times: 5 , 15, 30 min

Introduction

Results

Methodology

df: 183 nm L: 12 µm 20 15 10 5 0 a:0.0267 $\begin{array}{c} 20\\1100\\180\\340\\500\\580\\580\end{array}$ Fiber Diameter (nm) df: 145 nm 25 20 15 10 5 0 L: 6 µm α: 0.0310 0 7

1) Experimental Setup to test filter media

Objective

Methodology

Filtration efficiency

$$\eta = 1 - \frac{C_{down}}{C_{up}}$$

Introduction

Filter media holder Fluidized Bed Generator (TSI 3400A)

Results

APS (TSI 3321)

2) Experimental Setup to test respiratory mask

Objective

Methodology

Introduction

Due to anthropometric differences, no respirator can be guaranteed to fit all users₉

Results

Objective > Methodology

lology > **Results**

> Conclusion

PVA Filtration Efficiency

Introduction

NF2, prepared at d=15 cm

Although NF2 has the lower mean fiber diameter, it does not have the highest efficiency, due to the smaller thickness.

Comparison between the performance of commercialized filter <u>media</u> with nanofibrous filter

Methodology

Results

Conclusion

Introduction

Objective

Filtration Efficiency of different dust masks: head 1

Methodology

Results

Conclusion

Objective

Introduction

Although the dust masks employed high efficient filter media, their practical efficiency is not high for all of them.

Filtration Efficiency of different dust masks: head 2

Methodology

Results

Conclusion

Dust masks perform differently for different head's shape

Objective

Introduction

Filtration Efficiency of different dust masks: head 3

Methodology

Results

Conclusion

Introduction

Objective

Statistical analysis showed that the head's shape has a strong significant effect on the performance of FFR (P<0.05)

Effects of head's shape on mask performance

Methodology

Results

Objective

Introduction

• Objective > Methodology

lology > **Results**

> Conclusion

Leakage of dust masks for two filter media

Sealed NF>Commercial

Introduction

Non-Sealed NF<Commercial

Introduction Objective Methodology Results Conclusion

- ✓ The performance of dust masks depends on both face and mask shapes.
- ✓ The filtration of dust masks are the same for different heads in the case of sealed masks, because results eliminates the leakage of dust masks on the face.
- ✓ Employing the NF in the specific designed commercialized mask was not effective due to the high leakage
- ✓ NF must be employed in dust mask with the larger surface area and lower leakage

Acknowledgment

Canada Foundation for Innovation

Fondation canadienne pour l'innovation